How to compare arc-annotated sequences: the alignment hierarchy

G. Blin¹ H. Touzet²

¹IGM-LabInfo UMR 8049, Université de Marne La Vallée gblin@univ-mlv.fr

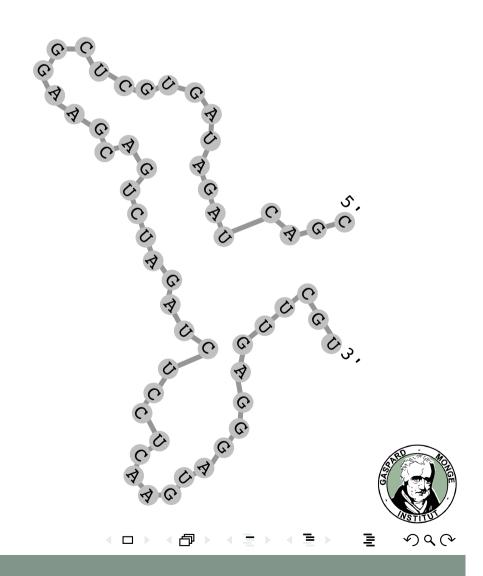
²LIFL, UMR CNRS 8022 Université des Sciences et Technologies de Lille touzet@lifl.fr

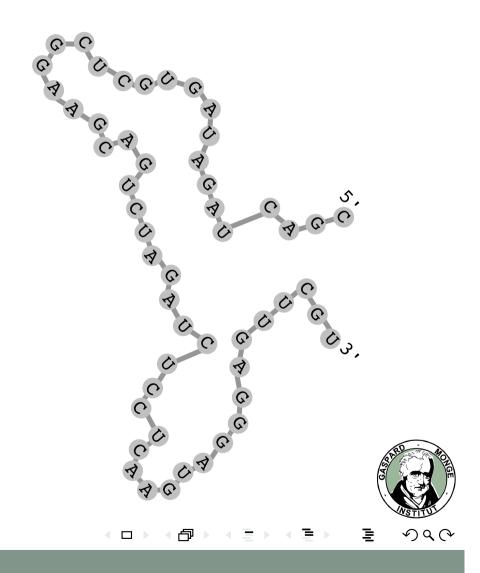
Outline

- Algorithmic of RNA
- Arc-annotated sequences
- The ALIGN hierarchy
- Derived results from existing model
- New results
- Conclusion

