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The Tamari lattice
The Tamari lattice Ln is the partial order on binary trees with n nodes
where the covering relation corresponds to right rotation

n=3 n=4



The covering relation for Dyck paths



The covering relation for Dyck paths

T2T1
D2D1

These correspond to right rotations, via the (recursive) bijection
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Tamari intervals
An interval in Ln is a pair (T, T ′) such that T ≤ T ′

n=3
13 intervals

Theorem [Chapoton’06]: there are 2
n(n+1)

(4n+1
n−1

)
intervals in Ln

1, 3, 13, 68, 399,2530, 16965, 118668, . . .

Rk: The dual of (T, T ′) is (mir(T ′),mir(T ))
It is an involution on Tamari intervals

A Tamari interval equal to its dual is called self-dual

68 intervals
n=4

1, 1, 3, 4, 15, 22, 91, 140, . . .
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Bracket-vectors
Bracket-vector = vector of sizes of right subtrees of nodes (in infix order)

T

V(T ) : 7 6 40 1 0 1 0

T ′

V(T ′) : 7 6 40 1 0 1 0

right
rotation

1 3

Prop: For two binary trees T, T ′ of size n

T ≤ T ′ in Ln iff V(T ) ≤ V(T ′)

[Huang-Tamari’72]



Tamari intervals and planar maps



Planar maps, triangulations

= 6=

rooted map = map + marked directed edge

Planar map = connected graph embedded on the sphere up to isotopy

(outer face = face on its left)



Planar maps, triangulations

n = 4 internal vertices

[Tutte’62] #(triangulations on n internal vertices)= 2
n(n+1)

(
4n+1
n−1

)

Triangulation = simple planar map with all faces of degree 3

= 6=

rooted map = map + marked directed edge

Planar map = connected graph embedded on the sphere up to isotopy

(outer face = face on its left)



Enumeration of Tamari interval families

all intervals
2

n(n+1)

(
4n+1
n−1

)
equinumerous map family

simple triangulations

family formula

synchronized /

new/modern

m-Tamari

simple quadrangulations

bipartite maps

??

labeled ??

2
n(n+1)

(
3n
n−1

)
3·2n−2

n(n+1)

(
2n−2
n−1

)
m+1

n(nm+1)

(
(m+1)2n+m

n−1
)

generalized

2n(n+ 1)n−2

[Chapoton’06]

[Chapoton’06, Rognerud’18]

[Bousquet-Mélou-Chapuy-Préville-Ratelle’12]

[Fang-Préville-Ratelle’17]

[Bousquet-Mélou-F-Préville-Ratelle’11]
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Bijective approach via maps

interval-family ←→ map family ←→ (unrooted) tree-family
(1) (2)

Bijections for step (2): closure of decorated trees [Poulalhon-Schaeffer’06]

Two types of bijections for step (1):

for simple triangulations

counting formula

• Parallel decomposition with a catalytic variable

• Specialize bijections between oriented maps and walk-systems

[Bernardi-Bonichon’09] [F-Humbert’19]

this talk
(inspired by interval posets)

⇒ recursive bijection
(can be derecursified using dfs/description trees)

[Fang-Préville-Ratelle’17], [Fang’18], [Fang’21]



The Poulalhon-Schaeffer bijection

Blossoming tree = (unrooted) plane tree with two buds per node
counted with multiplicity 2 if no half-turn symmetry

[Poulalhon-Schaeffer’06] [Albenque-Poulalhon’13]

size n = # edges

multiplicity 1 multiplicity 2

The (weighted) number of blossoming trees of size n is 2
n(n+1)

(
4n+1
n−1

)



The Poulalhon-Schaeffer bijection
[Poulalhon-Schaeffer’06] [Albenque-Poulalhon’13]

Blossoming tree Simple triangulation
closure operations



The Poulalhon-Schaeffer bijection
[Poulalhon-Schaeffer’06] [Albenque-Poulalhon’13]

Blossoming tree Simple triangulation
closure operations



The Poulalhon-Schaeffer bijection
[Poulalhon-Schaeffer’06] [Albenque-Poulalhon’13]

