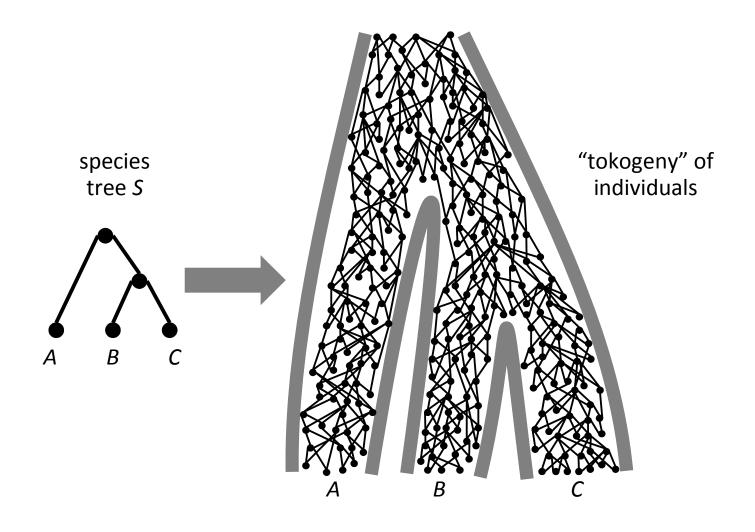
LRI-LIX BioInfo Seminar 19/01/2017 - Palaiseau

Finding a gene tree in a phylogenetic network

Philippe Gambette

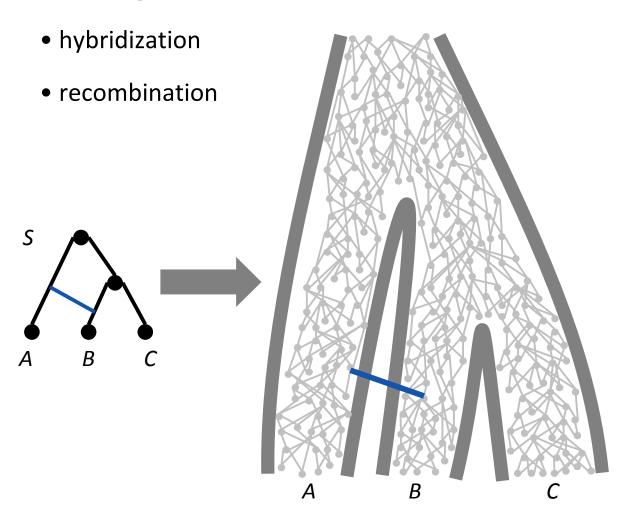
Outline


- Phylogenetic networks
- Classes of phylogenetic networks
- The Tree Containment Problem

Outline

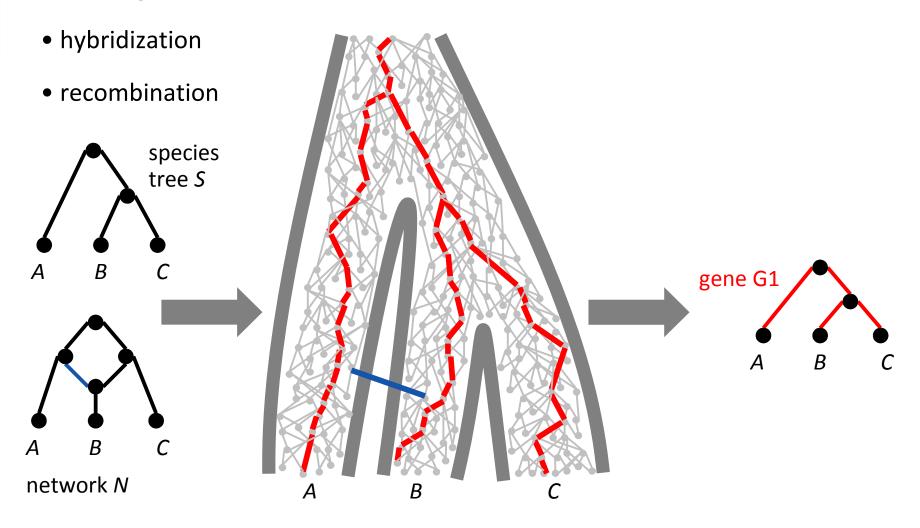
- Phylogenetic networks
- Classes of phylogenetic networks
- The Tree Contaiment Problem

Phylogenetic trees

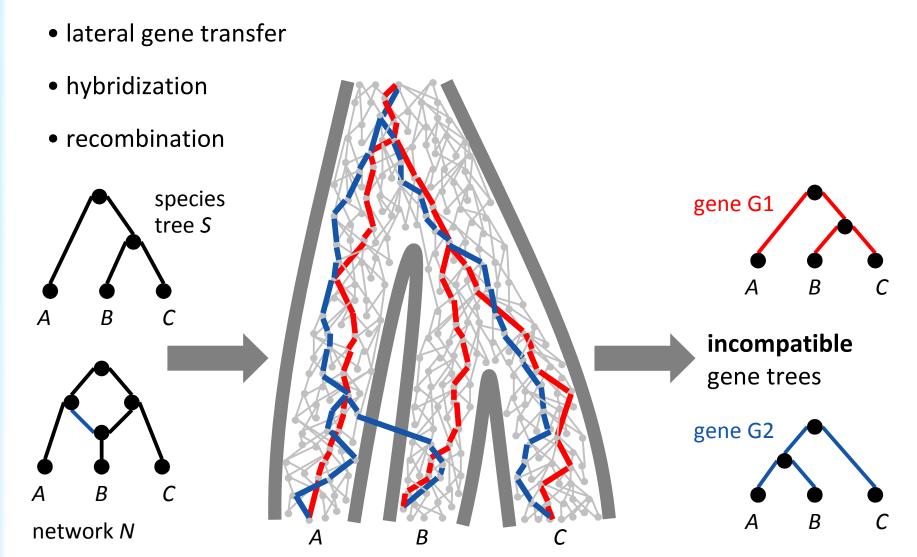

Phylogenetic tree of a set of species

Genetic material transfers

Transfers of genetic material between coexisting species:


• lateral gene transfer

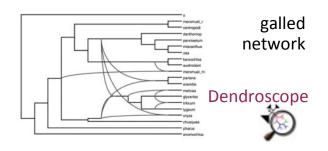
Genetic material transfers

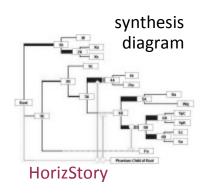

Transfers of genetic material between coexisting species:

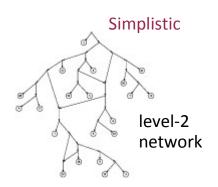
• lateral gene transfer

Genetic material transfers

Transfers of genetic material between coexisting species:

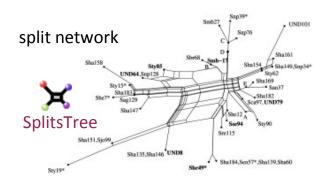


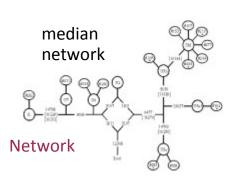

Phylogenetic networks

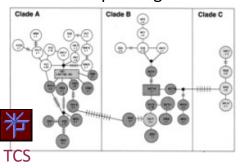

Phylogenetic network: network representing evolution data

• explicit phylogenetic networks

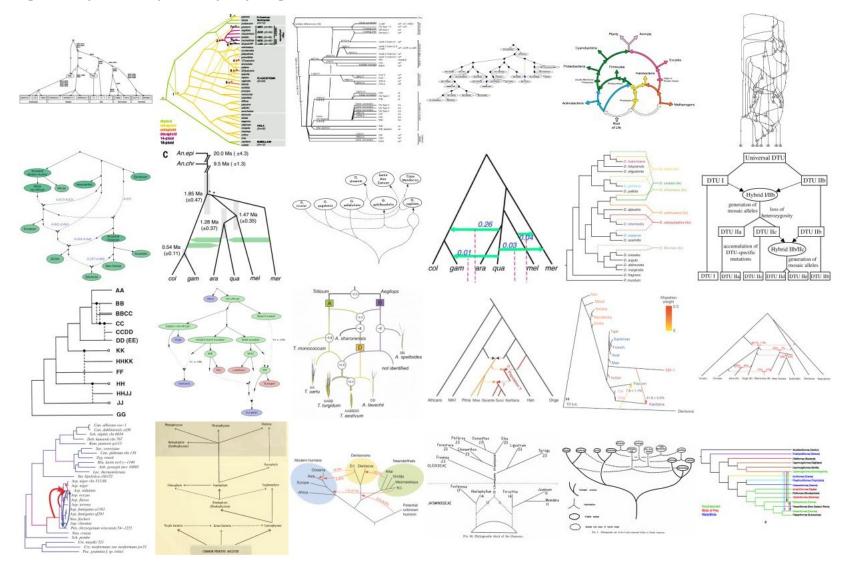
model evolution



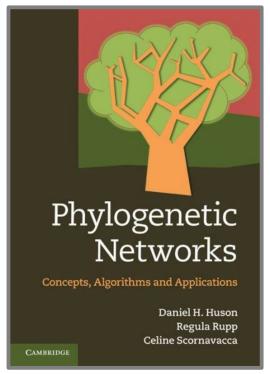



• abstract phylogenetic networks

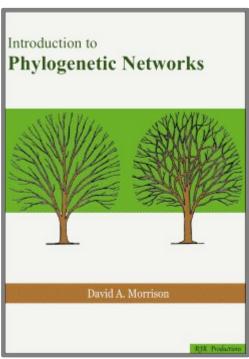
classify, visualize data



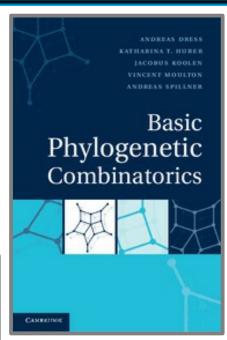
minimum spanning network

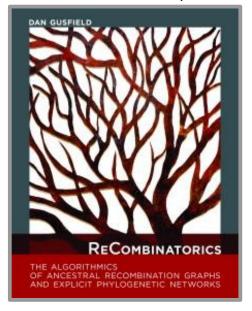

Today: focus on explicit phylogenetic networks

A gallery of explicit phylogenetic networks:



http://phylnet.univ-mlv.fr/recophync/networkDraw.php


Books about phylogenetic networks


Huson, Rupp, Scornavacca, 2011 Dress, Huber, Koolen, Moulton, Spillner, 2012

Morrison, 2011

Gusfield, 2014

Workshops about phylogenetic networks

The Future of Phylogenetic Networks, 15-19 October **2012**, Lorentz Center, Leiden, The Netherlands