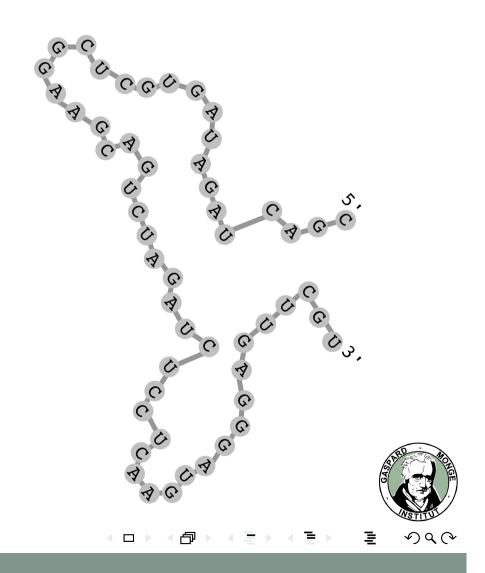
Outline

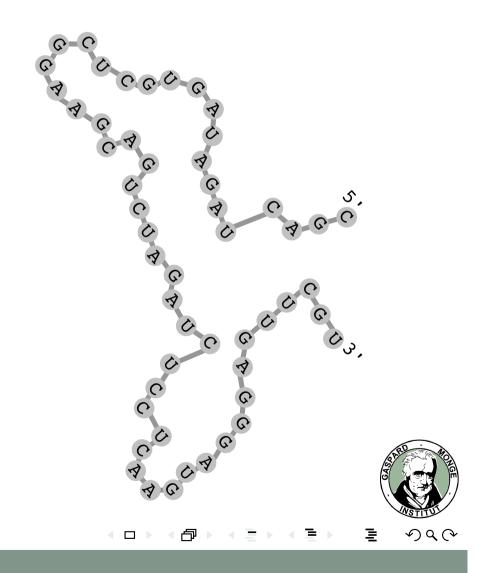
- Algorithmic of RNA

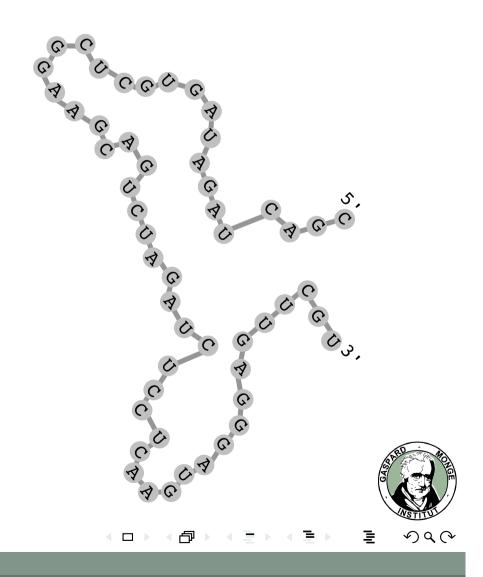




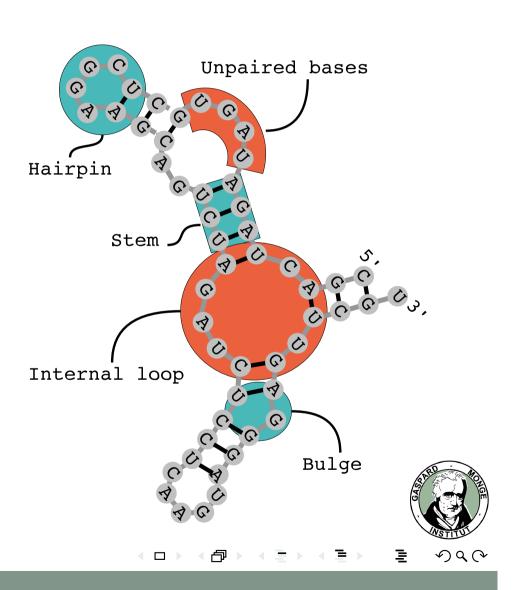
RiboNucleic Acid


One-Strand molecule


- One-Strand molecule
- Bases Adenine, Guanine, Cytosine and Uracil (instead of Thymine in DNA)

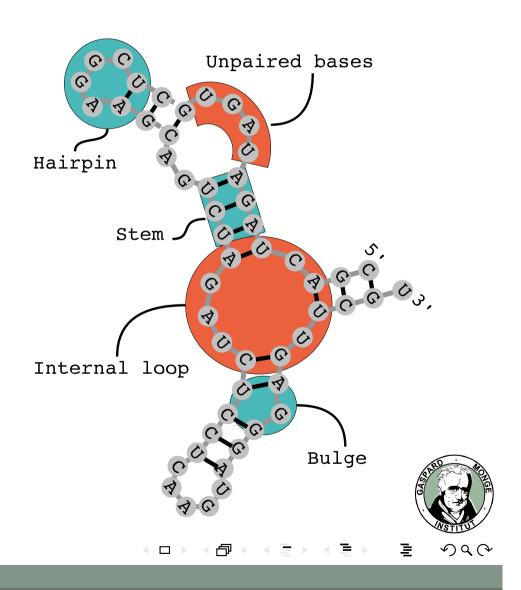

- One-Strand molecule
- Bases Adenine, Guanine, Cytosine and Uracil (instead of Thymine in DNA)
- Present in any living organism

- One-Strand molecule
- Bases Adenine, Guanine, Cytosine and Uracil (instead of Thymine in DNA)
- Present in any living organism
- Essential for protein synthesis

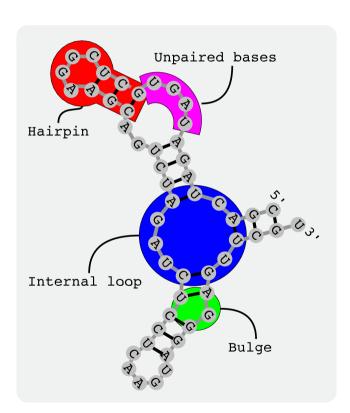

- One-Strand molecule
- Bases Adenine, Guanine, Cytosine and Uracil (instead of Thymine in DNA)
- Present in any living organism
- Essential for protein synthesis
- RNA study is essential!

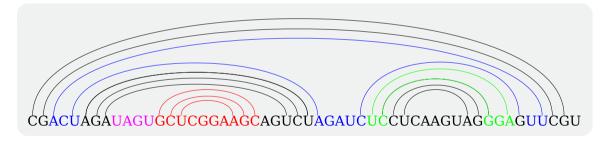
How to study RNA?

study


- RNA is folding in 3 dimensions
 - WC pairs
 - Wobble pairs

How to study RNA?


