Bijections for planar maps with boundaries

Éric Fusy (CNRS/LIX)

Joint work with Olivier Bernardi (Brandeis Univ.)

Planar maps

- Planar map= connected graph embedded on the sphere, considered up to continuous deformation

- Rooted map= map with a marked corner

A rooted map

Counting formulas for rooted maps

- Beautiful counting formulas discovered by Tutte

Maps with n edges

$$
\frac{2 \cdot 3^{n} \cdot(2 n)!}{n!(n+2)!}
$$

Bipartite maps
with n edges
$\frac{3 \cdot 2^{n-1} \cdot(2 n)!}{n!(n+2)!}$

2-connected maps with n edges

$$
\frac{4 \cdot(3 n-3)!}{(n-1)!(2 n)!}
$$

Counting formulas for rooted maps

- Beautiful counting formulas discovered by Tutte

Maps with n edges

$$
\frac{2 \cdot 3^{n} \cdot(2 n)!}{n!(n+2)!}
$$

Bipartite maps
with n edges

$$
\frac{3 \cdot 2^{n-1} \cdot(2 n)!}{n!(n+2)!}
$$

2-connected maps with n edges

$$
\frac{4 \cdot(3 n-3)!}{(n-1)!(2 n)!}
$$

- Tutte's slicings formula (1962):

Let $B\left[n_{1}, n_{2}, \ldots, n_{k}\right]$ be the number of rooted bipartite maps with n_{i} faces of degree $2 i$ for $i \in[1 . . k]$. Then

$$
B\left[n_{1}, \ldots, n_{k}\right]=2 \frac{e!}{v!} \prod_{i=1}^{k} \frac{1}{n_{i}!}\binom{2 i-1}{i-1}^{n_{i}}
$$

where $e=\#$ edges $=\sum_{i} i n_{i}$ and $v=\#$ vertices $=e-k+2$

Counting formulas for rooted maps

- Beautiful counting formulas discovered by Tutte

Maps with n edges

$$
\frac{2 \cdot 3^{n} \cdot(2 n)!}{n!(n+2)!}
$$

Bipartite maps
with n edges

$$
\frac{3 \cdot 2^{n-1} \cdot(2 n)!}{n!(n+2)!}
$$

2-connected maps with n edges

$$
\frac{4 \cdot(3 n-3)!}{(n-1)!(2 n)!}
$$

- Tutte's slicings formula (1962):

Let $B\left[n_{1}, n_{2}, \ldots, n_{k}\right]$ be the number of rooted bipartite maps with n_{i} faces of degree $2 i$ for $i \in[1 . . k]$. Then

$$
B\left[n_{1}, \ldots, n_{k}\right]=2 \frac{e!}{v!} \prod_{i=1}^{k} \frac{1}{n_{i}!}\binom{2 i-1}{i-1}^{n_{i}}
$$

where $e=\#$ edges $=\sum_{i} i n_{i}$ and $v=\#$ vertices $=e-k+2$
Counting methods: recursive method, matrix integrals, bijections

The BDG bijection for pointed bipartite maps

[Bouttier, Di Francesco, Guitter'04]

The BDG bijection for pointed bipartite maps

 [Bouttier, Di Francesco, Guitter'04]

The BDG bijection for pointed bipartite maps

[Bouttier, Di Francesco, Guitter'04]

Construction of a labeled mobile
(i) Add a black vertex
in each face

The BDG bijection for pointed bipartite maps
[Bouttier, Di Francesco, Guitter'04]

Construction of a labeled mobile
(i) Add a black vertex in each face
(ii) Each map-edge gives a mobile-edge using the local rule

The BDG bijection for pointed bipartite maps

 [Bouttier, Di Francesco, Guitter'04]

The BDG bijection for pointed bipartite maps

 [Bouttier, Di Francesco, Guitter'04]

Theorem: The mapping is a bijection.
face of degree $2 i \longleftrightarrow$ black vertex of degree i

Reformulation with orientations

Distance-labeling

(j) $\delta=i-j \geq-1$

$\delta+1$
buds

Formulation with labels
gives a labeled mobile

with the conditions:
(i) \exists node of label 1
(ii)

