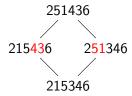
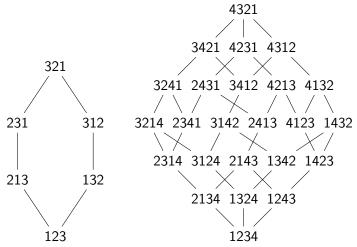
Binary relations lattice

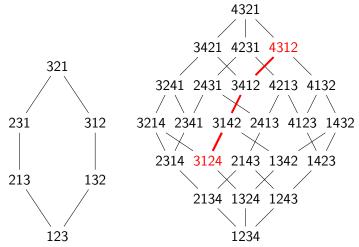
Grégory Châtel joint work with Joel Gay, Vincent Pilaud et Viviane Pons

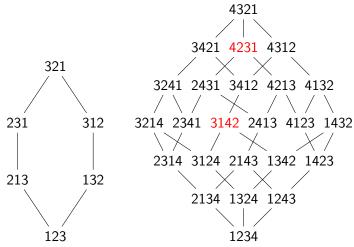
Université Paris-Est Marne-la-Vallée

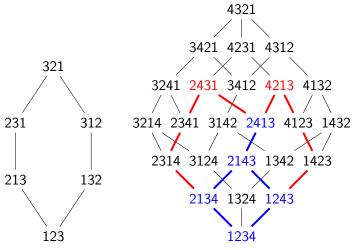
SLC 76 05/04/2016



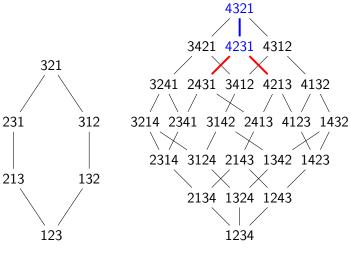








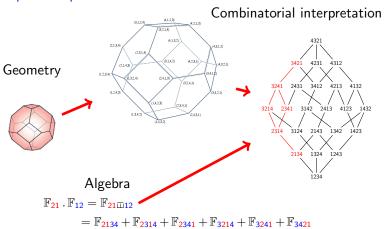
 $2413 \land 4213 = 2413$



$$2413 \land 4213 = 2413$$

 $2413 \lor 4213 = 4231$

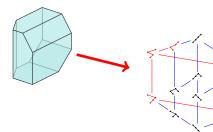
Triple interpretation

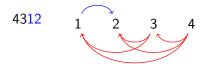


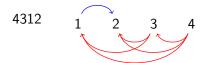
Triple interpretation

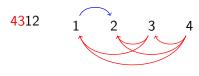
Combinatorial interpretation

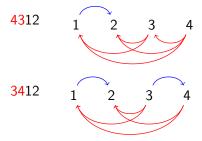
Geometry

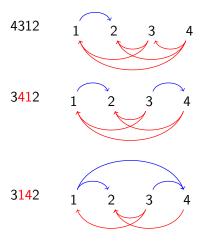






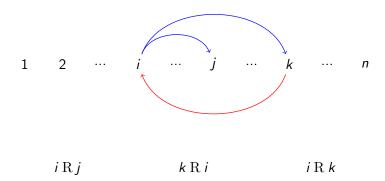






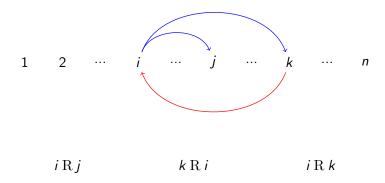
 $1 \quad 2 \quad \cdots \quad i \quad \cdots \quad j \quad \cdots \quad k \quad \cdots \quad i$

1 2 \cdots i \cdots j \cdots k \cdots n i R j k R i



Binary relations on integer

Let R be a relation of size n.



There is $2^{n(n-1)}$ binary relations.