Utilizing Genealogical
Phylogenetic Networks in
Evolutionary Biology:
Touching the Data,
7-11 July **2014**, Lorentz Center,
Leiden, The Netherlands

The Phylogenetic Network
Workshop, 27 - 31 Jul **2015**,
Institute for Mathematical Science
(National University of Singapore)

Who is Who in Phylogenetic Networks

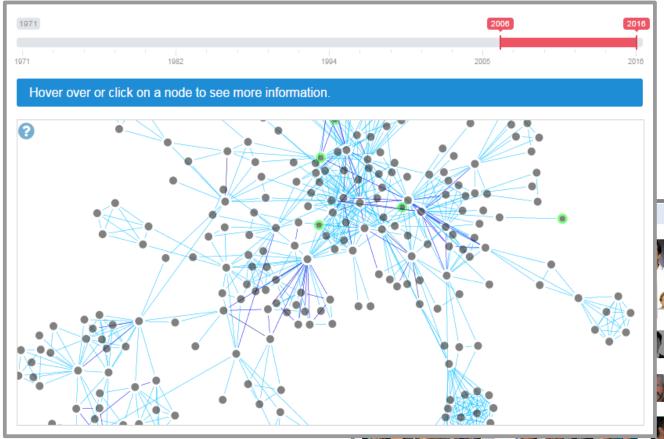
Authors Community Keywords Publications Software Browse Basket Account Contribute! About Help A Q

FIND EXPERTS

Find researchers working on a specific topic, in a given country, and find where (journals, conferences) the community publishes or meets.

EXPLORE RESEARCH

Browse publications, access keyword definitions and find trends in publications on phylogenetic network methods and methodologies.


DISCOVER SOFTWARE

Locate programs to compute, evaluate, compare or visualize phylogenetic networks, and view how these are linked with each other and input data.

FOLLOW COMMUNITY

Follow an author, publications tagged with a keyword, or the entire database using the a icon in the menu, on an author's page, or on a keyword's page.

Based on BibAdmin by Sergiu Chelcea + tag clouds, date histograms, journal lists, keyword definitions, co-author graphs

Who is Who in Phylogenetic Networks, Articles, **Authors** & Programs

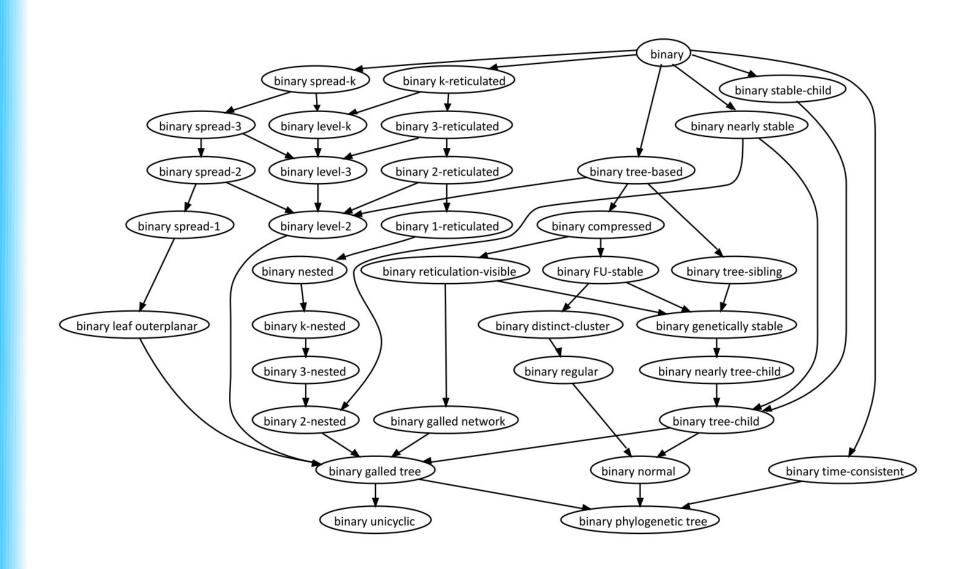
Analysis of the co-author and keyword graphs: internship of **Tushar Agarwal**