RNA study

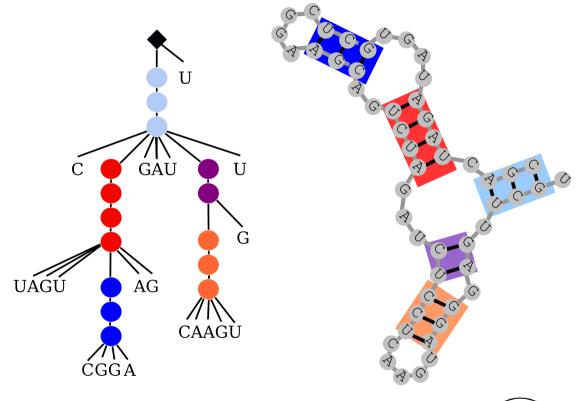

- RNA is folding in 3 dimensions
 - WC pairs
 - Wobble pairs
- Folding study (secondary or tertiary structure)
 - determines partially RNA function

Arc-Annotated Representation

RNA structure represented as an arc-annotated sequence : (S, P)

Outline

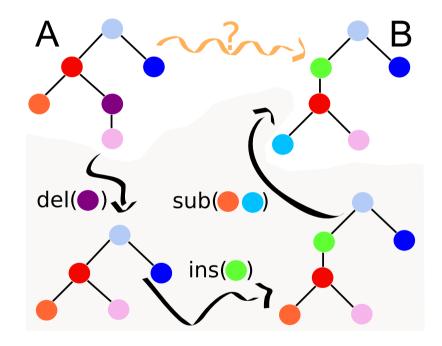
- Algorithmic of RNA
- 2 Arc-annotated sequences
- 3 The ALIGN hierarchy
- Derived results from existing model
- 5 New results
- 6 Conclusion



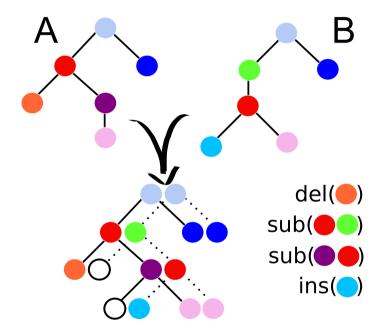
Four main paradigms

using tree representation (a base-pair≡internal node; free-base≡leaf):

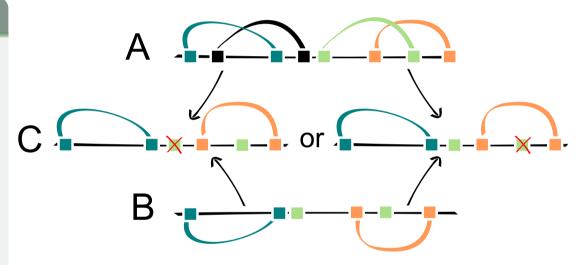
using a.a. sequences :



Arc-annotated sequences

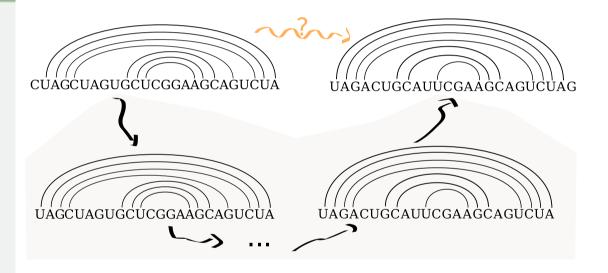

- using tree representation (a base-pair≡internal node; free-base≡leaf):
 - tree edit distance
- using a.a. sequences :

- using tree representation (a base-pair≡internal node; free-base≡leaf):
 - tree edit distance
 - tree alignment
- using a.a. sequences :



Arc-annotated sequences

- using tree representation (a base-pair≡internal node; free-base≡leaf):
 - tree edit distance
 - tree alignment
- using a.a. sequences :
 - longest arc-preserving common subsequence


The 2 bases incident to an arc of A or B can be added to C only if the arc is preserved

Arc-annotated sequences

- using tree representation (a base-pair≡internal node; free-base≡leaf):
 - tree edit distance
 - tree alignment
- using a.a. sequences :
 - longest arc-preserving common subsequence
 - general edit distance

Outline

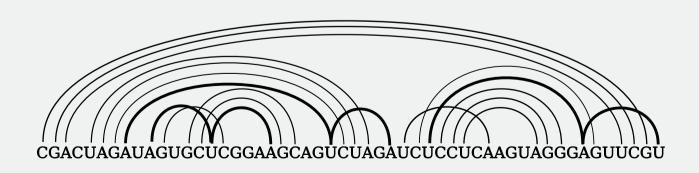
- The ALIGN hierarchy

Purposes and results

A uniform framework to express comparison of a.a. sequences

- Purposes:
 - Confront the different existing models
 - Find bridges between those last
- Results:
 - Theoretical: it brings together all previously mentioned comparison models
 - Practical: we design two poly-time algorithms for instances for which none can be found in other models.