Formulation with orientations gives a "blossoming" mobile

with the condition:
each black vertex has as many buds as neighbors

Definition of blossoming mobiles

- Blossoming mobile= bipartite tree (black/white vertices) where each corner at a black vertex carries $i \geq 0$ buds

```
excess = number of edges - number of buds
```


a blossoming mobile of excess -2

Definition of blossoming mobiles

- Blossoming mobile= bipartite tree (black/white vertices) where each corner at a black vertex carries $i \geq 0$ buds

excess $=$ number of edges - number of buds

a blossoming mobile of excess -2

- A blossoming mobile is called balanced iff each black vertex has as many buds as neighbors
$\mathbf{R} \mathbf{k}$: implies that the excess is 0

Summary of the reformulation

Condition:

Each black vertex has as many buds as neighbors

Theoreme: The mapping is a bijection between pointed bipartite maps and balanced blossoming mobiles
face of degree $2 i \longleftrightarrow$ black vertex of degree $2 i$

Proof of Tutte's slicings formula

(rooted mobile)

Proof of Tutte's slicings formula

Let $B\left[n_{1}, n_{2}, \ldots, n_{k}\right]$ be the number of rooted bipartite maps with n_{i} faces of degree $2 i$ for $i \in[1 . . k]$

- Bijection gives
$v \cdot B\left[n_{1}, \ldots, n_{k}\right]=2 \cdot$ coeff $t_{1}^{n_{1}} \cdots t_{k}^{n_{k}}$ in $R\left(t_{1}, t_{2}, \ldots\right)$ where $R \equiv R\left(t_{1}, t_{2}, \ldots\right)$ is the GF of rooted mobiles given by the equation $R=1+\sum_{i \geq 1}\binom{2 i-1}{i-1} t_{i} R^{i}$
- Lagrange inversion formula gives:

$$
\left[t_{1}^{n_{1}} \cdots t_{k}^{n_{k}}\right] R=\frac{e!}{(v-1)!} \prod_{i=1}^{k} \frac{1}{n_{i}!}\binom{2 i-1}{i=1}^{n_{i}}
$$

(rooted mobile)

Extension for pointed orientations with no ccw cycle

- More generally, we obtain a blossoming mobile (of excess 0) if we start from a vertex-pointed orientation such that :
- the marked vertex v_{0} is a "source" (no incoming edge)
- every vertex is accessible from v_{0} by a directed path
- there is no ccw cycle (with $v_{0} \in$ outer face)

Extension for pointed orientations with no ccw cycle

- More generally, we obtain a blossoming mobile (of excess 0) if we start from a vertex-pointed orientation such that :
- the marked vertex v_{0} is a "source" (no incoming edge)
- every vertex is accessible from v_{0} by a directed path
- there is no ccw cycle (with $v_{0} \in$ outer face)

Theorem : Let \mathcal{O}_{0} be this family of orientations, then the correspondence is a bijection with mobiles of excess 0

Proof that it gives a tree

Start from an oriented map $M \in \mathcal{O}_{0}$ and apply the local rule
Let G be the graph of red edges and their incident vertices

Proof that it gives a tree

Start from an oriented map $M \in \mathcal{O}_{0}$ and apply the local rule Let G be the graph of red edges and their incident vertices G has $\left|V_{M}\right|-1$, white vertices, $\left|F_{M}\right|$ black vertices, et $\left|E_{M}\right|$ edges

Start from an oriented map $M \in \mathcal{O}_{0}$ and apply the local rule
Let G be the graph of red edges and their incident vertices
G has $\left|V_{M}\right|-1$, white vertices, $\left|F_{M}\right|$ black vertices, et $\left|E_{M}\right|$ edges
Euler relation: $\left|E_{M}\right|=\left|V_{M}\right|+\left|F_{M}\right|-2$
$\Rightarrow G$ has one more vertices than edges
hence G is a tree iff G is acyclic

Start from an oriented map $M \in \mathcal{O}_{0}$ and apply the local rule
Let G be the graph of red edges and their incident vertices
G has $\left|V_{M}\right|-1$, white vertices, $\left|F_{M}\right|$ black vertices, et $\left|E_{M}\right|$ edges
Euler relation: $\left|E_{M}\right|=\left|V_{M}\right|+\left|F_{M}\right|-2$
$\Rightarrow G$ has one more vertices than edges
hence G is a tree iff G is acyclic
Assume G has a cycle :