Partial order on relations

Let \boldsymbol{R} be a binary relation

$$\mathbf{R}^{\mathsf{Inc}} = \{i \, \mathbf{R} \, j, i < j\}$$

$$\mathbf{R}^{\mathsf{Dec}} = \{j \, \mathbf{R} \, i, i < j\}$$

Partial order on relations

Let R be a binary relation

$$R^{\mathsf{Inc}} = \{i R j, i < j\}$$

$$R^{\mathsf{Dec}} = \{j R i, i < j\}$$

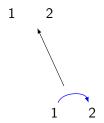
Let R and S be two binary relations,

$$R \preccurlyeq S \Leftrightarrow \qquad \qquad R^{\mathsf{Inc}} \supseteq S^{\mathsf{Inc}} \; \mathsf{and} \; R^{\mathsf{Dec}} \subseteq S^{\mathsf{Dec}}$$

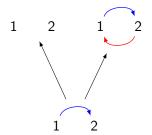
Relations of size 2

Relations of size 2

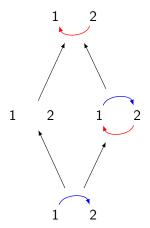
Relations of size 2

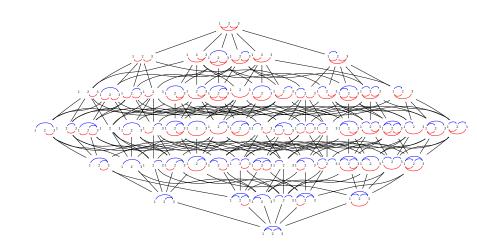


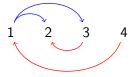
Relations of size 2

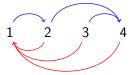


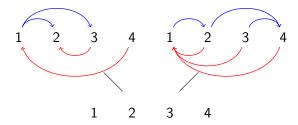
Relations of size 2

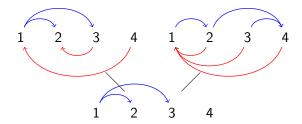


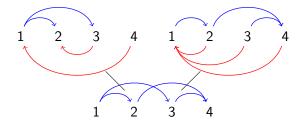


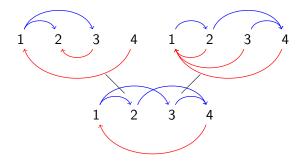


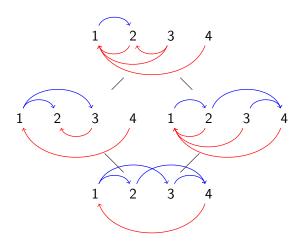










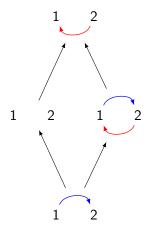


We want to keep the relations that are:

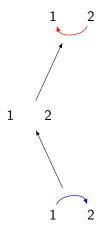
- antisymmetric
- transitives

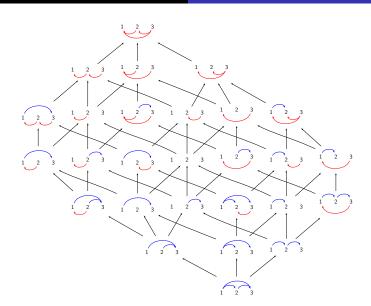
(posets)

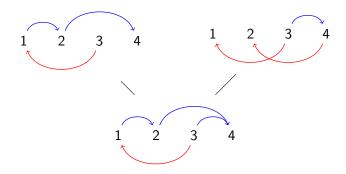
Antisymmetry



Antisymmetry

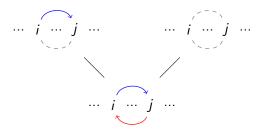


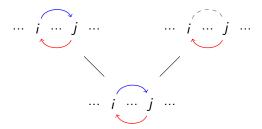




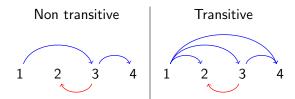
$$\cdots \ i \cdots j \cdots \cdots i \cdots j \cdots$$