It allows us to compare biologically relevant instances considering a set of operations S whereas comparing such instances considering Swith others comparison models is an NP-complete problem.

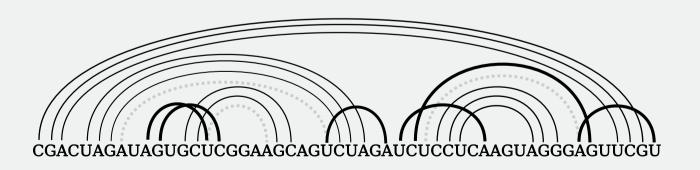


Preliminaries

Arc-structure levels

There are 4 levels (initially introduced by P.A. Evans):

UNLIMITED – no restriction at all,

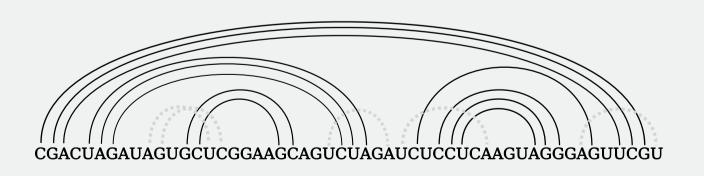


Preliminaries

Arc-structure levels

There are 4 levels (initially introduced by P.A. Evans):

- UNLIMITED no restriction at all,
- CROSSING no base incident to more than one arc,



Preliminaries

Arc-structure levels

There are 4 levels (initially introduced by P.A. Evans):

- UNLIMITED no restriction at all,
- CROSSING no base incident to more than one arc,
- NESTED no base incident to more than one arc and no arcs are crossing,

Arc-structure levels

There are 4 levels (initially introduced by P.A. Evans):

UNLIMITED – no restriction at all,

Arc-annotated sequences

- CROSSING no base incident to more than one arc,
- NESTED no base incident to more than one arc and no arcs are crossing,
- PLAIN no arc (does not carry any structural information ⇒ not considered here).

CGACUAGAUAGUGCUCGGAAGCAGUCUAGAUCUCCUCAAGUAGGGAGUUCGU

Edit operations

Initially introduced by Lin et al. :

Arc-annotated sequences

Substitution operations, inducing renaming of bases:

Derived results from existing model

Deletion operations, inducing deletion of bases and/or of arcs :

base-deletion $(w_d : \Sigma \to \mathbb{R})$ $\circ \bullet \bullet \circ \bullet$

Three edit models

I: all substitution operations, base-deletions and arc-removings,

It is the operations of model I and arc-alterings,

III : the operations of model II and arc-breakings.


 \mathcal{O}

Common *K*-subsequence – *K*-supersequence

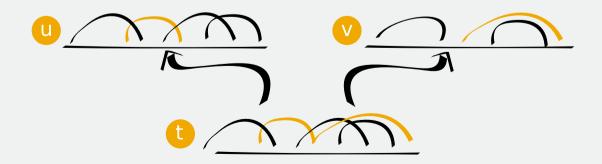
For any model $K \in \{1, 11, 111\}$, given 3 sequences u, v and t,

 \bullet t is a common K-subsequence of u and v iff t can both be obtained from a series of edit operations of K from u and v

Common K-subsequence

 \mathcal{O}

Common K-subsequence – K-supersequence


For any model $K \in \{1, 11, 111\}$, given 3 sequences u, v and t,

 \bullet t is a common K-subsequence of u and v iff t can both be obtained from a series of edit operations of K from u and v

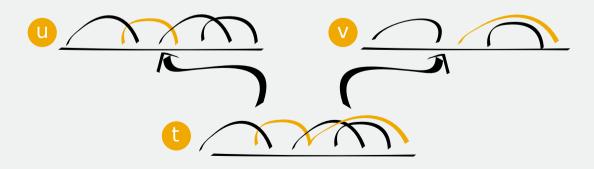
Derived results from existing model

• t is a common K-supersequence of u and v iff both u and v can be obtained from a series of edit operations of K from t

Common *K*-supersequence

Common K-subsequence – K-supersequence

Arc-annotated sequences


For any model $K \in \{1, 11, 111\}$, given 3 sequences u, v and t,

 \bullet t is a common K-subsequence of u and v iff t can both be obtained from a series of edit operations of K from u and v