Agarwal, Gambette & Morrison, arXiv, 2017


```
abstract-network(88) agreement-forest(29) approximation(18) APX-hard(4) ARG(6) bayesian(4) block-realization(1)
 bootstrap(4) bound(4) branch-and-bound(1) cactus-graph(1) characterization(11) circular-split-system(13) clustering(3) coalescent(10)
 consensus(8) consistency(2) cophylogeny(1) counting(3) database(1) distance-between-networks(30) diversity(5) duplication(33)
dynamic-programming(10) enumeration(4) evaluation(25) explicit-network(191) exponential-algorithm(6) FPT(31)
from-clusters(16) from-continuous-characters(1) from-distances(45) from-gene-order(1) from-multilabeled-tree(9) from-
network(39) from-NGS-data(1) from-quartets(16) from-rooted-trees(122) from-sequences(51) from-
species-tree(46) from-splits(13) from-trees(7) from-triplets(24) from-unrooted-trees(16) galled-network(7)
galled-tree(38) generation(12) haplotype-network(2) haplotyping(1) heuristic(32) HMM(2) hybridization(52) inapproximability(5)
integer-linear-programming(3) isomorphism(3) k-reticulated(1) kernelization(2) labeling(4) lateral-gene-transfer(56) level-k-
phylogenetic-network(30) likelihood(16) lineage-sorting(10) loss(16) MASN(4) median-network(16) Median-Joining(2) Minimal-
lateral-network(1) minimum-contradiction(2) minimum-number(33) minimum-spanning-network(2) model-selection(2) mu-distance(2)
NeighborNet(14) nested-network(2) netting(3) normal-network(9) NP-complete(33) optimal-realization(3) parsimony(39)
                                                                                phylogenetic-network(402) phylogeny(387) polynomial(70)
 population-genetics(5) Program-AdmixTools(1) Program-ALE(1) Program-Angst(2) Program-Arlequin(5) Program-Beagle(3) Program-BIMLR(1) Program-
 Bio-PhyloNetwork(4) Program-Clustistic(2) Program-CMPT(1) Program-CombineTrees(2) Program-ConsensusNetwork(1) Program-constNJ(1) Program-
 CycleKiller(3) Program-Dendroscope(14) Program-EEEP(3) Program-FastHN(1) Program-FlatNJ(1) Program-Fylogenetica(2) Program-GalledTree(1)
 Program-GraphDTL(2) Program-HapBound(1) Program-HGT_simul(1) Program-HiDe(1) Program-HorizStory(2) Program-Hybrid-Lambda(1) Program-
HybridInterleave(5) Program-HybridNET(2) Program-HybridNumber(3) Program-Hybroscale(3) Program-JML(1) Program-LatTrans(5) Program-
LEV1ATHAN(1) Program-Lev1Generator(1) Program-Level2(2) Program-lingpy(1) Program-LNetwork(2) Program-Marlon(3) Program-Marlon(3) Program-Marlon(3)
Net(1) Program-McKiTscH(1) Program-Mowgli(5) Program-MowgliNNI(2) Program-MPNet(1) Program-MY-CLOSURE(1) Program-Nepal(7) Program-Nepal(7) Program-Nepal(7) Program-Nepal(7) Program-Nepal(8) Pro
NetGen(3) Program-NetView(1) Program-Network(5) Program-Notung(1) Program-PADRE(7) Program-Phangorn(2) Program-
PhippsNetwork(2) Program-PhyloNet(11) Program-PhyloNet-HMM(1) Program-PIRN(3) Program-Prunier(2) Program-Pyramids(3) Program-QNet(4)
 Program-Quartet(1) Program-Quartet-Decomposition(1) Program-QuartetMethods(1) Program-QuartetNet(2) Program-QuartetOecomposition(1) Program-QuartetOecomposition(1) Program-QuartetOecomposition(1) Program-QuartetOecomposition(1) Program-QuartetOecomposition(1) Program-QuartetOecomposition(2) Program-QuartetOecomposition(3) Program-QuartetOecomposition(3) Program-QuartetOecomposition(3) Program-QuartetOecomposition(3) Program-QuartetOecomposition(3) Program-QuartetOecomposition(4) Program-QuartetOecomposition(4) Program-QuartetOecomposition(5) Program-QuartetOecomposition(6) Program-QuartetOecompositi
 Program-RANGER-DTL(4) Program-RecMin(1) Program-Recodon(3) Program-RecPars(1) Program-Reticlad(2) Program-SAGE(2) Program-SAGE(1)
Program-Serial-NetEvolve(1) Program-SHRUB(3) Program-Simplistic(3) Program-Sliding-MinPD(1) Program-SNSA(2) Program-Spectronet(4) Program-Spectronet(4) Program-Spectronet(4) Program-Spectronet(4) Program-Spectronet(4) Program-Spectronet(5) Program-Spectronet(6) Program-Spectronet(6) Program-Spectronet(6) Program-Spectronet(6) Program-Spectronet(6) Program-Spectronet(6) Program-Spectronet(6) Program-Spectronet(7) Program-Spectronet(7) Program-Spectronet(7) Program-Spectronet(8) Pr
SplitsTree(36) Program-SPNet(5) Program-SPRDist(1) Program-SuperQ(1) Program-T-REX(13) Program-TCS(8) Program-TERA(2) Program-SPNet(5) Program
TerminusEst(2) Program-TreeFix-DTL(1) Program-TreeMix(1) Program-Treevolve(2) Program-TripNet(2) Program-Ultra-Net(1) Program-Ultra-Net(1) Program-Ultra-Net(1) Program-Ultra-Net(1) Program-Tree-Fix-DTL(1) Program-Tree-Fix-
WeakHierarchies(2) Program-Xscape(1) pyramid(8) quasi-median-network(3) realization(4) recombination(29) recombination-detection(4)
reconstruction(255) regular-network(7) reticulogram(10) serial-evolutionary-networks(1) simulated-annealing(4) simulation(5)
site-consistency(1) software(66) split(27) split-decomposition(13) split-network(54) SPR-distance(13) spread(2)
statistical-model(32) statistical-parsimony(3) supernetwork(4) Survey(31) tanglegram(1) time-consistent-network(12) tree-child-
network(15) tree-sibling-network(10) tripartition-distance(9) triplet-distance(3) unicyclic-network(3) visualization(30) weak-
hierarchy(8) weakly-compatible(3)
```

```
abstract-network(88) agreement-forest(29) approximation(18) APX-hard(4) ARG(6) bayesian(4) block-realization(1)
  bootstrap(4) bound(4) branch-and-bound(1) cactus-graph(1) characterization(11) circular-split-system(13) clustering(3) coalescent(10)
  consensus(8) consistency(2) cophylogeny(1) counting(3) database(1) distance-between-networks(30) diversity(5) duplication(33)
 dynamic-programming(10) enumeration(4) evaluation(25) explicit-network(191) exponential-algorithm(6) FPT(31)
from-clusters(16) from-continuous-characters(1) from-distances(45) from-gene-order(1) from-multilabeled-tree(9)
network(39) from-NGS-data(1) from-quartets(16) from-rooted-trees(122) from-sequences(51) from-
 species-tree(46) from-splits(13) from-trees(7) from-triplets(24) from-unrooted-trees(16) galled-network(7)
  galled-tree(38) generation(12) haplotype-network(2) haplotyping(1) heuristic(32) HMM(2) hybridization(52) inapproximability(5)
 integer-linear-programming(3) isomorphism(3) k-reticulated(1) kernelization(2) labeling(4) lateral-gene-transfer(56) level-k-
 phylogenetic-network(30) likelihood(16) lineage-sorting(10) loss(16) MASN(4) median-network(16) MedianJoining(2) Minimal-
  lateral-network(1) minimum-contradiction(2) minimum-number(33) minimum-spanning-network(2) model-selection(2) mu-distance(2)
  NeighborNet(14) nested-network(2) netting(3) normal-network(9) NP-complete(33) optimal-realization(3) parsimony(39)
                                                                                                        phylogenetic-network(402) phylogeny(387)
 population-genetics(5) Program-AdmixTools(1) Program-ALE(1) Program-Angst(2) Program-Arlequin(5) Program-Beagle(3) Program-BIMLR(1) Program-
 Bio-PhyloNetwork(4) Program-Clustistic(2) Program-CMPT(1) Program-CombineTrees(2) Program-ConsensusNetwork(1) Program-constNJ(1) Program-constNJ(1
 CycleKiller(3) Program-Dendroscope(14) Program-EEEP(3) Program-FastHN(1) Program-FlatNJ(1) Program-Fvlogenetica(2) Program-GalledTree(1)
Program-GraphDTL(2) Program-HapBound(1) Program-HGT_simul(1) Program-HiDe(1) Program-HorizStory(2) Program-Hybrid-Lambda(1) Program-HorizStory(2) Program-HorizStory(2) Program-HorizStory(2) Program-HorizStory(2) Program-HorizStory(2) Program-HorizStory(3) Program-
 HybridInterleave(5) Program-HybridNET(2) Program-HybridNumber(3) Program-Hybroscale(3) Program-JML(1) Program-LatTrans(5) Program-
 LEV1ATHAN(1) Program-Lev1Generator(1) Program-Level2(2) Program-lingpy(1) Program-Levtwork(2) Program-Marlon(3) Program-Marlon(3) Program-Marlon(3)
Net(1) Program-MckTscH(1) Program-Mowgli(5) Program-MowgliNNI(2) Program-MPNet(1) Program-MY-CLOSURE(1) Program-Nepal(7) Program-Nepal(7) Program-Nepal(7) Program-Nepal(8) Prog
 NetGen(3) Program-NetView(1) Program-Network(5) Program-Notung(1) Program-PADRE(7) Program-Phangorn(2) Program-Network(5) Program-Notung(1) Program-Notung(1
PhippsNetwork(2) Program-PhyloNet(11) Program-PhyloNet-HMM(1) Program-PIRN(3) Program-Prunier(2) Program-Pyramids(3) Program-QNet(4)
Program-Quartet(1) Program-QuartetDecomposition(1) Program-QuartetMethods(1) Program-QuartetNet(2) Program-QuartetDecomposition(1) Program-QuartetDecomposition(1) Program-QuartetDecomposition(1) Program-QuartetDecomposition(1) Program-QuartetDecomposition(2) Program-QuartetDecomposition(3) Program-QuartetDecomposition(3) Program-QuartetDecomposition(3) Program-QuartetDecomposition(3) Program-QuartetDecomposition(3) Program-QuartetDecomposition(3) Program-QuartetDecomposition(4) Program-QuartetDecomposition(5) Program-QuartetDecomposition(6) Program-QuartetDecompositio
  Program-RANGER-DTL(4) Program-RecMin(1) Program-Recodon(3) Program-RecPars(1) Program-Reticlad(2) Program-SAGE(2) Program-SAQ-Net(1)
  Program-Serial-NetEvolve(1) Program-SHRUB(3) Program-Simplistic(3) Program-Sliding-MinPD(1) Program-SNSA(2) Program-Spectronet(4) Program-S
 SplitsTree(36) Program-SPNet(5) Program-SPRDist(1) Program-SuperQ(1) Program-T-REX(13) Program-TCS(8) Program-TERA(2) Program-T-REX(13) Pr
 TerminusEst(2) Program-TreeFix-DTL(1) Program-TreeMix(1) Program-Treevolve(2) Program-TripNet(2) Program-Ultra-Net(1) Program-Ultra-Net(1) Program-Treevolve(2) Program-Treevolve(3) Program-Treevolve(4) Program-Treevolve(5) Program-Treevolve(6) Program-Treevolve(6) Program-Treevolve(7) Program-Treevolve(8) Program-Treevolve(8) Program-Treevolve(8) Program-Treevolve(8) Program-Treevolve(9) Program-Treevolve
  WeakHierarchies(2) Program-Xscape(1) pyramid(8) quasi-median-network(3) realization(4) recombination(29) recombination-detection(4)
reconstruction(255) regular-network(7) reticulogram(10) serial-evolutionary-networks(1) simulated-annealing(4) simulation(5)
site-consistency(1) software(66) split(27) split-decomposition(13) split-network(54) SPR-distance(13) spread(2)
statistical-model(32) statistical-parsimony(3) supernetwork(4) Survey(31) tanglegram(1) time-consistent-network(12) tree-child-
 network(15) tree-sibling-network(10) tripartition-distance(9) triplet-distance(3) unicyclic-network(3) visualization(30) weak-
  hierarchy(8) weakly-compatible(3)
```