Blossoming tree Simple triangulation
closure operations



The Poulalhon-Schaeffer bijection
[Poulalhon-Schaeffer’06] [Albenque-Poulalhon’13]

Blossoming tree Simple triangulation
closure operations



The Poulalhon-Schaeffer bijection
[Poulalhon-Schaeffer’06] [Albenque-Poulalhon’13]

Blossoming tree Simple triangulation
closure operations



The Poulalhon-Schaeffer bijection
[Poulalhon-Schaeffer’06] [Albenque-Poulalhon’13]

Blossoming tree Simple triangulation
closure operations



The Poulalhon-Schaeffer bijection
[Poulalhon-Schaeffer’06] [Albenque-Poulalhon’13]

Blossoming tree Simple triangulation
closure operations
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Blossoming tree Simple triangulation
closure operations
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Schnyder woods Local conditions:

Theo: Any triangulation admits a Schnyder wood [Schnyder’89]

• A Schnyder wood with no cw circuit is called minimal

v0

v1v2

minimal

Theo: Any triangulation has a unique minimal Schnyder wood
(cf set of Schnyder woods on fixed triangulation is a distributive lattice)

[Ossona de Mendez’94, Brehm’03, Felsner’03]



The Bernardi-Bonichon bijection [Bernardi, Bonichon’09]

Schnyder woods on n+ 3 vertices

non-intersecting pairs of Dyck paths of lengths 2n

minimal

Tamari interval

0

1 0

3

⇒ ⇒ 0

1
0

3

not minimal

0

1

0

3

⇒ ⇒ 0

1
0

3

minimal

not Tamari interval

Tamari interval



Direct bijection from Tamari intervals
to blossoming trees
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Representations of binary trees

canonical drawing smooth drawing

diagram-drawing



Representations of pairs of binary trees
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Representations of pairs of binary trees
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Representations of pairs of binary trees
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Representations of pairs of binary trees

,

meandering diagram

meandering diagram M has underlying graph GM = (V,E)

where V ↔ {black points} and E ↔ {white points}
(one more vertices than edges)

Def: A meandering tree is a meandering diagram M such that GM is a tree
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Tamari intervals correspond to meandering trees
Theo: Let M = meandering diagram of (T, T ′).

Then M is a meandering tree iff T ≤ T ′

,

meandering tree
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A pattern-avoiding explanation

not an interval

mm

contains pattern

. . .
. . .

a < b < c < d

m
not a tree
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From meandering trees to blossoming trees

bicolored atbicolored blossoming trees
half-edges,

with conditions
m

blossoming trees
with weight 1 or 2 whether

half-turn symmetric or not
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From blossoming trees to meandering trees



From blossoming trees to meandering trees

hamiltonian path



From blossoming trees to meandering trees

hamiltonian pathhamiltonian path
stretch



Link to interval-posets [Chatel-Pons’13]

Let P be a poset on [n] = {1, . . . , n}

for x ∈ [n], let Ix := {y ∈ [n], y �P x}

Def: P is an interval-poset if ∀x ∈ [n], Ix is an interval of [n]
(of the form [i..j] with i ≤ x ≤ j)

1

2 3

4 8

5 6

7



Link to interval-posets [Chatel-Pons’13]

Let P be a poset on [n] = {1, . . . , n}

for x ∈ [n], let Ix := {y ∈ [n], y �P x}

Def: P is an interval-poset if ∀x ∈ [n], Ix is an interval of [n]
(of the form [i..j] with i ≤ x ≤ j)

1

2 3

4 8

5 6

7

Interval-posetsTamari intervals
bijection



Link to interval-posets

1 2 3 4 85 6 7

1

2 3

4 8

5 6

7
P

GP

For each x ∈ [1..n] place an arc above x that covers Ix

Tree-encoding (cf [Rognerud’18])



Link to interval-posets
The 13 interval-poset trees of size 3

1 2 31 2 31 2 3 1 2 3 1 2 31 2 3

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

The 13 blossoming trees of size 3

×2 ×2

×1

×2 ×1

×1 ×2 ×2

In each case we have ×9 ×4



Link to interval-posets

1 2 3 4 85 6 7

apply

. . . . . .