Start from an oriented map $M \in \mathcal{O}_{0}$ and apply the local rule
Let G be the graph of red edges and their incident vertices
G has $\left|V_{M}\right|-1$, white vertices, $\left|F_{M}\right|$ black vertices, et $\left|E_{M}\right|$ edges
Euler relation: $\left|E_{M}\right|=\left|V_{M}\right|+\left|F_{M}\right|-2$
$\Rightarrow G$ has one more vertices than edges
hence G is a tree iff G is acyclic
Assume G has a cycle :

Start from an oriented map $M \in \mathcal{O}_{0}$ and apply the local rule
Let G be the graph of red edges and their incident vertices
G has $\left|V_{M}\right|-1$, white vertices, $\left|F_{M}\right|$ black vertices, et $\left|E_{M}\right|$ edges
Euler relation: $\left|E_{M}\right|=\left|V_{M}\right|+\left|F_{M}\right|-2$
$\Rightarrow G$ has one more vertices than edges
hence G is a tree iff G is acyclic
Assume G has a cycle :

Start from an oriented map $M \in \mathcal{O}_{0}$ and apply the local rule
Let G be the graph of red edges and their incident vertices
G has $\left|V_{M}\right|-1$, white vertices, $\left|F_{M}\right|$ black vertices, et $\left|E_{M}\right|$ edges
Euler relation: $\left|E_{M}\right|=\left|V_{M}\right|+\left|F_{M}\right|-2$
$\Rightarrow G$ has one more vertices than edges
hence G is a tree iff G is acyclic
Assume G has a cycle :

Start from an oriented map $M \in \mathcal{O}_{0}$ and apply the local rule
Let G be the graph of red edges and their incident vertices
G has $\left|V_{M}\right|-1$, white vertices, $\left|F_{M}\right|$ black vertices, et $\left|E_{M}\right|$ edges
Euler relation: $\left|E_{M}\right|=\left|V_{M}\right|+\left|F_{M}\right|-2$
$\Rightarrow G$ has one more vertices than edges
hence G is a tree iff G is acyclic
Assume G has a cycle :

Start from an oriented map $M \in \mathcal{O}_{0}$ and apply the local rule
Let G be the graph of red edges and their incident vertices
G has $\left|V_{M}\right|-1$, white vertices, $\left|F_{M}\right|$ black vertices, et $\left|E_{M}\right|$ edges
Euler relation: $\left|E_{M}\right|=\left|V_{M}\right|+\left|F_{M}\right|-2$
$\Rightarrow G$ has one more vertices than edges
hence G is a tree iff G is acyclic
Assume G has a cycle :

Proof that it gives a tree

Start from an oriented map $M \in \mathcal{O}_{0}$ and apply the local rule
Let G be the graph of red edges and their incident vertices
G has $\left|V_{M}\right|-1$, white vertices, $\left|F_{M}\right|$ black vertices, et $\left|E_{M}\right|$ edges
Euler relation: $\left|E_{M}\right|=\left|V_{M}\right|+\left|F_{M}\right|-2$
$\Rightarrow G$ has one more vertices than edges
hence G is a tree iff G is acyclic
Assume G has a cycle :

Proof that it gives a tree

Start from an oriented map $M \in \mathcal{O}_{0}$ and apply the local rule
Let G be the graph of red edges and their incident vertices
G has $\left|V_{M}\right|-1$, white vertices, $\left|F_{M}\right|$ black vertices, et $\left|E_{M}\right|$ edges
Euler relation: $\left|E_{M}\right|=\left|V_{M}\right|+\left|F_{M}\right|-2$
$\Rightarrow G$ has one more vertices than edges
hence G is a tree iff G is acyclic
Assume G has a cycle :

Proof that it gives a tree

Start from an oriented map $M \in \mathcal{O}_{0}$ and apply the local rule
Let G be the graph of red edges and their incident vertices
G has $\left|V_{M}\right|-1$, white vertices, $\left|F_{M}\right|$ black vertices, et $\left|E_{M}\right|$ edges
Euler relation: $\left|E_{M}\right|=\left|V_{M}\right|+\left|F_{M}\right|-2$
$\Rightarrow G$ has one more vertices than edges
hence G is a tree iff G is acyclic
Assume G has a cycle :