Derived results from existing model

- t is a common K-supersequence of u and v iff both u and v can be obtained from a series of edit operations of K from t
- The cost of a common K-(super/sub)sequence is defined as the sum of the costs of the two series of edit operations

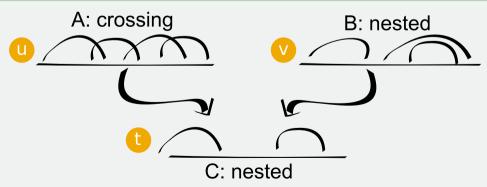
Common *K*-supersequence

Problem definition

Arc-annotated sequence alignment

 $ALIGN(A, B, K) \rightarrow C$:

- Input : $K \in \{I, II, III\}$, $A, B, C \in \{PLAIN, NESTED, CROSSING, PLAIN, PLAI$ UNLIMITED, two arc-annotated sequences u and v respectively of A-type and B-type
- Output : A common K-supersequence of u and v of C-type and of minimal cost


Problem definition

Edit distance

EDIT(A, B, K):

- Input : $K \in \{I, II, III\}$, $A, B \in \{PLAIN, NESTED, CROSSING, PLAIN, PLA$ UNLIMITED $\}$, two arc-annotated sequences u and v respectively of A-type and B-type
- Output : A common K-subsequence of u and v of <u>UNLIMITED</u>-type and of minimal cost

EDIT(A, B, K)

Problem definition

Edit distance

EDIT(A, B, K): No structural constraints on the common subsequence

- Input : $K \in \{I, II, III\}$, $A, B \in \{PLAIN, NESTED, CROSSING, UNLIMITED\}$, two arc-annotated sequences u and v respectively of A-type and B-type
- Output: A common K-subsequence of u and v of <u>UNLIMITED</u>-type and of minimal cost

Arc-annotated sequence alignment

Arc-annotated sequences

 $ALIGN(A, B, K) \rightarrow C$:

- Input : $K \in \{I, II, III\}$, $A, B, C \in \{PLAIN, NESTED, CROSSING, UNLIMITED\}$, two arc-annotated sequences u and v respectively of A-type and B-type
- Output: A common K-supersequence of u and v of C-type and of minimal cost

 \mathcal{O}

Outline

- Algorithmic of RNA
- 2 Arc-annotated sequences
- 3 The ALIGN hierarchy
- 4 Derived results from existing model
- 5 New results
- 6 Conclusion

Ordered trees and the edit model I

Considering model I : all substitution, base-deletions and arc-removings

$A \times B \rightarrow C$	Edit	model I
$Nest \times Nest \rightarrow Nest$		<i>O</i> (<i>n</i> ⁴) – Jiang '95
$\begin{array}{c} \text{Nest} \times \text{Nest} \to \text{Cros} \\ \text{Nest} \times \text{Nest} \to \text{Unlim} \end{array}$	×	$O(n^3 \log(n)) - \text{Klein '98}$
$\begin{array}{c} \text{Cros} \times \text{Nest} \to \text{Cros} \\ \text{Cros} \times \text{Nest} \to \text{Unlim} \end{array}$	×	$O(n^3 \log(n))$ – Ma '01
$\begin{array}{c} \text{Cros} \times \text{Cros} \to \text{Cros} \\ \text{Cros} \times \text{Cros} \to \text{Unlim} \end{array}$	×	NP -complete – Ma '01
$Unlim \times Nest \rightarrow Unlim$	×	$O(n^3 \log(n))$
$Unlim \times Cros \rightarrow Unlim$	×	NP -complete – Ma '01
U nlim × U nlim \rightarrow U nlim	×	NP -complete – Ma '01

• ALIGN $(A, B, K) \rightarrow \text{UNLIMITED} \equiv \text{EDIT}(A, B, K)$

Ordered trees and the edit model I

Considering model I: all substitution, base-deletions and arc-removings

$A \times B \rightarrow C$	Edit	model I
$Nest \times Nest \rightarrow Nest$		O(n ⁴) - Jiang '95
$\begin{array}{c} \text{Nest} \times \text{Nest} \to \text{Cros} \\ \text{Nest} \times \text{Nest} \to \text{Unlim} \end{array}$	×	$O(n^3 \log(n))$ – Klein '98
$\begin{array}{c} \text{Cros} \times \text{Nest} \to \text{Cros} \\ \text{Cros} \times \text{Nest} \to \text{Unlim} \end{array}$	×	$O(n^3 \log(n))$ – Ma '01
$\frac{\text{Cros} \times \text{Cros} \to \text{Cros}}{\text{Cros} \times \text{Cros} \to \text{Unlim}}$	×	NP -complete – Ma '01
$\text{Unlim} \times \text{Nest} \to \text{Unlim}$	×	$O(n^3 \log(n))$
$Unlim \times Cros \rightarrow Unlim$	×	NP -complete – Ma '01
U nlim \times U nlim \rightarrow U nlim	×	NP -complete – Ma '01