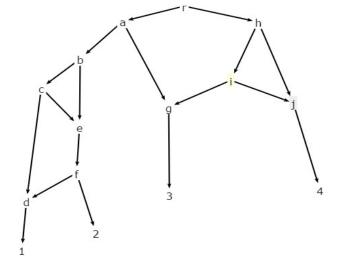
input


software

```
abstract-network(88) agreement-forest(29) approximation(18) APX-hard(4) ARG(6) bayesian(4) block-realization(1)
bootstrap(4) bound(4) branch-and-bound(1) cactus-graph(1) characterization(11) circular-split-system(13) clustering(3) coalescent(10)
consensus(8) consistency(2) cophylogeny(1) counting(3) database(1) distance-between-networks(30) diversity(5) duplication(33)
dynamic-programming(10) enumeration(4) evaluation(25) explicit-network(191) exponential-algorithm(6) FPT(31)
from-clusters(16) from-continuous-characters(1) from-distances(45) from-gene-order(1) from-multilabeled-tree(9)
                                                                                                                                input
network(39) from-NGS-data(1) from-quartets(16) from-rooted-trees(122) from-sequences(51)
species-tree(46) from-splits(13) from-trees(7) from-triplets(24) from-unrooted-trees(16) galled-network(7)
qalled-tree(38) generation(12) haplotype-network(2) haplotyping(1) heuristic(32) HMM(2) hybridization(52) inapproximability(5)
integer-linear-programming(3) isomorphism(3) k-reticulated(1) kernelization(2) labeling(4) lateral-gene-transfer(56) level-k-
phylogenetic-network(30) likelihood(16) lineage-sorting(10) loss(16) MASN(4) median-network(16) MedianJoining(2) Minimal-
                 minimum-contradiction(2) minimum-number(33) minimum-spanning-network(2)
                   nested-network(2) netting(3) normal-network(9) NP-complete(33)
NeighborNet(14)
                                                                                       optimal-realization(3) parsimony(39)
                        phylogenetic-network(402)
population-genetics(5) Program-AdmixTools(1) Program-ALE(1) Program-Angst(2) Program-Arlequin(5) Program-Beagle(3) Program-BIMLR(1) Program-
Bio-PhyloNetwork(4) Program-Clustistic(2) Program-CMPT(1) Program-CombineTrees(2) Program-ConsensusNetwork(1) Program-constNJ(1) Program-
CycleKiller(3) Program-Dendroscope(14) Program-EEEP(3) Program-FastHN(1) Program-FlatNJ(1) Program-Fylogenetica(2) Program-GalledTree(1)
                                                                                                                                software
Program-GraphDTL(2) Program-HapBound(1) Program-HGT_simul(1) Program-HiDe(1) Program-HorizStory(2) Program-Hybrid-Lambda(1)
HybridInterleave(5) Program-HybridNET(2) Program-HybridNumber(3) Program-Hybroscale(3) Program-JML(1) Program-LatTrans(5) Program-
LEV1ATHAN(1) Program-Lev1Generator(1) Program-Level2(2) Program-lingpy(1) Program-LNetwork(2) Program-MaafB(2) Program-Marlon(3) Program-Mc-
Net(1) Program-MckTscH(1) Program-Mowgli(5) Program-MowgliNNI(2) Program-MPNet(1) Program-MY-CLOSURE(1) Program-Nepal(7) Program-Nepal(7)
NetGen(3) Program-NetView(1) Program-Network(5) Program-Notung(1) Program-PADRE(7) Program-Phangorn(2) Program-
PhippsNetwork(2) Program-PhyloNet(11) Program-PhyloNet-HMM(1) Program-PIRN(3) Program-Prunier(2) Program-Pyramids(3) Program-QNet(4)
Program-Quartet(1) Program-Quartet-Decomposition(1) Program-QuartetMethods(1) Program-QuartetNet(2) Program-QuasiDec(1) Program-QuickCass(1)
Program-RANGER-DTL(4) Program-RecMin(1) Program-Recodon(3) Program-RecPars(1) Program-Reticlad(2) Program-SAGE(2) Program-SAQ-Net(1)
Program-Serial-NetEvolve(1) Program-SHRUB(3) Program-Simplistic(3) Program-Sliding-MinPD(1) Program-SNSA(2) Program-Spectronet(4) Program-S
SplitsTree(36) Program-SPNet(5) Program-SPRDist(1) Program-SuperQ(1) Program-T-REX(13) Program-TCS(8) Program-TERA(2) Program-
TerminusEst(2) Program-TreeFix-DTL(1) Program-TreeMix(1) Program-Treevolve(2) Program-TripNet(2) Program-ultra-Net(1) Program-Ultranet(1) Program-
WeakHierarchies(2) Program-Xscape(1) pyramid(8) quasi-median-network(3) realization(4) recombination(29) recombination-detection(4)
reconstruction(255) regular-network(7) reticulogram(10) serial-evolutionary-networks(1) simulated-annealing(4) simulation(5)
site-consistency(1) software(66) split(27) split-decomposition(13) split-network(54) SPR-distance(13) spread(2)
                                                                                                                                classes
statistical-model(32) statistical-parsimony(3) supernetwork(4) Survey(31) tanglegram(1) time-consistent-network(12) tree-child-
network(15) tree-sibling network(10) tripartition-distance(9) triplet-distance(3) unicyclic-network(3) visualization(30)
hierarchy(8) weakly-compatible(3
```

Outline

- Phylogenetic networks
- Classes of phylogenetic networks
- The Tree Contaiment Problem


Classes of phylogenetic networks

joint work with Maxime Morgado and Narges Tavassoli http://phylnet.univ-mlv.fr/isiphync/

binary	unio	gall	tree	nea	gall	gen	<u>reti</u>	tree	con	non	regi	dist	FU-	nea	tree	nes	<u>2-n</u>	<u>3-n</u> (leve	leve	leaf	spri	spn	spr	tim
unicyclic	=	c	_	C	_	_	C	_	_	<u>5</u>	<u>5</u>	<u>5</u>	C	_	_	_	C	C	_	C	C	_	_	_	<u>5</u>
galled tree	<u>6</u>	=	_	_	_	_	_	_	_	<u>5</u>	<u>5</u>	<u>5</u>	_	_	_	_	_	_	C	_	C	_	_	_	<u>5</u>
tree-child	<u>6</u>	7	=	_	C	_	_	C	_	<u>5</u>	<u>5</u>	<u>5</u>	_	C	C	7	7	7	<u>15</u>	<u>15</u>	7	7			<u>5</u>
nearly tree-child	<u>6</u>	7	8	=	8	C	_	_	_	<u>5</u>	<u>5</u>	<u>5</u>	_	8	_	7	7	7	8	<u>15</u>	7	7			<u>5</u>
galled network	2	2	1	1	=	1	_	1	_	1	1	1	<u>14</u>	<u>21</u>	_	7	7	7	<u>18</u>	<u>18</u>	7	7			<u>5</u>
genetically stable	4	4	4	4	4	=	_	_	_	<u>5</u>	<u>5</u>	<u>5</u>	_	8	_	4	4	4	8	<u>15</u>	7	7			4
reticulation-visibl	2	2	1	1	4	1	=	1	_	1	1	1	<u>14</u>	8	_	4	4	4	8	<u>15</u>	7	7			4
tree-sibling	4	4	4	4	4	<u>12</u>	<u>12</u>	=	<u>12</u>	<u>5</u>	<u>5</u>	<u>5</u>	<u>12</u>	8	_	4	4	4	8	<u>15</u>	7	7			4
compressed	2	2	1	1	4	1	<u>11</u>	1	=	1	1	1	14	8	_	4	4	4	8	<u>15</u>	7	7			4
normal	7	7	_	_	<u>13</u>	_	_	_	_	=	C	_	_	_	_	7	7	7	<u>15</u>	<u>15</u>	7	7			22
regular	2	2	2	2	<u>13</u>	2	<u>24</u>	2	_	2	=	_	_	8	_	7	7	7	8	<u>15</u>	7	7			<u>22</u>
distinct-cluster	2	2	2	2	<u>13</u>	2	<u>24</u>	2	_	2	9	=	_	8	_	7	7	7	8	<u>15</u>	7	7			22
FU-stable	2	2	1	1	4	1	<u>11</u>	1	_	1	1	1	=	8	_	4	4	4	8	<u>15</u>	7	7			4
nearly stable	2	2	2	2	3	2	<u>3</u>	2	3	2	3	3	<u>3</u>	=	3	7	7	7	3	<u>15</u>	<u>3</u>	3			<u>5</u>
tree-based	2	2	1	1	4	1	<u>12</u>	1	<u>12</u>	1	1	1	<u>12</u>	8	=	4	4	4	8	<u>15</u>	7	7			4
nested	<u>3</u>	3	<u>3</u>	3	<u>3</u>	3	<u>3</u>	<u>3</u>	<u>3</u>	3	3	<u>3</u>	<u>3</u>	<u>19</u>	3	=	<u>20</u>	<u>20</u>	3	<u>16</u>	<u>3</u>	<u>3</u>			<u>5</u>
2-nested	3	3	<u>3</u>	3	<u>3</u>	3	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	C	3	_	=	_	3	<u>16</u>	<u>3</u>	3			<u>5</u>
3-nested	3	3	<u>3</u>	3	3	3	3	<u>3</u>	3	3	3	3	<u>3</u>	<u>19</u>	3	_	<u>19</u>	=	3	<u>16</u>	<u>3</u>	<u>3</u>			<u>5</u>
level-2	4	4	4	4	4	<u>12</u>	<u>12</u>	<u>14</u>	<u>12</u>	4	4	4	<u>12</u>	<u>17</u>	C	4	4	4	=	C	7	7	_	_	4
level-3	2	2	2	2	3	2	3	2	3	2	3	3	3	8	3	4	4	4	3	=	3	3		C	4
leaf outerplanar	4	4	4	4	4	<u>10</u>	<u>10</u>	<u>10</u>	<u>10</u>	4	4	4	<u>10</u>	8	<u>10</u>	4	4	4	8	<u>16</u>	=	_	_	_	4
spread 1	4	4	4	4	4	<u>10</u>	<u>10</u>	<u>10</u>	<u>10</u>	4	4	4	<u>10</u>	8	<u>10</u>	4	4	4	8	<u>16</u>	9	=	_	_	4
spread 2	3	3	<u>3</u>	3	3	3	3	3	3	3	<u>3</u>	3	3	8	3	4	4	4	3	<u>16</u>	3	3	=	_	4
spread 3	3	3	3	3	3	<u>3</u>	3	3	3	3	<u>3</u>	3	3	8	3	4	4	4	3	<u>16</u>	3	3		=	4
time-consistent	<u>3</u>	<u>3</u>	<u>3</u>	3	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	8	3	7	7	7	<u>3</u>	<u>23</u>	3	3			=

