Tamari intervals and blossoming trees

Éric Fusy (LIGM-CNRS Université Gustave Eiffel)

Joint work with Wenjie Fang and Philippe Nadeau

Rotation operations on binary trees

The Tamari lattice

The Tamari lattice \mathcal{L}_n is the partial order on binary trees with n nodes where the covering relation corresponds to right rotation

The covering relation for Dyck paths

The covering relation for Dyck paths

These correspond to right rotations, via the (recursive) bijection

An interval in \mathcal{L}_n is a pair (T, T') such that $T \leq T'$

An interval in \mathcal{L}_n is a pair (T, T') such that $T \leq T'$

Theorem [Chapoton'06]: there are
$$\frac{2}{n(n+1)}\binom{4n+1}{n-1}$$
 intervals in \mathcal{L}_n 1, 3, 13, 68, 399,2530, 16965, 118668, ...

An interval in \mathcal{L}_n is a pair (T, T') such that $T \leq T'$

Theorem [Chapoton'06]: there are $\frac{2}{n(n+1)}\binom{4n+1}{n-1}$ intervals in \mathcal{L}_n 1, 3, 13, 68, 399,2530, 16965, 118668, . . .

Rk: The dual of (T, T') is $(\min(T'), \min(T))$ It is an involution on Tamari intervals

An interval in \mathcal{L}_n is a pair (T, T') such that $T \leq T'$

Theorem [Chapoton'06]: there are $\frac{2}{n(n+1)}\binom{4n+1}{n-1}$ intervals in \mathcal{L}_n 1, 3, 13, 68, 399,2530, 16965, 118668, ...

Rk: The dual of (T, T') is $(\min(T'), \min(T))$ It is an involution on Tamari intervals

A Tamari interval equal to its dual is called **self-dual**1, 1, 3, 4, 15, 22, 91, 140, ...

Bracket-vectors

Bracket-vector = vector of sizes of right subtrees of nodes (in infix order)

Bracket-vectors

Bracket-vector = vector of sizes of right subtrees of nodes (in infix order)

Bracket-vectors

Bracket-vector = vector of sizes of right subtrees of nodes (in infix order)

Prop: For two binary trees T, T' of size n

[Huang-Tamari'72]

$$T \leq T'$$
 in \mathcal{L}_n iff $\mathbf{V}(T) \leq \mathbf{V}(T')$

Tamari intervals and planar maps

Planar maps, triangulations

Planar map = connected graph embedded on the sphere up to isotopy

Planar maps, triangulations

Planar map = connected graph embedded on the sphere up to isotopy

Triangulation = simple planar map with all faces of degree 3

n=4 internal vertices

[Tutte'62] #(triangulations on n internal vertices) $=rac{2}{n(n+1)}inom{4n+1}{n-1}$

Enumeration of Tamari interval families

family	formula	equinumerous map family
all intervals	$\frac{2}{n(n+1)}\binom{4n+1}{n-1}$ [Chapoton'06]	simple triangulations
synchronized / generalized	$rac{2}{n(n+1)} {3n \choose n-1}$ [Fang-Préville-Ratelle'17]	simple quadrangulations
new/modern	$\frac{3 \cdot 2^{n-2}}{n(n+1)} \binom{2n-2}{n-1}$ [Chapoton'06, Rognerud'18]	bipartite maps
m-Tamari	$\frac{m{+}1}{n(nm{+}1)}\binom{(m{+}1)^2n{+}m}{n{-}1}$ [Bousquet-Mélou-F-Préville-Ratelle'11]	??
labeled	$2^n(n+1)^{n-2}$ [Bousquet-Mélou-Chapuy-Préville-Ratelle'12]	??

interval-family
$$\longleftrightarrow$$
 map family \longleftrightarrow (unrooted) tree-family (1) counting formula

Bijections for step (2): closure of decorated trees [Poulalhon-Schaeffer'06] for simple triangulations

Bijections for step (2): closure of decorated trees [Poulalhon-Schaeffer'06] for simple triangulations

Two types of bijections for step (1):

Parallel decomposition with a catalytic variable

```
⇒ recursive bijection
(can be derecursified using dfs/description trees)
[Fang-Préville-Ratelle'17], [Fang'18], [Fang'21]
```

Bijections for step (2): closure of decorated trees [Poulalhon-Schaeffer'06] for simple triangulations

Two types of bijections for step (1):