- ALIGN $(A, B, K) \rightarrow \text{UNLIMITED} \equiv \text{EDIT}(A, B, K)$
- ullet ALIGN $(A, B, I) \rightarrow \mbox{Unlim} \equiv \mbox{ALIGN}(A, B, I) \rightarrow \mbox{Cros.}$ UNLIMITED is meaningless.
- \bullet Align(Unlim, B, I) \rightarrow Unlim \equiv Align(Cros, B, I) \rightarrow Cros

Ordered trees and the edit model I

Considering model I: all substitution, base-deletions and arc-removings

$A \times B \rightarrow C$	Edit	model I
$Nest \times Nest \rightarrow Nest$		O(n ⁴) - Jiang '95
$\begin{array}{c} \mathrm{Nest} \times \mathrm{Nest} \to \mathrm{Cros} \\ \mathrm{Nest} \times \mathrm{Nest} \to \mathrm{Unlim} \end{array}$	×	$O(n^3 \log(n))$ – Klein '98
	×	$O(n^3 \log(n))$ – Ma '01
$Cros \times Cros \rightarrow Cros$ $Cros \times Cros \rightarrow Unlim$	×	NP -complete – Ma '01
$\text{Unlim} \times \text{Nest} \to \text{Unlim}$	×	$O(n^3 \log(n))$
$\text{Unlim} \times \text{Cros} \to \text{Unlim}$	×	NP -complete – Ma '01
$Unlim \times Unlim \rightarrow Unlim$	×	NP -complete – Ma '01

- ALIGN $(A, B, K) \rightarrow \text{UNLIMITED} \equiv \text{EDIT}(A, B, K)$
- \bullet ALIGN $(A, B, I) \rightarrow \text{UNLIM} \equiv \text{ALIGN}(A, B, I) \rightarrow \text{CROS}$. UNLIMITED is meaningless.
- \bullet Align(Unlim, B, I) \rightarrow Unlim \equiv Align(Cros, B, I) \rightarrow Cros
- Comparing arc-annotated sequences of NESTED types when considering the edit model I amounts to comparing ordered trees.

LAPCS and the edit model II

Considering model ${\rm II}$: the operations of model I and arc-alterings

$A \times B \rightarrow C$	Edit	model II
$Nest \times Nest \rightarrow Nest$		
$Nest \times Nest \rightarrow Cros$		
$Nest \times Nest \rightarrow Unlim$	×	NP -complete – Lin '02
$Cros \times Nest \rightarrow Cros$		
$Cros \times Nest \rightarrow Unlim$	×	NP -complete – Evans '99
$Cros \times Cros \rightarrow Cros$		
$Cros \times Cros \rightarrow Unlim$	×	NP -complete – Evans '99
U NLIM \times NEST \rightarrow UNLIM	×	
$Unlim \times Cros \rightarrow Unlim$	×	
$Unlim \times Unlim \rightarrow Unlim$	×	

• The LAPCS(A,B) problem is a specific case of EDIT(A,B,II), provided that the score system for edit operations is correctly chosen : $w_d = w_a = 1$ and $w_r = 2$.

999

New results

LAPCS and the edit model II

Considering model II : the operations of model I and arc-alterings

$A \times B \rightarrow C$	Edit	model II		
$Nest \times Nest \rightarrow Nest$				
$Nest \times Nest \rightarrow Cros$				
$\mathrm{Nest} \times \mathrm{Nest} \to \mathrm{Unlim}$	×	NP -complete – Lin '02		
$Cros \times Nest \rightarrow Cros$				
$Cros \times Nest \rightarrow Unlim$	×	NP -complete – Evans '99		
$Cros \times Cros \rightarrow Cros$				
$Cros \times Cros \rightarrow Unlim$	×			
$\text{Unlim} \times \text{Nest} \to \text{Unlim}$	×	NP -complete – Evans '99		
$\text{Unlim} \times \text{Cros} \to \text{Unlim}$	×	THE COMPLETE EVAILS 99		
$Unlim \times Unlim \rightarrow Unlim$	×			

- The LAPCS(A,B) problem is a specific case of EDIT(A, B, II), provided that the score system for edit operations is correctly chosen : $w_d = w_a = 1$ and $w_r = 2$.
- The LAPCS(NEST, NEST) problem is **NP**-complete. So does EDIT(NEST, NEST, //).

