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• Planar map= connected graph embedded on the sphere, considered

= 6=

• Rooted map= map with a marked corner

A rooted map

Planar maps

up to continuous deformation



Counting formulas for rooted maps
• Beautiful counting formulas discovered by Tutte

Maps with n edges Bipartite maps
with n edges

2-connected maps
with n edges

2 · 3n · (2n)!

n!(n+ 2)!

3 · 2n−1 · (2n)!

n!(n+ 2)!

4 · (3n− 3)!

(n− 1)!(2n)!
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Counting formulas for rooted maps
• Beautiful counting formulas discovered by Tutte

Maps with n edges Bipartite maps
with n edges

2-connected maps
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• Tutte’s slicings formula (1962):
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n!(n+ 2)!
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(n− 1)!(2n)!

Let B[n1, n2, . . . , nk] be the number of rooted bipartite maps

with ni faces of degree 2i for i ∈ [1..k]. Then

Counting methods: recursive method, matrix integrals, bijections
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The BDG bijection for pointed bipartite maps
[Bouttier, Di Francesco, Guitter’04]



Label vertices by distance
from the marked vertex
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The BDG bijection for pointed bipartite maps
[Bouttier, Di Francesco, Guitter’04]



Construction of a
labeled mobile

(i) Add a black vertex
in each face
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The BDG bijection for pointed bipartite maps
[Bouttier, Di Francesco, Guitter’04]



Construction of a
labeled mobile

(i) Add a black vertex
in each face

(ii) Each map-edge
gives a mobile-edge
using the local rule
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The BDG bijection for pointed bipartite maps
[Bouttier, Di Francesco, Guitter’04]
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[Bouttier, Di Francesco, Guitter’04]

remove the map-edges and the
marked vertex 0

Conditions:
(i) ∃ vertex of label 1

(ii)
i

j

j ≤ i+1

The BDG bijection for pointed bipartite maps
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⇒ ⇒

Local
rule

Conditions:
(i) ∃ vertex of label 1

(ii)
i

j

j ≤ i+1

Theorem: The mapping is a bijection.
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[Bouttier, Di Francesco, Guitter’04]

labeled mobile

face of degree 2i black vertex of degree i

The BDG bijection for pointed bipartite maps
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Distance-labeling Geodesic orientation

i−1Local
rule

Local
rule
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j δ= i−j≥−1

δ+1
buds

i

Reformulation with orientations
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gives a labeled mobile gives a“blossoming” mobile

with the conditions:
(i) ∃ node of label 1

(ii)
i

j

j ≤ i+1

with the condition:

Formulation with labels Formulation with orientations

each black vertex has as many
buds as neighbors

Mobile conditions in the two formulations



Definition of blossoming mobiles
• Blossoming mobile= bipartite tree (black/white vertices)

where each corner at a black vertex carries i ≥ 0 buds
excess = number of edges - number of buds

a blossoming mobile of excess −2



Definition of blossoming mobiles
• Blossoming mobile= bipartite tree (black/white vertices)

where each corner at a black vertex carries i ≥ 0 buds
excess = number of edges - number of buds

• A blossoming mobile is called balanced
iff each black vertex has as many buds as
neighbors

Rk: implies that the excess is 0

a blossoming mobile of excess −2



Summary of the reformulation

⇒ ⇒

Condition:

Local
rule

Theoreme: The mapping is a bijection between pointed bipartite maps
and balanced blossoming mobiles

face of degree 2i black vertex of degree 2i

Each black vertex has as
many buds as neighbors



Proof of Tutte’s slicings formula

⇒ ⇒

+marked edge
+marked edge

(rooted mobile)

⇓



Proof of Tutte’s slicings formula

⇒ ⇒

+marked edge
+marked edge

(rooted mobile)

⇓Let B[n1, n2, . . . , nk] be the number of rooted bi-
partite maps with ni faces of degree 2i for i ∈ [1..k]

v ·B[n1, . . . , nk] = 2· coeff tn1
1 · · · t

nk

k in R(t1, t2, . . .)

where R ≡ R(t1, t2, . . .) is the GF of rooted mobiles

given by the equation R = 1 +
∑
i≥1
(
2i−1
i−1
)
tiR

i

[tn1
1 · · · t

nk

k ]R = e!
(v−1)!