binary	unio	gall	tree	nea	gall	gen	<u>reti</u>	tree	con	non	regi	dist	FU-	nea	tree	nes	<u>2-n</u>	<u>3-n</u> (leve	leve	leaf	spri	spr	spri	tim
unicyclic	=	c	C	C	_	_	C	_	_	<u>5</u>	<u>5</u>	<u>5</u>	C	C	_	C	C	C	_	_	C	_	_	_	<u>5</u>
galled tree	<u>6</u>	=	C	_	_	_	_	_	_	<u>5</u>	<u>5</u>	<u>5</u>	_	_	_	_	_	_	C	_	_	_	_	_	<u>5</u>
tree-child	<u>6</u>	7	=	_	C	_	_	C	_	<u>5</u>	<u>5</u>	<u>5</u>	_	_	_	7	7	7	<u>15</u>	<u>15</u>	7	7			<u>5</u>
nearly tree-child	<u>6</u>	7	8	=	<u>8</u>	C	_	C	_	<u>5</u>	<u>5</u>	<u>5</u>	_	8	C	7	7	7	8	<u>15</u>	7	7			<u>5</u>
galled network	2	2	1	1	=	1	_	1	_	1	1	1	14	<u>21</u>	_	7	7	7	<u>18</u>	<u>18</u>	7	7			<u>5</u>
genetically stable	4	4	4	4	4	=	_	_	_	<u>5</u>	<u>5</u>	<u>5</u>	_	8	_	4	4	4	8	<u>15</u>	7	7			4
reticulation-visibl	2	2	1	1	4	1	=	1	C	1	1	1	<u>14</u>	8	_	4	4	4	8	<u>15</u>	7	7			4
tree-sibling	4	4	4	4	4	<u>12</u>	<u>12</u>	=	<u>12</u>	<u>5</u>	<u>5</u>	<u>5</u>	<u>12</u>	8	_	4	4	4	8	<u>15</u>	7	7			4
compressed	2	2	1	1	4	1	<u>11</u>	1	=	1	1	1	<u>14</u>	8	_	4	4	4	8	<u>15</u>	7	7			4
normal	7	7	C	_	<u>13</u>	_	_	_	_	=	_	_	_	_	_	7	7	7	<u>15</u>	<u>15</u>	7	7			22
regular	2	2	2	2	<u>13</u>	2	<u>24</u>	2	_	2	=	_	_	8	_	7	7	7	8	<u>15</u>	7	7			<u>22</u>
distinct-cluster	2	2	2	2	<u>13</u>	2	<u>24</u>	2	_	2	9	=	_	8	_	7	7	7	8	<u>15</u>	7	7			22
FU-stable	2	2	1	1	4	1	<u>11</u>	1	_	1	1	1	=	8	_	4	4	4	8	<u>15</u>	7	7			4
nearly stable	2	2	2	2	3	2	<u>3</u>	2	3	2	3	3	<u>3</u>	=	3	7	7	7	3	<u>15</u>	3	3			<u>5</u>
tree-based	2	2	1	1	4	1	<u>12</u>	1	<u>12</u>	1	1	1	<u>12</u>	8	=	4	4	4	8	<u>15</u>	7	7			4
nested	3	<u>3</u>	3	3	<u>3</u>	3	<u>3</u>	<u>3</u>	3	3	3	<u>3</u>	<u>3</u>	<u>19</u>	3	=	<u>20</u>	<u>20</u>	3	<u>16</u>	3	3			<u>5</u>
2-nested	3	3	3	3	<u>3</u>	3	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	_	3	_	=	_	3	<u>16</u>	3	3			<u>5</u>
3-nested	3	3	3	3	3	3	3	<u>3</u>	3	3	3	<u>3</u>	<u>3</u>	<u>19</u>	3	C	<u>19</u>	=	3	<u>16</u>	3	3			<u>5</u>
level-2	4	4	4	4	4	<u>12</u>	<u>12</u>	<u>14</u>	<u>12</u>	4	4	4	<u>12</u>	<u>17</u>	C	4	4	4	=	C	7	7	_	_	4
level-3	2	2	2	2	<u>3</u>	2	<u>3</u>	2	<u>3</u>	2	<u>3</u>	<u>3</u>	<u>3</u>	8	3	4	4	4	3	=	3	3		C	4
leaf outerplanar	4	4	4	4	4	<u>10</u>	<u>10</u>	<u>10</u>	<u>10</u>	4	4	4	<u>10</u>	8	<u>10</u>	4	4	4	8	<u>16</u>	=	C	_	_	4
spread 1	4	4	4	4	4	<u>10</u>	<u>10</u>	<u>10</u>	<u>10</u>	4	4	4	<u>10</u>	8	<u>10</u>	4	4	4	8	<u>16</u>	9	=	_	_	4
spread 2	3	3	3	3	3	3	<u>3</u>	<u>3</u>	3	3	3	<u>3</u>	<u>3</u>	8	3	4	4	4	3	<u>16</u>	3	3	=	_	4
spread 3	3	3	3	3	3	3	<u>3</u>	<u>3</u>	3	3	3	3	<u>3</u>	8	3	4	4	4	3	<u>16</u>	3	3		=	4
time-consistent	<u>3</u>	3	<u>3</u>	3	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>3</u>	8	<u>3</u>	7	7	7	<u>3</u>	<u>23</u>	3	<u>3</u>			=

Classes containing this network or not

Classes which contain this network (with direct proof)

- <u>binary genetically stable</u>: All reticulation vertices are stable (e for leaf 2, d for leaf 1, g for leaf 3, j for leaf 4) and all have at least one parent which is stable (f, parent of d, stable for leaf 2; b, parent of e, stable for leaves 1 and 2; a, parent of g, stable for leaves 1 and 2; h, parent of j, stable for leaf 4)
- binary nearly stable: All vertices except c and i (whose unique parent is in both cases stable) are stable.
- binary level-2: Easy to check.
- · binary leaf outerplanar: Easy to check.
- binary FU-stable: Easy to check.

Classes which do not contain this network (with direct proof)

- <u>binary nearly tree-child</u>: Reticulation vertex g is stable but none of its parents a and i have the tree-path property.
- · binary nested: Easy to check.
- binary time-consistent: The redundant arc from b to e makes it impossible to build a time-consistent labeling of the vertices.
- binary galled network: Reticulation arc (c,e) is a common arc of reticulation cycles from b to e and from c to d.
- binary distinct-cluster: Vertices h and i both have the same cluster: {3,4}
- binary 1-reticulated: Tree vertex b can reach 2 reticulation vertices by 2 directed internally vertex-disjoint paths: d and e.

joint work with Maxime Morgado and Narges Tavassoli http://phylnet.univ-mlv.fr/isiphync/network.php?id=4

level = maximum number of reticulation vertices among all bridgeless components in the network

cluster = set of leaves below a vertex

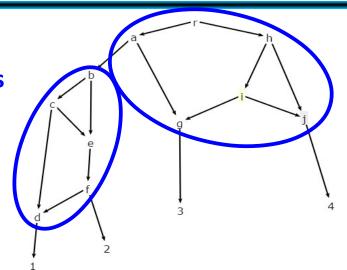
Classes containing this network or not

Classes which contain this network (with direct proof)

- <u>binary genetically stable</u>: All reticulation vertices are stable (e for leaf 2, d for leaf 1, g for leaf 3, j for leaf 4) and all have at least one parent which is stable (f, parent of d, stable for leaf 2; b, parent of e, stable for leaves 1 and 2; a, parent of g, stable for leaf 4)
- binary nearly stable: All vertices except c and i (whose unique parent is in both cases stable) are stable.
- binary level-2: Easy to check.
- binary leaf outerplanar: Easy to check.
- binary FU-stable: Easy to check.

Classes which do not contain this network (with direct proof)

- <u>binary nearly tree-child</u>: Reticulation vertex g is stable but none of its parents a and i have the tree-path property.
- · binary nested: Easy to check.
- binary time-consistent: The redundant arc from b to e makes it impossible to build a time-consistent labeling of the vertices.
- binary galled network: Reticulation arc (c,e) is a common arc of reticulation cycles from b to e and from c to d.
- binary distinct-cluster: Vertices h and i both have the same cluster: {3,4}
- binary 1-reticulated: Tree vertex b can reach 2 reticulation vertices by 2 directed internally vertex-disjoint paths: d and e.

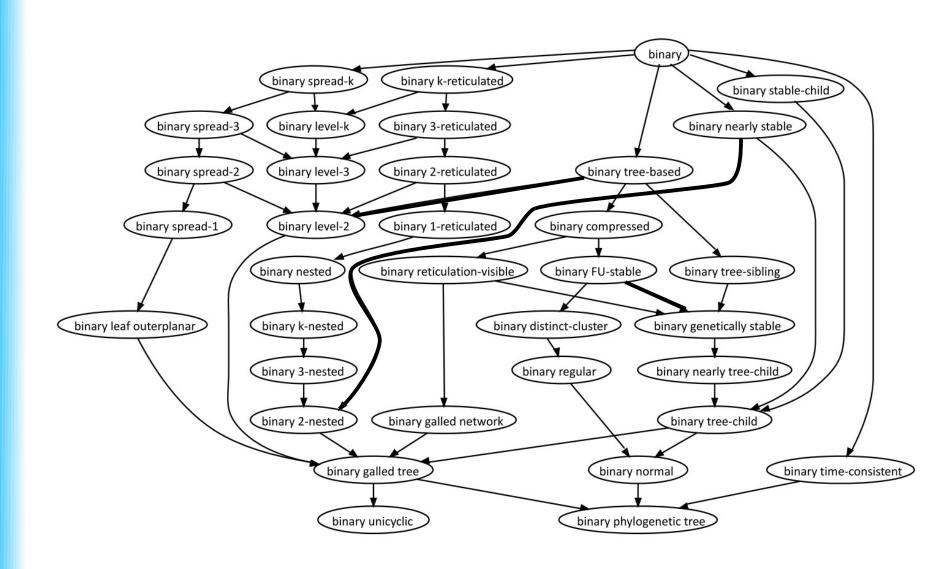

joint work with Maxime Morgado and Narges Tavassoli http://phylnet.univ-mlv.fr/isiphync/network.php?id=4

level = maximum number of reticulation
vertices among all bridgeless components
in the network

cluster = set of leaves below a vertex

Classes containing this network or not

Classes which contain this network (with direct proof)



- <u>binary genetically stable</u>: All reticulation vertices are stable (e for leaf 2, d for leaf 1, g for leaf 3, j for leaf 4) and all have at least one parent which is stable (f, parent of d, stable for leaf 2; b, parent of e, stable for leaves 1 and 2; a, parent of g, stable for leaf 4)
- binary nearly stable: All vertices except c and i (whose unique parent is in both cases stable) are stable.
- binary level-2: Easy to check.
- binary leaf outerplanar: Easy to check.
- binary FU-stable: Easy to check.