Proof that it gives a tree

Start from an oriented map $M \in \mathcal{O}_{0}$ and apply the local rule
Let G be the graph of red edges and their incident vertices G has $\left|V_{M}\right|-1$, white vertices, $\left|F_{M}\right|$ black vertices, et $\left|E_{M}\right|$ edges
Euler relation: $\left|E_{M}\right|=\left|V_{M}\right|+\left|F_{M}\right|-2$
$\Rightarrow G$ has one more vertices than edges
hence G is a tree iff G is acyclic
Assume G has a cycle :

prisoner ccw cycle
\Rightarrow contradiction

Extension for mobiles of negative excess More generally the "source" can be a d-gon, for any $d \geq 0$

Example for $d=3$

Extension for mobiles of negative excess More generally the "source" can be a d-gon, for any $d \geq 0$
Example for $d=3$

Let \mathcal{O}_{-d} be the family of these orientations, still with the conditions

- the d-gonal source has no ingoing edge
- accessibility of every vertex from the source
- no ccw cycle

Extension for mobiles of negative excess

Theorem [Bernardi-F'10]: For $\delta \leq 0$, the correspondence Φ is a bijection between \mathcal{O}_{δ} and mobiles of excess δ.
degrees of the inner faces \longleftrightarrow degrees of the black ver indegrees of internal vertices \longleftrightarrow degrees of white vertices cf [Bernardi'07], [Bernardi-Chapuy'10]

Extension for mobiles of negative excess

- Inverse mapping (tree \rightarrow cactus \rightarrow closure operations)

Specializing the correspondence

The correspondence Φ is a bijection between the family $\mathcal{O}=\cup_{d \geq 0} \mathcal{O}_{-d}$ of oriented maps and mobiles of nonpositive excess

Idea: Let \mathcal{F} be the family of planar maps we consider (e.g. bipartite maps, simple triangulations, etc.)

Prove that a map is in \mathcal{F} iff it admits a canonical orientation in \mathcal{O} specified by face-degrees and vertex-indegrees conditions

Specialize Φ to the corresponding subfamily $\mathcal{O}_{\mathcal{F}} \subseteq \mathcal{O}$

Gives a bijection between \mathcal{F} and a well characterized family of mobiles

Application to simple triangulations

For a triangulation T, a 3 -orientation of T is an orientation of the inner edges of T such that every inner vertex has indegree 3

$\mathbf{R k}$: If a triangulation T admits a 3-orientation, then T is simple

Assume there is a 2 -cycle C

If there are k vertices inside C then there are $3 k-1$ edges inside C
\Rightarrow total indegree is too large compared to the number of edges

Existence of a canonical 3-orientation

Theorem (Schnyder'89): Any simple triangulation admits a 3-orientation
Theorem: Let T be a simple triangulation. Then T has a unique 3 -orientation with no ccw cycle, the minimal 3-orientation (set of 3-orientations is a lattice, flip $=$ reverse cw to ccw)
[Ossona de Mendez'94], [Brehm'03], [[Felsner'03]]

Bijection for simple triangulations

- From the lattice property (taking the min) we have family \mathcal{T} of simple triangulations \leftrightarrow subfamily $\mathcal{O}_{\mathcal{T}}$ of \mathcal{O} where:

- faces have degree 3
- inner vertices have indegree 3
- From the bijection Φ specialized to \mathcal{F}, we have $\mathcal{F} \leftrightarrow$ mobiles where all vertices have degree 3

[Bernardi, F'10], other bijection in [Poulalhon, Schaeffer'03]

Counting simple triangulations

Counting: The generating function of mobiles with vertices of degree 3 rooted on a white corner is $T(x)=U(x)^{3}$, where $U(x)=1+x U(x)^{4}$.

Consequently, the number of (rooted) simple triangulations with $2 n$
faces is $\frac{1}{n(2 n-1)}\binom{4 n-2}{n-1}$.

Extension to any girth and face-degrees

girth=length shortest cycle Rk: girth \leq minimal face-degree

Our approach works in any girth d, with control on the face-degrees

Other approach using slice decompositions [Bouttier,Guitter'15]

Maps with boundaries

- Sphere with k holes $=$ sphere where k disks have been removed

sphere with 3 holes
- Map with k boundaries $=$ graph embedded on the sphere with k holes the boundaries are occupied by cycles of edges

A quadrangulations with 2 boundaries of lengths 8 and 6 , and 5 internal vertices

Maps with boundaries

- Sphere with k holes $=$ sphere where k disks have been removed

sphere with 3 holes
- Map with k boundaries $=$ graph embedded on the sphere with k holes the boundaries are occupied by cycles of edges