∏k
i=1

1
ni!

(
2i−1
i−1
)ni

• Lagrange inversion formula gives:

• Bijection gives



Extension for pointed orientations with no ccw cycle
• More generally, we obtain a blossoming mobile (of excess 0)

- the marked vertex v0 is a “source” (no incoming edge)
- every vertex is accessible from v0 by a directed path
- there is no ccw cycle (with v0 ∈ outer face)

Local
rule

v0 v0

if we start from a vertex-pointed orientation such that :



Extension for pointed orientations with no ccw cycle
• More generally, we obtain a blossoming mobile (of excess 0)

- the marked vertex v0 is a “source” (no incoming edge)
- every vertex is accessible from v0 by a directed path
- there is no ccw cycle (with v0 ∈ outer face)

Local
rule

Theorem : Let O0 be this family of orientations, then the correspondence
is a bijection with mobiles of excess 0

v0 v0

if we start from a vertex-pointed orientation such that :



Proof that it gives a tree
Start from an oriented map M ∈ O0 and apply the local rule

Let G be the graph of red edges and their incident vertices
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Proof that it gives a tree
Start from an oriented map M ∈ O0 and apply the local rule

Let G be the graph of red edges and their incident vertices
G has |VM | − 1, white vertices, |FM | black vertices, et |EM | edges

Euler relation: |EM | = |VM |+ |FM | − 2

⇒ G has one more vertices than edges

hence G is a tree iff G is acyclic

Assume G has a cycle :
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Proof that it gives a tree
Start from an oriented map M ∈ O0 and apply the local rule

Let G be the graph of red edges and their incident vertices
G has |VM | − 1, white vertices, |FM | black vertices, et |EM | edges

Euler relation: |EM | = |VM |+ |FM | − 2
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Proof that it gives a tree
Start from an oriented map M ∈ O0 and apply the local rule

Let G be the graph of red edges and their incident vertices
G has |VM | − 1, white vertices, |FM | black vertices, et |EM | edges

Euler relation: |EM | = |VM |+ |FM | − 2

⇒ G has one more vertices than edges

hence G is a tree iff G is acyclic

Assume G has a cycle :

prisoner ccw cycle

e1

e3

e4

e2v0
⇒ contradiction
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Example for d = 3

⇒

For d > 0, we take the d-gonal
source as the outer face

Extension for mobiles of negative excess
More generally the “source” can be a d-gon, for any d ≥ 0
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Example for d = 3

⇒

Let O−d be the family of these orientations, still with the conditions

For d > 0, we take the d-gonal
source as the outer face

Extension for mobiles of negative excess
More generally the “source” can be a d-gon, for any d ≥ 0

- the d-gonal source has no ingoing edge
- accessibility of every vertex from the source
- no ccw cycle



Extension for mobiles of negative excess

⇒ ⇒

Règles
locales

Theorem [Bernardi-F’10]: For δ ≤ 0, the correspondence Φ is a
bijection between Oδ and mobiles of excess δ.

degrees of the inner faces ←→ degrees of the black vertices
indegrees of internal vertices ←→ degrees of white vertices

cf [Bernardi’07], [Bernardi-Chapuy’10]



Extension for mobiles of negative excess

⇒ ⇒

⇒ ⇒

• Inverse mapping (tree → cactus → closure operations)



Specializing the correspondence

Idea: Let F be the family of planar maps we consider

(e.g. bipartite maps, simple triangulations, etc.)