Classes which do not contain this network (with direct proof)

- <u>binary nearly tree-child</u>: Reticulation vertex g is stable but none of its parents a and i have the tree-path property.
- · binary nested: Easy to check.
- binary time-consistent: The redundant arc from b to e makes it impossible to build a time-consistent labeling of the vertices.
- binary galled network: Reticulation arc (c,e) is a common arc of reticulation cycles from b to e and from c to d.
- binary distinct-cluster: Vertices h and i both have the same cluster: {3,4}
- binary 1-reticulated: Tree vertex b can reach 2 reticulation vertices by 2 directed internally vertex-disjoint paths: d and e.

joint work with Maxime Morgado and Narges Tavassoli http://phylnet.univ-mlv.fr/isiphync/network.php?id=4

Classes of phylogenetic networks

Problems and properties studied on these classes

Problems

- Tree Containment: Does the input network contain the input tree on the same set of leaves?
- Cluster Containment: Does the input network contain the input subset of leaves as a softwired cluster?
- Phyloge netic Network Isomorphism: Are the two input phylogenetic networks isomorphic?

Properties

- Upper bound on the number of vertices: The number of vertices is bounded by the number of leaves.
- Unbounded number of vertices: The number of vertices is not bounded by the number of leaves.
- Completeness for reconstruction from trees: There exists a network in this class which displays all binary rooted phylogenetic trees on n leaves.

Database content

73 classes of phylogenetic networks including 35 classes of binary phylogenetic networks (defined in a total of 20 bibliographic references), 51 inclusion relationships proved directly between classes (including some found in a total of 9 bibliographic references), 21 networks (65 memberships to a class, 53 non-memberships to a class), 3 problems considered, 3 properties considered, 33 theorems proved directly (including some found in a total of 15 bibliographic references) including 23 positive results (which can be extended to subclasses) and 10 negative results (which can be extended to superclasses).

Classes of phylogenetic networks

Problems and properties studied on these classes

Problems

- Tree Containment: Does the input network contain the input tree on the same set of leaves?
- Cluster Containment: Does the input network contain the input subset of leaves as a softwired cluster?
- Phyloge netic Network Isomorphism: Are the two input phylogenetic networks isomorphic?

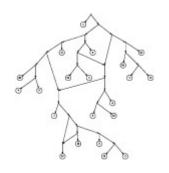
Properties

- Upper bound on the number of vertices: The number of vertices is bounded by the number of leaves.
- Unbounded number of vertices: The number of vertices is not bounded by the number of leaves.
- Completeness for reconstruction from trees: There exists a network in this class which displays all binary rooted phylogenetic trees on n leaves.

Database content

73 classes of phylogenetic networks including 35 classes of binary phylogenetic networks (defined in a total of 20 bibliographic references), 51 inclusion relationships proved directly between classes (including some found in a total of 9 bibliographic references), 21 networks (65 memberships to a class, 53 non-memberships to a class), 3 problems considered, 3 properties considered, 33 theorems proved directly (including some found in a total of 15 bibliographic references) including 23 positive results (which can be extended to subclasses) and 10 negative results (which can be extended to superclasses).

Polynomial time algorithm available on class $A \rightarrow$ works on **subclass** B **NP-completeness** on class $B \rightarrow$ NP-completeness on **superclass** A (similar to ISGCI)


joint work with Maxime Morgado and Narges Tavassoli

Outline

- Phylogenetic networks
- Classes of phylogenetic networks
- The Tree Contaiment Problem

espèce 1 : AATTGCAG TAGCCCAAAAT
espèce 2 : ACCTGCAG TAGACCAAT
espèce 3 : GCTTGCCG TAGACAAGAAT
espèce 4 : ATTTGCAG AAGACCAAAT
espèce 5 : TAGACAAGAAT
espèce 6 : ACTTGCAG TAGCACAAAAT
espèce 7 : ACCTGGTG TAAAAT

G1 G2

{gene sequences}

distance methods

Bandelt & Dress 1992 - Legendre & Makarenkov 2000 - Bryant & Moulton 2002 - Chan, Jansson, Lam & Yiu 2006

parsimony methods

Hein 1990 - Kececioglu & Gusfield 1994 - Jin, Nakhleh, Snir, Tuller 2009 - Park, Jin & Nakhleh 2010 - Kannan & Wheeler. 2012

likelihood methods

Snir & Tuller 2009 - Jin, Nakhleh, Snir, Tuller 2009 -Velasco & Sober 2009 - Meng & Kubatko 2009

network N

Problem: methods are usually slow, especially with rapidly increasing sequence length.

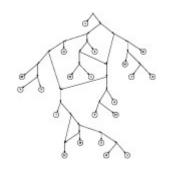
espèce 1 : AATTGCAG TAGCCCAAAAT
espèce 2 : ACCTGCAG TAGACCAAT
espèce 3 : GCTTGCCG TAGACAAGAAT
espèce 4 : ATTTGCAG AAGACCAAAT
espèce 5 : TAGACAAGAAT
espèce 6 : ACTTGCAG TAGCACAAAAT
espèce 7 : ACCTGGTG TAAAAT

G1 G2

{gene sequences}

distance methods

Bandelt & Dress 1992 - Legendre & Makarenkov 2000 - Bryant & Moulton 2002 - Chan, Jansson, Lam & Yiu 2006


parsimony methods

Hein 1990 - Kececioglu & Gusfield 1994 - Jin, Nakhleh, Snir, Tuller 2009 - Park, Jin & Nakhleh 2010 - Kannan & Wheeler, 2012

likelihood methods

Snir & Tuller 2009 - Jin, Nakhleh, Snir, Tuller 2009 -Velasco & Sober 2009 - Meng & Kubatko 2009

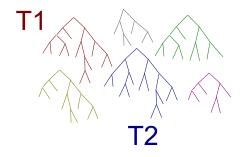
network N

espèce 1 : AATTGCAG TAGCCCAAAAT espèce 3 : GCTTGCCG TAGACAAGAAT {gene sequences} espèce 4 : ATTTGCAG AAGACCAAAT espèce 6 : ACTTGCAG TAGCACAAAAT espèce 7 : ACCTGGTG TAAAAT Reconstruction of a tree for each gene present in several species Guindon & Gascuel, SB, 2003 {trees} **HOGENOM** Database Dufayard, Duret, Penel, Gouy, Rechenmann & Perrière, BioInf, 2005 Tree reconciliation or consensus explicit network optimal super-network N:

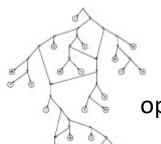
- contains the input trees

- has the smallest number of reticulations

espèce 1 : AATTGCAG TAGCCCAAAAT espèce 3 : GCTTGCCG TAGACAAGAAT {gene sequences} espèce 4 : ATTTGCAG AAGACCAAAT espèce 6 : ACTTGCAG TAGCACAAAAT espèce 7 : ACCTGGTG TAAAAT Reconstruction of a tree for each gene present in several species Guindon & Gascuel, SB, 2003 {trees} **HOGENOM** Database Dufayard, Duret, Penel, Gouy, Rechenmann & Perrière, BioInf, 2005 1470 species, >290 000 trees Tree reconciliation or consensus explicit network


optimal super-network N:

- contains the input trees
- has the smallest number of reticulations


espèce 1 : AATTGCAG TAGCCCAAAAT espèce 2 : ACCTGCAG TAGACCAAT espèce 3 : GCTTGCCG TAGACAAGAAT espèce 4 : ATTTGCAG AAGACCAAAT espèce 5 : TAGACAAGAAT espèce 6 : ACTTGCAG TAGCACAAAAT espèce 7 : ACCTGGTG TAAAAT

G1

G2

explicit network

{gene sequences}

Reconstruction of a tree for each gene present in several species

Guindon & Gascuel, SB, 2003

{trees}

HOGENOM Database

Dufayard, Duret, Penel, Gouy, Rechenmann & Perrière, BioInf, 2005 1470 species, >290 000 trees

Tree reconciliation or consensus

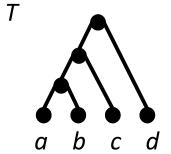
Tree Containment Problem

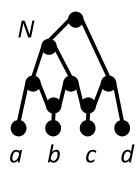
optimal super-network N:

- contains the input trees
- has the smallest number of reticulations

Input: A binary phylogenetic network *N* and

a tree *T* over the same set of taxa.

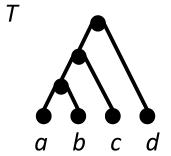

Question: Does *N* display *T*?

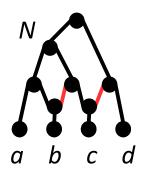

Input: A binary phylogenetic network *N* and

a tree T over the same set of taxa.