New results

LAPCS and the edit model II

Considering model II : the operations of model I and arc-alterings

$A \times B \rightarrow C$	Edit	model II	
$Nest \times Nest \rightarrow Nest$			
$Nest \times Nest \rightarrow Cros$			
$\mathrm{Nest} \times \mathrm{Nest} \to \mathrm{Unlim}$	×	NP -complete – Lin '02	
$Cros \times Nest \rightarrow Cros$			
$Cros \times Nest \rightarrow Unlim$	×	NP -complete – Evans '99	
$Cros \times Cros \rightarrow Cros$			
$Cros \times Cros \rightarrow Unlim$	×		
$Unlim \times Nest \rightarrow Unlim$	×	NP -complete – Evans '99	
$\text{Unlim} \times \text{Cros} \to \text{Unlim}$	×	THE -COMPLETE EVAILS 99	
$Unlim \times Unlim \rightarrow Unlim$	×		

- The LAPCS(A,B) problem is a specific case of EDIT(A, B, II), provided that the score system for edit operations is correctly chosen : $w_d = w_a = 1$ and $w_r = 2$.
- The LAPCS(NEST, NEST) problem is **NP**-complete. So does EDIT(NEST, NEST, //).
- It remains four specific problems we will answer to all of them.

999

The general edit distance and the edit model III

Considering model III: the operations of model II and arc-breakings

$A \times B \rightarrow C$	Edit	model III	
$Nest \times Nest \rightarrow Nest$			
$Nest \times Nest \rightarrow Cros$			
$\mathrm{Nest} \times \mathrm{Nest} \to \mathrm{Unlim}$	×	NP -complete – Blin '03	
$Cros \times Nest \rightarrow Cros$			
$Cros \times Nest \rightarrow Unlim$	×	Max SNP-hard – Jiang '02	
$Cros \times Cros \rightarrow Cros$			
$Cros \times Cros \rightarrow Unlim$	×		
$Unlim \times Nest \rightarrow Unlim$	×	Max SNP-hard – Jiang '02	
$Unlim \times Cros \rightarrow Unlim$	×	IVIAA SIVI -IIAIU SIAIIG 02	
$Unlim \times Unlim \rightarrow Unlim$	×		

• ALIGN $(A, B, III) \rightarrow \text{UNLIM} \equiv \text{EDIT}(A, B, III)$

The general edit distance and the edit model III

Considering model III: the operations of model II and arc-breakings

$A \times B \rightarrow C$	EDIT	model III		
$\mathrm{Nest} \times \mathrm{Nest} \to \mathrm{Nest}$				
$Nest \times Nest \rightarrow Cros$				
$\mathrm{Nest} \times \mathrm{Nest} \to \mathrm{Unlim}$	×	NP -complete – Blin '03		
$Cros \times Nest \rightarrow Cros$				
$\operatorname{Cros} \times \operatorname{Nest} \to \operatorname{Unlim}$	×	Max SNP-hard – Jiang '02		
$Cros \times Cros \rightarrow Cros$				
$Cros \times Cros \rightarrow Unlim$	×			
U nlim \times N est \rightarrow U nlim	×	Max SNP-hard – Jiang '02		
$Unlim \times Cros \rightarrow Unlim$	×	IVIAA SIVI -IIAIU SIAIIG 02		
$Unlim \times Unlim \rightarrow Unlim$	×			

- ALIGN $(A, B, III) \rightarrow \text{UNLIM} \equiv \text{EDIT}(A, B, III)$
- It remains four specific problems we will answer one of them.

Derived results from existing model

On the whole

$A \times B \rightarrow C$	model I	model II	model III
$Nest \times Nest \rightarrow Nest$		7	7
$Nest \times Nest \rightarrow Cros$			
$\mathrm{Nest} \times \mathrm{Nest} \to \mathrm{Unlim}$	Р	NPC	NPC
$Cros \times Nest \rightarrow Cros$?	?
$Cros \times Nest \rightarrow Unlim$		NPC	M-SNP H
$Cros \times Cros \rightarrow Cros$	NPC	?	?
$Cros \times Cros \rightarrow Unlim$	IVIC		
$\text{Unlim} \times \text{Nest} \to \text{Unlim}$	Р	NPC	M-SNP H
$Unlim \times Cros \rightarrow Unlim$	NPC	141 C 141-5	IVI-JIVI II
$Unlim \times Unlim \rightarrow Unlim$	TVI C		