Prove that a map is in F iff it admits a canonical orientation in O

The correspondence Φ is a bijection between the family O = ∪d≥0O−d
of oriented maps and mobiles of nonpositive excess

specified by face-degrees and vertex-indegrees conditions

Specialize Φ to the corresponding subfamily OF ⊆ O

Gives a bijection between F and a well characterized family of mobiles



Application to simple triangulations
For a triangulation T , a 3-orientation of T is an orientation of the
inner edges of T such that every inner vertex has indegree 3

3

3

3

3

Rk: If a triangulation T admits a 3-orientation, then T is simple

Assume there is a 2-cycle C

⇒ total indegree is too large compared to the number of edges

If there are k vertices inside C then there are 3k − 1 edges inside C



Existence of a canonical 3-orientation

Theorem: Let T be a simple triangulation. Then T has a unique

[Ossona de Mendez’94], [Brehm’03], [[Felsner’03]]

Theorem (Schnyder’89): Any simple triangulation admits a 3-orientation

3-orientation with no ccw cycle, the minimal 3-orientation

(set of 3-orientations is a lattice, flip = reverse cw to ccw)



Fact: A triangulation admitting a 3-orientation is simple• From the lattice property (taking the min) we have
family T of simple triangulations ↔ subfamily OT of O where:

- faces have degree 3
- inner vertices have indegree 3

• From the bijection Φ specialized to F , we have
F ↔ mobiles where all vertices have degree 3

[Bernardi, F’10], other bijection in [Poulalhon, Schaeffer’03]

Bijection for simple triangulations



Counting: The generating function of mobiles with vertices of degree 3
rooted on a white corner is T (x) = U(x)3, where U(x) = 1 + xU(x)4.

Consequently, the number of (rooted) simple triangulations with 2n

faces is
1

n(2n− 1)

(
4n− 2

n− 1

)
.

Counting simple triangulations



Extension to any girth and face-degrees

Degree of the faces

Girth

1

2

3

4

1 2 3 4 5 6

[FuPoSc08]

[Sc98]

[Sc98,BoDiGu04]

[PoSc02]

7 8

girth=length shortest cycle

Girth = 3

Rk: girth ≤minimal face-degree

Our approach works in any girth d, with control on the face-degrees

Other approach using slice decompositions [Bouttier,Guitter’15]



Maps with boundaries
• Sphere with k holes = sphere where k disks have been removed

sphere with 3 holes

• Map with k boundaries = graph embedded on the sphere with k holes
the boundaries are occupied by cycles of edges

A quadrangulations with 2 boundaries
5 internal verticesof lengths 8 and 6, and



Maps with boundaries
• Sphere with k holes = sphere where k disks have been removed

sphere with 3 holes

• Map with k boundaries = graph embedded on the sphere with k holes
the boundaries are occupied by cycles of edges

(also = planar map with k distinguished faces whose contours
are vertex-disjoint simple cycles)

A quadrangulations with 2 boundaries
5 internal verticesof lengths 8 and 6, and



Counting triangulations with boundaries
b boundaries of lengths k1, . . . , kb
n internal vertices
• Without loops and multiple edges, formula only for b = 1

No loops (girth=2) No loops & multiple edges (girth=3)

s(k)n =
2(2k−3)!

(k−1)!(k−3)!
(4n+2k−5)!
n!(3n+2k−3)!

[Brown’64] (recursive method)
[Poulalhon,Schaeffer’06]bijective proofs in
[Bernardi,F’10]

[Mullin’65] (recursive method)
[Poulalhon,Schaeffer’02]bijective proof in

t(k)n =
2n+1(2k − 3)!

(k−2)!2
(3n+2k−3)!
n!(2n+2k−2)!

• With loops and multiple edges, nice factorized formula [Krikun’07]

bijective proof in [Bernardi, F’15]

a(k1,...,kb)n =
4n−1(2k + 3n− 5)!!