Question: Does *N* display *T*?

 \rightarrow Can we remove one incoming arc, for each vertex with >1 parent in N, such that the obtained tree is equivalent to T?

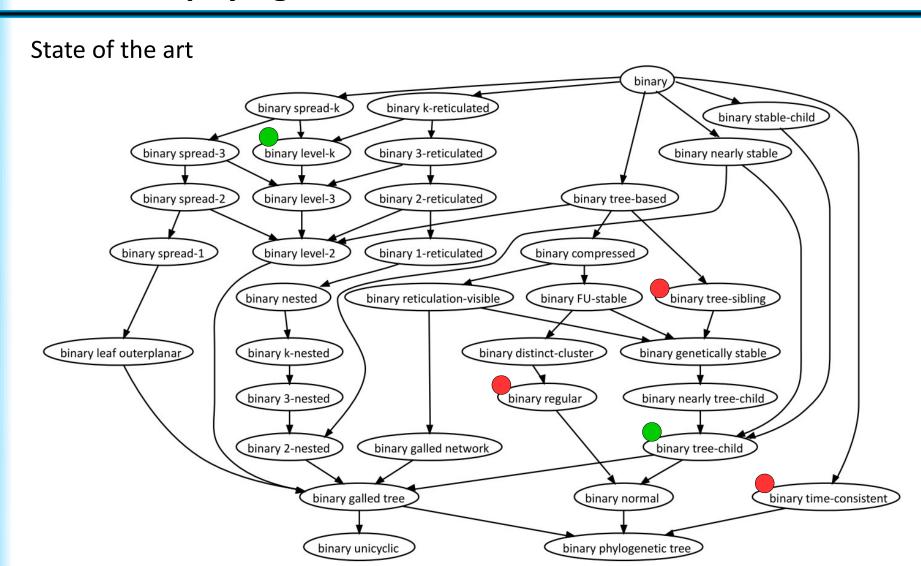



Input: A binary phylogenetic network *N* and

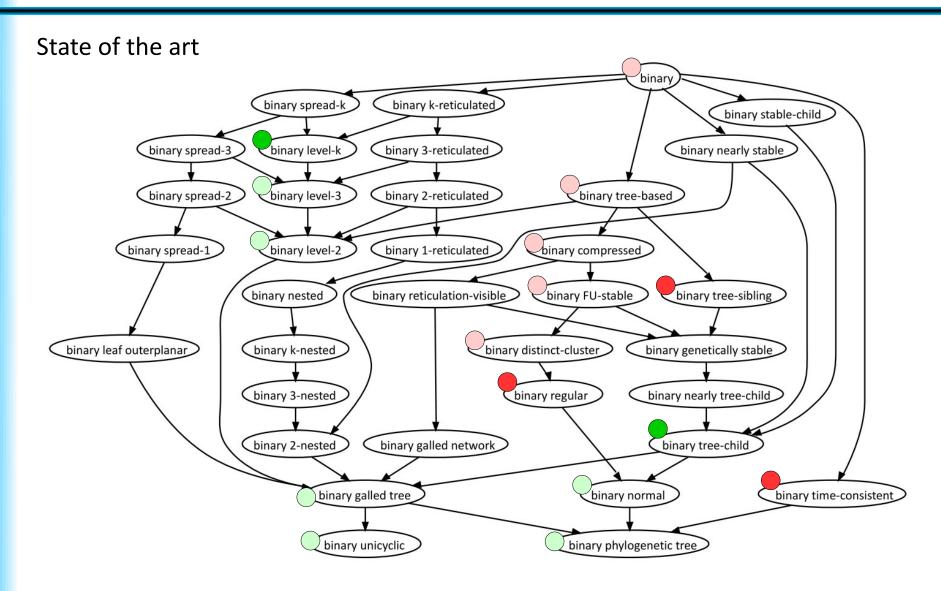
a tree T over the same set of taxa.

Question: Does *N* display *T*?

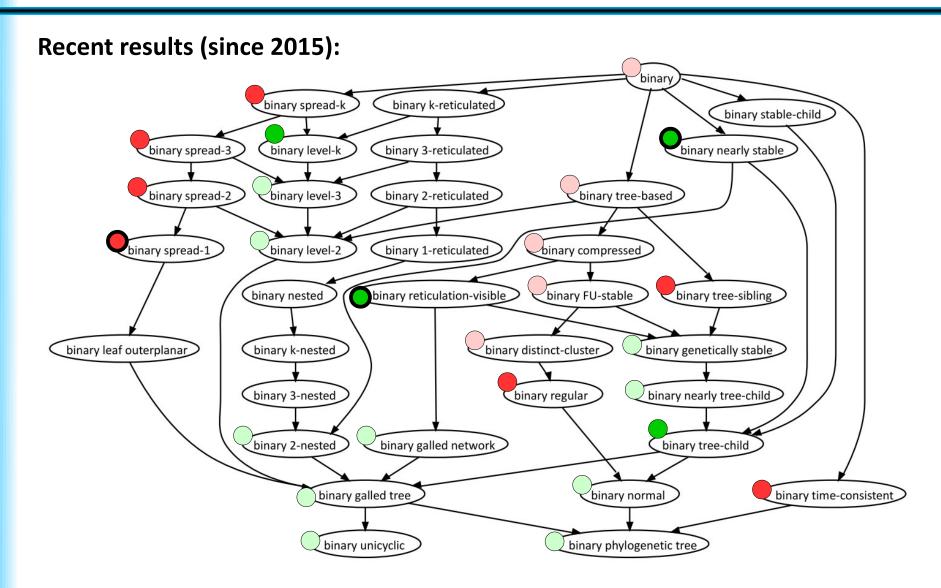
 \rightarrow Can we remove one incoming arc, for each vertex with >1 parent in N, such that the obtained tree is equivalent to T?

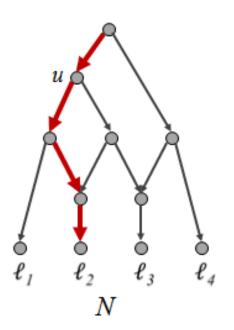

Input: A binary phylogenetic network *N* and

a tree T over the same set of taxa.


Question: Does *N* display *T*?

- NP-complete in general (Kanj, Nakhleh, Than & Xia, 2008)
- NP-complete for tree-sibling, time-consistent, regular networks (lersel, Semple & Steel, 2010)
- Polynomial-time solvable for normal networks, for binary tree-child networks, and for level-k networks (Iersel, Semple & Steel, 2010)


Classes of phylogenetic networks and the T.C.P.


Classes of phylogenetic networks and the T.C.P.

Classes of phylogenetic networks and the T.C.P.

Reticulation-visible and nearly-stable networks

A vertex *u* is **stable** if there exists a leaf *l* such that all paths from the root to *l* go through *u*.

A phylogenetic network is **reticulation-visible** if every reticulation vertex is stable.

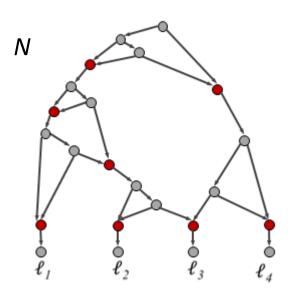
A phylogenetic network is **nearly-stable** if for each vertex, either it is stable or its parents are.

Strategy to get a quadratic time algorithm for T.C.P.

Given N, a phylogenetic network with n leaves and the input tree T of the T.C.P.

Theorem 1: If N is reticulation-visible then: $\#\{\text{reticulation vertices of } N\} \le 4(n-1) \\ \#\{\text{vertices of } N\} \le 9n$

Theorem 2: If N is nearly-stable then $\#\{\text{reticulation vertices of } N\} \le 12(n-1)$

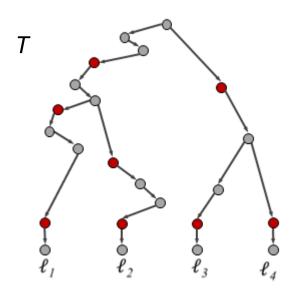

- **Theorem 3:** Considering a longest path in *N* (nearly stable), it is possible, in constant time:
 - either to realize that T is not contained in N
 - or to build a network N' with less arcs than N such that
 T contained in N if and only if T contained in N'

Decompose *N* into **2***n***-2 paths**:

- remove one reticulation arc per reticulation, ensuring we get no « dummy leaf », to get a tree *T* with *n* leaves
- summarize T into a rooted binary tree T' with n leaves... and 2n-2 arcs

We can prove (technical) that:

each path contains at most 2 reticulation vertices

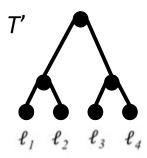


Decompose *N* into **2***n***-2 paths**:

- remove one reticulation arc per reticulation, ensuring we get no « dummy leaf », to get a tree *T* with *n* leaves
- summarize *T* into a rooted binary tree *T'* with *n* leaves... and 2*n*-2 arcs

We can prove (technical) that:

each path contains at most 2 reticulation vertices

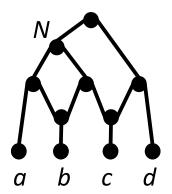

Decompose *N* into **2***n***-2 paths**:

- remove one reticulation arc per reticulation, ensuring we get no « dummy leaf », to get a tree T with n leaves
- summarize T into a rooted binary tree T' with n leaves... and 2n-2 arcs

We can prove (technical) that:

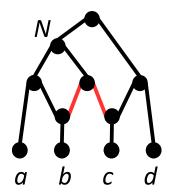
each path contains at most 2 reticulation vertices

Decompose *N* into **2***n***-2 paths**:

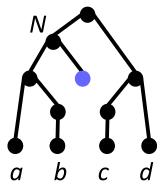

- remove one reticulation arc per reticulation, ensuring we get no « dummy leaf », to get a tree *T* with *n* leaves
- summarize T into a rooted binary tree T' with n leaves... and 2n-2 arcs

We can prove (technical) that:

each path contains at most 2 reticulation vertices


 \rightarrow N contains at most 4(n-1) reticulation vertices

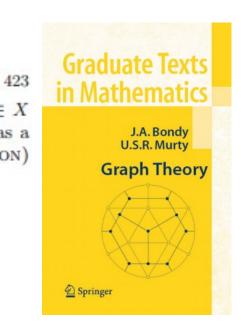
« Dummy leaves »?