. . . . . .

meandering tree



Properties of the bijection,
specializations



Commutation with duality of intervals
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,

,

duality half-turn (color-switch)



Commutation with duality of intervals
Corollary: self-dual Tamari intervals blossoming trees with half-turn symmetry
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Commutation with duality of intervals
Corollary: self-dual Tamari intervals blossoming trees with half-turn symmetry

2 copies

The number of self-dual intervals of size n is
1
r

(
4r
r−1

)
if n is even, n = 2r

1
r

(
4r−2
r−1

)
if n is odd, n = 2r − 1

1, 1, 3, 4, 15, 22, 91, 140, 612, 969



Control on some branch-lengths
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Control on some branch-lengths

0
0

1
2

0
1

2
1

1

1
1

2
0

3
1

0
0

0

1 1 2 0 3 1 0 0 0

0 0 1 2 0 1 2 1 1

0

0

2
1
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0

1
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1
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0

0
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Control on some branch-lengths

0
0

1
2

0
1

2
1

1

1
1

2
0

3
1

0
0

0

1 1 2 0 3 1 0 0 0

0 0 1 2 0 1 2 1 1

Rk: To have specialization to

- labeled Tamari intervals
- m-Tamari intervals, cf

would need to control lengths of
branches of slope −1

[Pons’19]
0

0

2
1

2

0

1
3

1

1

0

0

0
1

2 0

1

1



Control on canopy parameters
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Control on canopy parameters

1
1 1

1 1 1 0 1 1 0 0 0

1 1 0 0 1 0 0 0 0

1 0 1 0 01 0
1 0 0 1 0 0 0 0

0
1

1
1

0
0

1 0

1 0

[Bostan, Chyzak, Pilaud’23]
recover bivariate formula

bn,k = # intervals of size n
with k + 2 common canopy-entries

bn,k =
2

n(n + 1)

(
3n

k

)(
n

k + 2

)



Specialization to synchronized intervals
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Specialization to synchronized intervals

1
1 1

1 1 1 0 1 1 0 0 0

1 1 0 0 1 0 0 0 0

1 0 1 0 01 0
1 1 0 1 1 0 0 0

1 0

1 0

no

1 bud per node

blossoming trees for simple quadrangulations

[F’07, Albenque-Poulalhon’13]
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Specialization to Kreweras intervals

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

'

3

1

2

3

1

2

1

2

3

1

2

3

2

1 3 in Tamari

right
branches

Theo: the number of Kreweras intervals of size n is (3n)!
n!(2n+1)!

[Kreweras’72, Bernardi-Bonichon’09]
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Kreweras complement
For π a non-crossing partition, let π be its Kreweras complement

Rk: π ∪ π is a non-crossing partition

more generally π ≤ π′ iff π ∪ π′ is a non-crossing partition

T

ππ

left
branches

right
branches

complement

ππ

T



Meandering diagram via non-crossing partitions
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Meandering diagram via non-crossing partitions

T ′, π′

T, π

not a Kreweras interval

Kreweras interval
m

meandering diagram avoids

&

Tamari



Kreweras meandering tree → non-crossing tree

apply

. . . . . .

. . . . . .
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Kreweras meandering tree → non-crossing tree

apply

. . . . . .

. . . . . .

Recover [Rognerud’18]

[Bernardi-Bonichon’09]

(obtained via interval-posets)

Kreweras intervals ↔ stack triangulations
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Modern and infinetely modern intervals

,
T T ′

,T T ′rise operator

A Tamari interval (T, T ′) is modern if rise(T, T ′) is also a Tamari interval

(T, T ′) is infinitely modern if risek(T, T ′) is a Tamari interval ∀k ≥ 0

modern intervals

[Rognerud’18, Chapoton’06]

new intervals
rise

(no common node 6= root
when superimposing both trees)



Subfamilies & forbidden patterns on blossoming trees
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Subfamilies & forbidden patterns on blossoming trees

∅

∅

∅

∅

Synchronized Modern Infinitely modern Kreweras

∅

∅

. . .
. . .

New involution τ on Tamari intervals: mirror of blossoming trees

matched by τ



Counting results obtained from the bijection



Random samples

101 102

103 104