(n− b+ 1)!(2k + n− 1)!!

b∏
j=1

kj

(
2kj
kj

)
1

2 3



Orientations for maps with boundaries

- the outer d-gon is a source (no ingoing edge)
- every vertex can be reached by a directed path starting from the source
- there is no ccw cycle

For maps with boundaries we consider orientations such that every
inner boundary is a cw cycle and the outer cycle is a boundary.

To apply the mobile construction we still require the orientations to satisfy:

These are called boundary-orientations



Orientations for maps with boundaries

- the outer d-gon is a source (no ingoing edge)
- every vertex can be reached by a directed path starting from the source
- there is no ccw cycle

For maps with boundaries we consider orientations such that every

indegree of a boundary B :
total number of edges toward B

B1

B2

B1 has indegree 4
B2 has indegree 2

inner boundary is a cw cycle and the outer cycle is a boundary.

To apply the mobile construction we still require the orientations to satisfy:

These are called boundary-orientations



Extension of the bijection Φ to this setting



Extension of the bijection Φ to this setting

⇓ contraction
of boundaries



Extension of the bijection Φ to this setting

⇓ contraction
of boundaries

vertex of indegree k vertex of degree k

internal degré r
b entrantes

r legs
b neighbours

vertex

internal face of degree p vertex of degree p
boundary



Orientations for simple triangulations with boundaries



Orientations for simple triangulations with boundaries

Triangulate each inner boundary of length > 3



Orientations for simple triangulations with boundaries

Triangulate each inner boundary of length > 3
and compute the minimal 3-orientation



Orientations for simple triangulations with boundaries
delete the added edges inside boundaries
and reorient the inner boundaries as cw cycles



Orientations for simple triangulations with boundaries
Each inner boundary of length i has indegree i+ 3
Each internal vertex has indegree 3
Such a boundary-orientation is called a pseudo-3-orientation



Orientations for simple triangulations with boundaries
Each inner boundary of length i has indegree i+ 3
Each internal vertex has indegree 3

Take the minimal such orientation (no ccw cycle)

Such a boundary-orientation is called a pseudo-3-orientation



Orientations for simple triangulations with boundaries
Each inner boundary of length i has indegree i+ 3
Each internal vertex has indegree 3
Such a boundary-orientation is called a pseudo-3-orientation
Take the minimal such orientation (no ccw cycle)



Mobiles for simple triangulations with boundaries
Apply the bijection Φ to the minimal pseudo-3-orientation

⇐

⇒

⇓

black vertices
have degree 3

white vertices have
#neighbours−#legs=3



Obstacles for the existence of pseudo-3- orientations

Not all 2-cycles are forbidden!

3

7

ForbiddenForbidden

conctractible 2-cycle
non-conctractible 2-cycle

not touching any boundary
from the inside

3 3

5 edges inside
total indegree 6 inside

Not forbidden

non-conctractible 2-cycle
touching a boundary

from the inside

9 non-boundary edges inside
total indegree 10 inside

3
3

6

8 non-boundary edges inside
total indegree 6 inside



Pseudo-girth parameter

For a map with boundaries that is planarly embedded

pseudo-girth = length of a shortest curve of the form

(curve that is the outer border of a region consisting of non-boundary faces)

Rk: girth ≤ pseudo-girth ≤ contractible girth

curve of length 15



Pseudo-girth parameter

For a map with boundaries that is planarly embedded

pseudo-girth = length of a shortest curve of the form

(curve that is the outer border of a region consisting of non-boundary faces)

Rk: girth ≤ pseudo-girth ≤ contractible girth

curve of length 15

The map is called pseudo-simple if the pseudo-girth is ≥ 3



Results for pseudo-simple triangulations with boundaries

A triangulation with boundaries

is pseudo simple iff admits a pseudo 3–orientation

bijection with explicit mobiles

internal face (degree 3) black vertex of degree 3

inner boundary of length i white vertex with i legs
and i+ 3 neighbours

Counting formula:
Let N [n; a, `1, . . . , `r] be the number of pseudo-simple triangulations where:
• the outer boundary has length a
• the inner boundaries B1, . . . , Br have lengths `1, . . . , `r
• there are m internal vertices

Rk: Similar formula for pseudo-loopless triangulations with boundaries

N [m; a; `1, . . . , `r] =
2(2a− 3)!