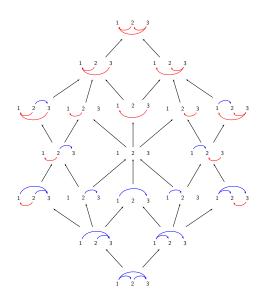
$$\cdots \ i \cdots j \cdots$$

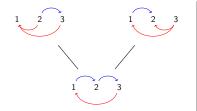


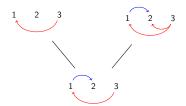


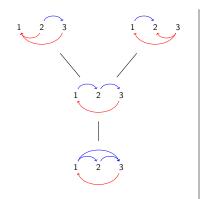
Transitivity

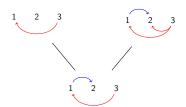


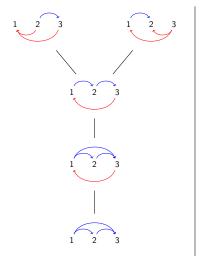


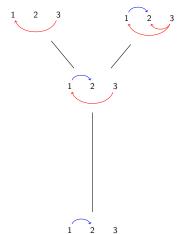


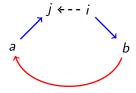


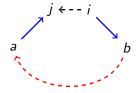


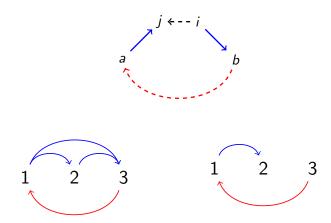


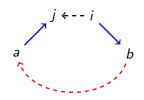


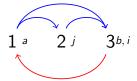


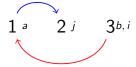


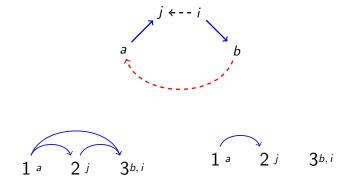




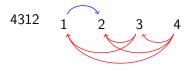








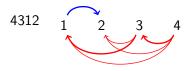
Back to the permutations



We have i R j iff the number i is on the left of j in the permutation. The relation is

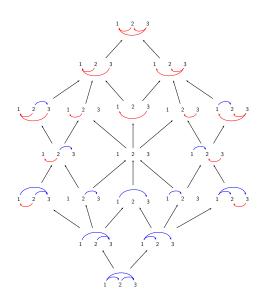
- antisymmetric
- transitive
- and total

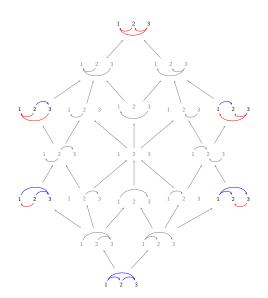
Back to the permutations

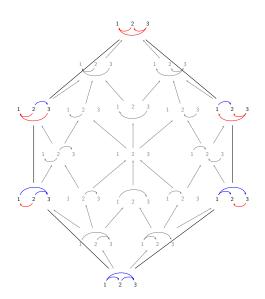


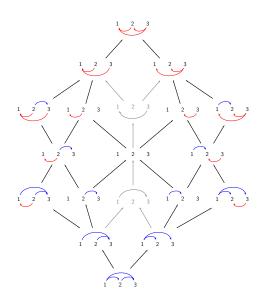
We have i R j iff the number i is on the left of j in the permutation. The relation is

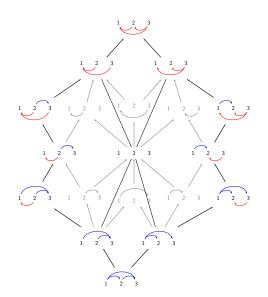
- antisymmetric
- transitive
- and total

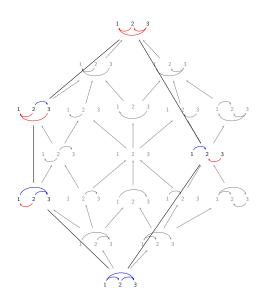


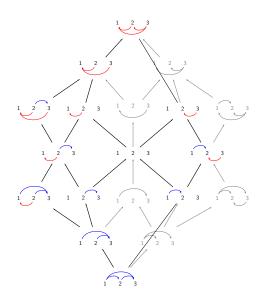


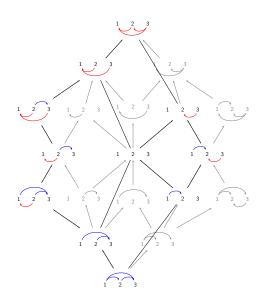


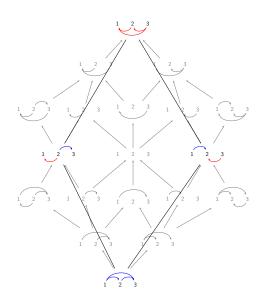


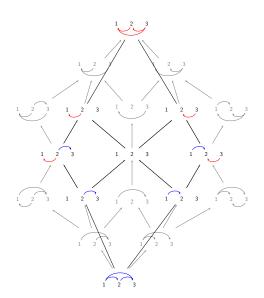












Results

▶ A set of rules on posets that automatically yields sublattices.

Work in progress

- Study associated Hopf algebras.
- Study associated polytopes.
- ▶ Study the same problems in the Coxeter group framework.