Derived results from existing model

Outline

- New results

Two polynomial time algorithms

$\overline{\mathrm{ALIGN}(\mathrm{NESTED},\mathrm{NESTED},\{\mathrm{II},\mathrm{III}\})} ightarrow \overline{\mathrm{NESTED}}$ are polynomial

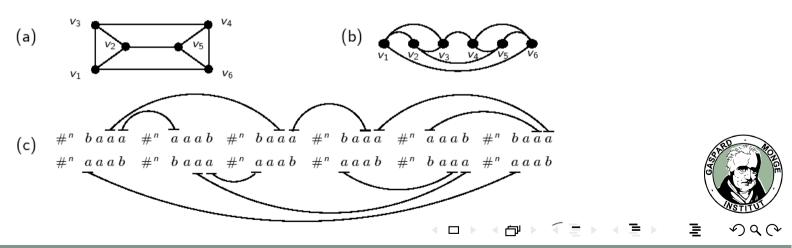
 We propose to resolve those problems with dynamic programming by extending the algorithm proposed by Jiang et al in 95 - dealing with tree alignment – with the operations of arc-breaking and arc-altering

$$2.A(\alpha(u) \circ v, \beta(w) \circ x) = \\ \min \begin{cases} & \dots \\ & w_a(\alpha, b) + \min\{A(u, y) + A(v, z) | \ y \circ b \circ z = \beta(w) \circ x\} - \text{arc-altering} \\ & w_a(\beta, b) + \min\{A(y, w) + A(z, x) | \ y \circ b \circ z = \alpha(u) \circ v\} - \text{arc-altering} \end{cases} \\ 3.A(b \circ v, \beta(w) \circ x) = \\ \min \begin{cases} & \dots \\ & w_a(\beta, b) + \min\{A(y, w) + A(z, x) | \ y \circ z = v\} - \text{arc-altering} \\ & w_a(\beta, b_2) + \min\{A(y, w) + A(z, x) | \ y \circ b_2 \circ z = b \circ v\} - \text{arc-altering} \\ & w_b(\beta, b, b_2) + \min\{A(y, w) + A(z, x) | x \circ b_2 \circ z = v\} - \text{arc-breaking} \end{cases} \\ 4.A(\alpha(u) \circ v, b \circ x) = \\ \min \begin{cases} & \dots \\ & w_a(\alpha, b) + \min\{A(u, y) + A(v, z) | \ y \circ z = x\} - \text{arc-altering} \\ & w_a(\alpha, b_2) + \min\{A(u, y) + A(v, z) | \ y \circ b_2 \circ z = b \circ x\} - \text{arc-altering} \\ & w_b(\alpha, b, b_2) + \min\{A(u, y) + A(v, z) | \ y \circ b_2 \circ z = x\} - \text{arc-altering} \end{cases}$$

Two polynomial time algorithms

$ALIGN(NESTED, NESTED, \{II, III\}) \rightarrow NESTED$ are polynomial

- We prove that the complexity remains unchanged : $O(n^4)$ where n is the length of the longest sequence
- This result is somehow unexpected since the associate edit problems EDIT(NESTED, NESTED, //) and EDIT(NESTED, NESTED, ///) are **NP**-complete
- It shows that imposing structural constraints on the type of the common supersequence is an adequate way for lower complexity of untractable problem



An hardness result

Arc-annotated sequences

$ALIGN(NESTED, NESTED, II) \rightarrow CROSSING$ is **NP**-complete

- We show that relaxing the constraints on crossing arcs in the common supersequence makes the problem difficult
- We propose a reduction from the MAXIMUM INDEPENDENT SET problem on a specific class of cubic graphs
- A 2-page book embedding can be found in poly-time for them
- Quite technical proof mainely using that no arc-breaking is allowed therefore it is not easily extensible to the model III

Derived results from existing model

Outline

- Algorithmic of RNA
- 2 Arc-annotated sequences
- The ALIGN hierarchy
- Derived results from existing model
- 5 New results
- 6 Conclusion

Conclusion

Our contribution

- We proposed a new framework for comparing arc-annotated sequences, namely the ALIGN hierarchy
- Its study is relevant both from a practical and theoretical perspective
- We provided two poly-time algorithms and an hardness result
- This results shed a new light on the border between tractability and untractability when dealing with arc-annotated sequences – especially of CROSSING type
- It remains 3 open cases that we conjecture to be NP-complete

Questions on "How to compare arc-annotated sequences: the alignment hierarchy"

G. Blin¹ H. Touzet²

¹IGM-LabInfo UMR 8049, Université de Marne La Vallée gblin@univ-mlv.fr

²LIFL, UMR CNRS 8022 Université des Sciences et Technologies de Lille touzet@lifl.fr