Deleting reticulation arcs can create « dummy leaves »

« Dummy leaves »?

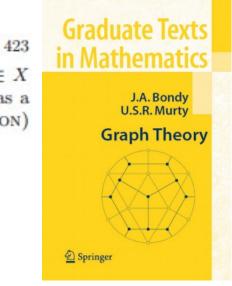
Deleting reticulation arcs can create « dummy leaves »

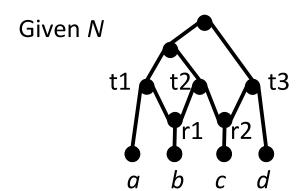


Possible to avoid creating « dummy leaves »?

Possible to avoid creating « dummy leaves »?

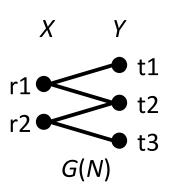
16.2 Matchings in Bipartite Graphs


16.2.13 Let G := G[X, Y] be a bipartite graph such that $d(x) \ge 1$ for all $x \in X$ and $d(x) \ge d(y)$ for all $xy \in E$, where $x \in X$ and $y \in Y$. Show that G has a matching covering every vertex of X.

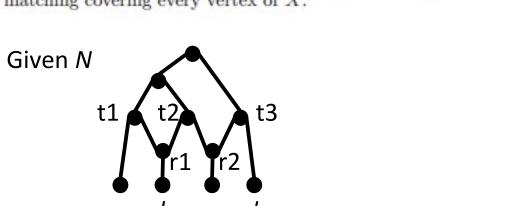


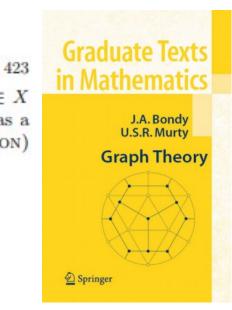
Possible to avoid creating « dummy leaves »?

16.2 Matchings in Bipartite Graphs


16.2.13 Let G := G[X, Y] be a bipartite graph such that $d(x) \ge 1$ for all $x \in X$ and $d(x) \ge d(y)$ for all $xy \in E$, where $x \in X$ and $y \in Y$. Show that G has a matching covering every vertex of X.

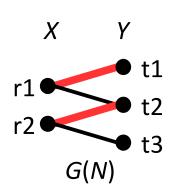
Build G(N), bipartite graph such that:


- X = reticulation vertices of N
 - \rightarrow all vertices in X have degree 2
- Y = tree vertices of N with at least one reticulation child
 - \rightarrow all vertices in Y have degree 1 or 2
- edge between x and y iff x is a child of y

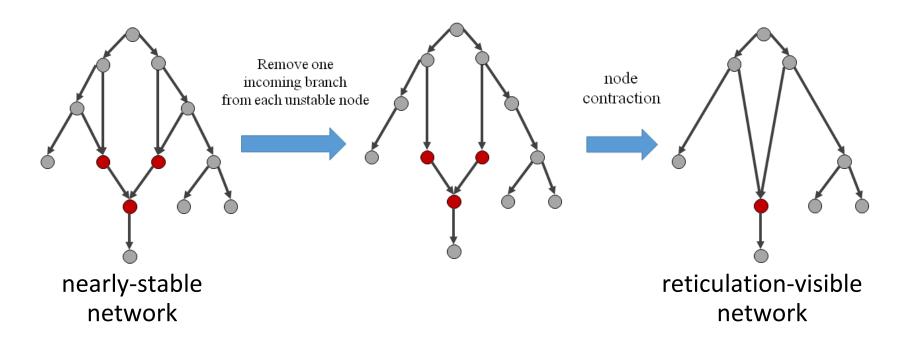


Possible to avoid creating « dummy leaves »?

16.2 Matchings in Bipartite Graphs


16.2.13 Let G := G[X, Y] be a bipartite graph such that $d(x) \ge 1$ for all $x \in X$ and $d(x) \ge d(y)$ for all $xy \in E$, where $x \in X$ and $y \in Y$. Show that G has a matching covering every vertex of X.

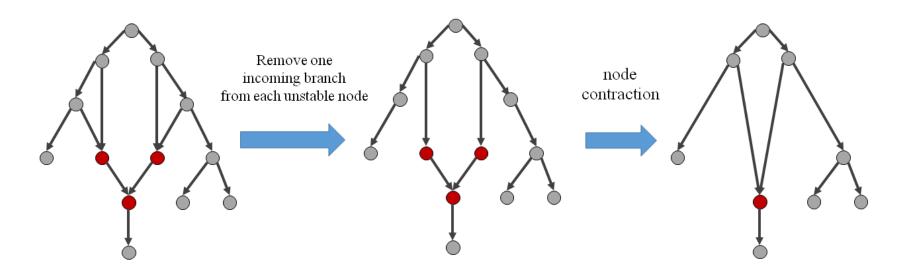
Build G(N), bipartite graph such that:


- X = reticulation vertices of N
 - \rightarrow all vertices in X have degree 2
- Y = tree vertices of N with at least one reticulation child
 - → all vertices in Y have degree 1 or 2
- edge between x and y iff x is a child of y

 \rightarrow matching covering every vertex of $X \rightarrow$ edges to remove from N

Number of reticulations of a nearly-stable network

Reduce nearly-stable networks to stable networks


Claim: #unstableReticulations ≤ 2 #stableReticulations

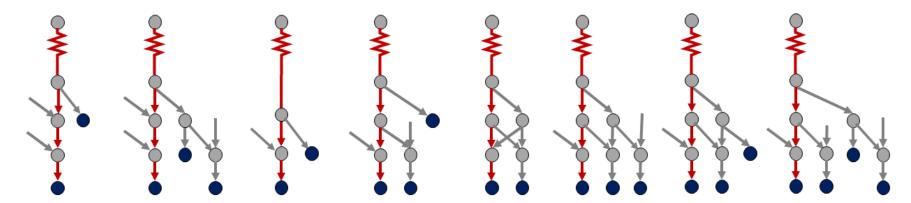
Proof:

Each unstable reticulation must have a stable reticulation child. At most two unstable reticulations may have the same reticulation child.

Number of reticulations of a nearly-stable network

Reduce nearly-stable networks to stable networks

#unstableReticulations ≤ 2 #stableReticulations


#stableReticulations $\leq 4(n-1)$

 \rightarrow #reticulations $\leq 12(n-1)$

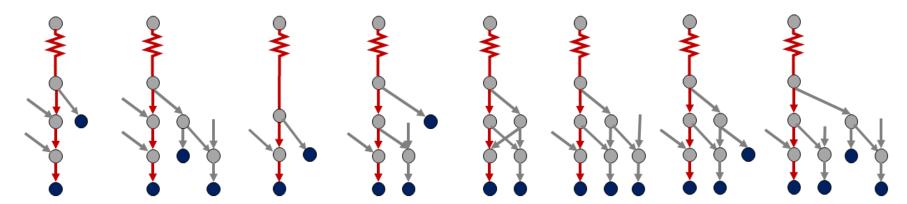
Deleting reticulation arcs to simplify the question

Simplify N by removing an arc near the end of a longest path P.

Case analysis (8 cases):

Algorithm for nearly-stable networks:

Repeat:


- Compute a longest path P in N
- Simplify N by considering the subnetwork at the end of P according to the 8 cases above (arc removal + contraction)
- Replace a «cherry» (2 leaves + their common parent)
 appearing in both N and T by a new leaf

Finally check that the obtained network is identical to T

Deleting reticulation arcs to simplify the question

Simplify N by removing an arc near the end of a longest path P.

Case analysis (8 cases):

Algorithm for nearly-stable networks:

R	6	n	6	ล	t	•
	_	Μ	_	ч	·	•

- Compute a longest path P in N
- Simplify N by considering the subnetwork at the end of P according to the 8 cases above (arc removal + contraction)
- Replace a «cherry» (2 leaves + their common parent) appearing in both N and T by a new leaf

Finally check that the obtained network is identical to T

O(n) times:

- $\rightarrow O(n)$
- \rightarrow O(1)
- \rightarrow O(1)

 \rightarrow O(n)

Improved algorithms

 $O(n \log n)$ -time algorithm for nearly-stable networks

Fakcharoenphol, Kumpijit & Putwattana, JCSSE 2015

Cubic-time algorithm for reticulation-visible networks

Gunawan, DasGupta & Zhang, RECOMB 2016 Bordewich & Semple, Advances in Applied Mathematics, 2016

#reticulations $\leq 3(n-1)$ for reticulation-visible networks

Bordewich & Semple, Advances in Applied Mathematics, 2016

Perspectives...

- Provide a practical algorithmic toolbox using network classes
 - → http://phylnet.info/tools/
- Combine the combinatorial and statistical approaches to reconstruct phylogenetic networks
 - → CNRS PICS project with L. van Iersel, S. Kelk, F. Pardi & C. Scornavacca
- Develop interactions with related fields:
 - → host/parasite relationships
 - → population genetics
 - → stemmatology