- Parallel decomposition with a catalytic variable
 ⇒ recursive bijection
 (can be derecursified using dfs/description trees)
 [Fang-Préville-Ratelle'17], [Fang'18], [Fang'21]
- Specialize bijections between oriented maps and walk-systems
 [Bernardi-Bonichon'09] [F-Humbert'19]

Bijections for step (2): closure of decorated trees [Poulalhon-Schaeffer'06] for simple triangulations

Two types of bijections for step (1):

- Specialize bijections between oriented maps and walk-systems

[Bernardi-Bonichon'09] [F-Humbert'19]

[Poulalhon-Schaeffer'06] [Albenque-Poulalhon'13]

Blossoming tree = (unrooted) plane tree with two buds per node counted with multiplicity 2 if no half-turn symmetry

size
$$n=\#$$
 edges

The (weighted) number of blossoming trees of size n is $\frac{2}{n(n+1)}\binom{4n+1}{n-1}$

[Poulalhon-Schaeffer'06] [Albenque-Poulalhon'13]

Theo: Any triangulation admits a Schnyder wood

[Schnyder'89]

Theo: Any triangulation admits a Schnyder wood

[Schnyder'89]

A Schnyder wood with no cw circuit is called minimal

Theo: Any triangulation admits a Schnyder wood

[Schnyder'89]

• A Schnyder wood with no cw circuit is called minimal

Theo: Any triangulation admits a Schnyder wood

[Schnyder'89]

A Schnyder wood with no cw circuit is called minimal

Theo: Any triangulation admits a Schnyder wood

[Schnyder'89]

A Schnyder wood with no cw circuit is called minimal

Theo: Any triangulation has a unique minimal Schnyder wood (cf set of Schnyder woods on fixed triangulation is a distributive lattice) [Ossona de Mendez'94, Brehm'03, Felsner'03]

The Bernardi-Bonichon bijection [Bernardi, Bonichon'09]

Schnyder woods on n+3 vertices non-intersecting pairs of Dyck paths of lengths 2n

minimal Tamari interval

Direct bijection from Tamari intervals to blossoming trees

smooth drawings

diagram drawings

meandering diagram M has underlying graph $G_M = (V, E)$ where $V \leftrightarrow \{ black\ points \}$ and $E \leftrightarrow \{ white\ points \}$

meandering diagram M has underlying graph $G_M = (V, E)$ where $V \leftrightarrow \{ black\ points \}$ and $E \leftrightarrow \{ white\ points \}$ (one more vertices than edges)

meandering diagram M has underlying graph $G_M = (V, E)$ where $V \leftrightarrow \{ black\ points \}$ and $E \leftrightarrow \{ white\ points \}$ (one more vertices than edges)

Def: A meandering tree is a meandering diagram M such that G_M is a tree

smooth drawings

diagram drawings

meandering tree

cf [Combe'19]

cf [Combe'19]

From blossoming trees to meandering trees

From blossoming trees to meandering trees

From blossoming trees to meandering trees

From blossoming trees to meandering trees

From blossoming trees to meandering trees

Let P be a poset on $[n]=\{1,\ldots,n\}$ for $x\in[n]$, let $I_x:=\{y\in[n],\ y\preceq_P x\}$

Def: P is an interval-poset if $\forall x \in [n]$, I_x is an interval of [n] (of the form [i..j] with $i \le x \le j$)

Let P be a poset on $[n]=\{1,\ldots,n\}$ for $x\in[n]$, let $I_x:=\{y\in[n],\ y\preceq_P x\}$

Def: P is an interval-poset if $\forall x \in [n]$, I_x is an interval of [n] (of the form [i..j] with $i \le x \le j$)

Tamari intervals

Interval-posets

Tree-encoding (cf [Rognerud'18])

For each $x \in [1..n]$ place an arc above x that covers I_x

The 13 interval-poset trees of size 3

The 13 blossoming trees of size 3

In each case we have

Properties of the bijection, specializations

Corollary: self-dual Tamari intervals -> blossoming trees with half-turn symmetry

Corollary: self-dual Tamari intervals -> blossoming trees with half-turn symmetry

Corollary: self-dual Tamari intervals ←► blossoming trees with half-turn symmetry

Corollary: self-dual Tamari intervals ←► blossoming trees with half-turn symmetry

$$\frac{1}{r} \binom{4r}{r-1}$$
 if n is even, $n = 2r$

$$\frac{1}{r} {4r-2 \choose r-1}$$
 if n is odd, $n=2r-1$

1, 1, 3, 4, 15, 22, 91, 140, 612, 969

Control on some branch-lengths

Control on some branch-lengths

Control on some branch-lengths

Rk: To have specialization to

- labeled Tamari intervals
- m-Tamari intervals, cf [Pons'19]

would need to control lengths of branches of slope -1

recover bivariate formula [Bostan, Chyzak, Pilaud'23]