(a− 3)!(a− 1)!

(4m + 4r + 2L− 5)!

m!(3m + 3r + 2L− 3)!

r∏
i=1

`i

(
2`i + 2

`i

)
where L = a+

∑r
i=1 `i (total boundary length)

(outer face being a triangular boundary-face)

• in every boundary, a vertex is distinguished



Degree of inner faces

Pseudo-girth

1

2

3

4

1 2 3 4 5 6 7 8

Results in any given pseudo-girth
We have a bijection in each pseudo-girth d ≥ 1

for maps with boundaries, with inner face degrees in {d, d+ 1, d+ 2}



Degree of inner faces

Pseudo-girth

1

2

3

4

1 2 3 4 5 6 7 8

Results in any given pseudo-girth
We have a bijection in each pseudo-girth d ≥ 1

for maps with boundaries, with inner face degrees in {d, d+ 1, d+ 2}

Pseudo-girth-constraint is void for

d = 1 (recover Krikun’s formula)

d = 2 bipartite case (new formula for quadrangulations with boundaries)

[Bernardi, F’15]



Factorized counting formulas
• Let m ≥ 0 and `1, . . . , `r positive integers

• Let T [m; `1, . . . , `r] (resp. Q[m; `1, . . . , `r]) be the set of
triangulations (resp. quadrangulations) with r boundaries B1, . . . , Br s.t.

- there are m internal vertices
- every boundary Bi has length `i and a marked corner

Triangulations : Krikun’s formula (2007)

|T [m; a1, . . . , ar]| =
4k(e− 2)!!

m!(2b + k)!!

r∏
i=1

ai

(
2ai
ai

)
with b =

∑
i ai, k = r +m− 2, and e = 2b+ 3k 1

2

3

map ∈
T [3; 2, 1, 3]

Quadrangulations : [Bernardi, F’15]

|Q[m; 2a1, . . . , 2ar]| =
3k(e− 1)!

m!(3b + k)!

r∏
i=1

2ai

(
3ai
ai

)
with b =

∑
i ai, k = r +m− 2, and e = 2b+ 3k

1

2

3 Q[3; 4, 2, 6]
map ∈



Solution of the dimer model on quadrangulations
Map with dimers = pair (M,X) where M is a map
and X is a subset of edges giving a partial-matching map

with
2 dimers
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∑
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and X is a subset of edges giving a partial-matching map

with
2 dimers• Dimer model on (rooted) quadrangulations

Generating function : F (t, w) =
∑

t#facesw#dimers

configurations

weight t7w3
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Solution of the dimer model on quadrangulations
Map with dimers = pair (M,X) where M is a map
and X is a subset of edges giving a partial-matching map

with
2 dimers• Dimer model on (rooted) quadrangulations

Generating function : F (t, w) =
∑

t#facesw#dimers

configurations

weight t7w3

F (t, w)=R−1−tR3−6wt2R6

où R = 1 + 3tR2 + 9wt2R5

Asymptotics : for w ∈ R fixed, [tn]F ∼ cw γwn n−5/2

except at critical weight w0 = −3/125 where [tn]F ∼ c0 γ0n n−7/3

dimer boundary of length 2

• Solution of the dual model in [Bouttier,Di Francesco, Guitter’03]

poids t7w2

⇔

⇔

weight t per square face
weight 3t2w per hexagonal face

F (t, w)=R−1−tR3−15wt2R4

où R = 1 + 3tR2 + 30wt2R3

critical weight w0 = −1/10
where typical distance ≈ n1/6

bijection
⇓