 $b_{n,k}=\#$ intervals of size n with k+2 common canopy-entries

$$b_{n,k} = \frac{2}{n(n+1)} \binom{3n}{k} \binom{n}{k+2}$$

Specialization to synchronized intervals

Specialization to synchronized intervals

Specialization to Kreweras intervals

Specialization to Kreweras intervals

Specialization to Kreweras intervals

Theo: the number of Kreweras intervals of size n is $\frac{(3n)!}{n!(2n+1)!}$

[Kreweras'72, Bernardi-Bonichon'09]

For π a non-crossing partition, let $\overline{\pi}$ be its Kreweras complement

For π a non-crossing partition, let $\overline{\pi}$ be its Kreweras complement

For π a non-crossing partition, let $\overline{\pi}$ be its Kreweras complement

Rk: $\pi \cup \overline{\pi}$ is a non-crossing partition

For π a non-crossing partition, let $\overline{\pi}$ be its Kreweras complement

Rk: $\pi \cup \overline{\pi}$ is a non-crossing partition more generally $\pi \leq \pi'$ iff $\pi \cup \overline{\pi'}$ is a non-crossing partition

For π a non-crossing partition, let $\overline{\pi}$ be its Kreweras complement

Rk: $\pi \cup \overline{\pi}$ is a non-crossing partition more generally $\pi \leq \pi'$ iff $\pi \cup \overline{\pi'}$ is a non-crossing partition

Meandering diagram via non-crossing partitions

Meandering diagram via non-crossing partitions

Meandering diagram via non-crossing partitions

Kreweras meandering tree \rightarrow non-crossing tree

Kreweras meandering tree \rightarrow non-crossing tree

Recover [Rognerud'18] (obtained via interval-posets)

Kreweras meandering tree \rightarrow non-crossing tree

Recover [Rognerud'18] (obtained via interval-posets)

[Bernardi-Bonichon'09] Kreweras intervals \leftrightarrow stack triangulations

Modern and infinetely modern intervals

[Rognerud'18, Chapoton'06]

rise operator

A Tamari interval (T, T') is modern if $\mathrm{rise}(T, T')$ is also a Tamari interval

Modern and infinetely modern intervals

[Rognerud'18, Chapoton'06]

rise operator

A Tamari interval (T, T') is modern if $\mathrm{rise}(T, T')$ is also a Tamari interval

modern intervals risenew intervals

(no common node \neq root

when superimposing both trees)

Modern and infinetely modern intervals

[Rognerud'18, Chapoton'06]

rise operator

A Tamari interval (T, T') is modern if rise(T, T') is also a Tamari interval

modern intervals

$$rise$$

new intervals

(no common node \neq root when superimposing both trees)

(T,T') is infinitely modern if $\mathrm{rise}^k(T,T')$ is a Tamari interval $\forall k\geq 0$

Subfamilies & forbidden patterns on blossoming trees

Subfamilies & forbidden patterns on blossoming trees

New involution τ on Tamari intervals: mirror of blossoming trees

Counting results obtained from the bijection

Types	$\begin{array}{c} \text{General} \\ \text{size } n \end{array}$	$\begin{array}{c} \text{Self-dual} \\ \text{size } 2k \end{array}$	Self-dual size $2k + 1$
General	$\frac{2}{n(n+1)} \binom{4n+1}{n-1}$	$\frac{1}{3k+1}\binom{4k}{k}$	$\frac{1}{k+1} \binom{4k+2}{k}$
Synchronized	$\frac{2}{n(n+1)} \binom{3n}{n-1}$	0	$\frac{1}{k+1} \binom{3k+1}{k}$
Modern / new for size-1	$\frac{3\cdot 2^{n-1}}{(n+1)(n+2)} \binom{2n}{n}$	$\frac{2^{k-1}}{k+1} \binom{2k}{k}$	$\frac{2^k}{k+1} \binom{2k}{k}$
Modern and synchronized	$\frac{1}{n+1}\binom{2n}{n}$	0	$\frac{1}{k+1} \binom{2k}{k}$
Inf. modern / Kreweras	$\frac{1}{2n+1} \binom{3n}{n}$	$\frac{1}{2k+1} \binom{3k}{k}$	$\frac{1}{k+1} \binom{3k+1}{k}$

Random samples

 10^{1}

 10^{3}

 10^{2}

 10^{4}