A quadrangulations with 2 boundaries of lengths 8 and 6 , and 5 internal vertices
(also $=$ planar map with k distinguished faces whose contours are vertex-disjoint simple cycles)

Counting triangulations with boundaries

b boundaries of lengths k_{1}, \ldots, k_{b}
n internal vertices

- Without loops and multiple edges, formula only for $b=1$

No loops (girth=2)

$$
t_{n}^{(k)}=\frac{2^{n+1}(2 k-3)!}{(k-2)!^{2}} \frac{(3 n+2 k-3)!}{n!(2 n+2 k-2)!}
$$

[Mullin'65] (recursive method)
bijective proof in [Poulalhon,Schaeffer'02]

No loops \& multiple edges (girth=3)

$$
s_{n}^{(k)}=\frac{2(2 k-3)!}{(k-1)!(k-3)!} \frac{(4 n+2 k-5)!}{n!(3 n+2 k-3)!}
$$

[Brown'64] (recursive method)
bijective proofs in [Poulalhon,Schaeffer'06]
[Bernardi,F'10]

- With loops and multiple edges, nice factorized formula [Krikun'07]

$$
a_{n}^{\left(k_{1}, \ldots, k_{b}\right)}=\frac{4^{n-1}(2 k+3 n-5)!!}{(n-b+1)!(2 k+n-1)!!} \prod_{j=1}^{b} k_{j}\binom{2 k_{j}}{k_{j}}
$$

bijective proof in [Bernardi, F'15]

rit

For maps with boundaries we consider orientations such that every inner boundary is a cw cycle and the outer cycle is a boundary. These are called boundary-orientations
To apply the mobile construction we still require the orientations to satisfy:

- the outer d-gon is a source (no ingoing edge)
- every vertex can be reached by a directed path starting from the source - there is no ccw cycle

Orientations for maps with boundaries

For maps with boundaries we consider orientations such that every inner boundary is a cw cycle and the outer cycle is a boundary. These are called boundary-orientations
To apply the mobile construction we still require the orientations to satisfy:

- the outer d-gon is a source (no ingoing edge)
- every vertex can be reached by a directed path starting from the source - there is no ccw cycle
 total number of edges toward B
B_{1} has indegree 4 B_{2} has indegree 2

Extension of the bijection Φ to this setting

Extension of the bijection Φ to this setting

Extension of the bijection Φ to this setting

vertex ○ of indegree k
 internal face of degree p
vertex o of degree k
vertex © $\{r$ legs
b neighbours vertex - of degree p

Orientations for simple triangulations with boundaries

Orientations for simple triangulations with boundaries
Triangulate each inner boundary of length >3

Orientations for simple triangulations with boundaries

Triangulate each inner boundary of length >3 and compute the minimal 3 -orientation

Orientations for simple triangulations with boundaries
delete the added edges inside boundaries and reorient the inner boundaries as cw cycles

Such a boundary-orientation is called a pseudo-3-orientation
Take the minimal such orientation (no ccw cycle)

Orientations for simple triangulations with boundaries
Each inner boundary of length i has indegree $i+3$
Each internal vertex has indegree 3
Such a boundary-orientation is called a pseudo-3-orientation
Take the minimal such orientation (no ccw cycle)

Mobiles for simple triangulations with boundaries

 Apply the bijection Φ to the minimal pseudo-3-orientation
white vertices have \#neighbours-\#legs=3
black vertices have degree 3

Obstacles for the existence of pseudo-3- orientations

Not all 2-cycles are forbidden!
conctractible 2-cycle

5 edges inside total indegree 6 inside

Forbidden

non-conctractible 2-cycle not touching any boundary from the inside

9 non-boundary edges inside total indegree 10 inside

Forbidden

non-conctractible 2-cycle touching a boundary from the inside

8 non-boundary edges inside total indegree 6 inside

Not forbidden

Pseudo-girth parameter

For a map with boundaries that is planarly embedded
pseudo-girth $=$ length of a shortest curve of the form

curve of length 15
(curve that is the outer border of a region consisting of non-boundary faces)

Rk: \quad girth \leq pseudo-girth \leq contractible girth

Pseudo-girth parameter

For a map with boundaries that is planarly embedded
pseudo-girth $=$ length of a shortest curve of the form

curve of length 15
(curve that is the outer border of a region consisting of non-boundary faces)

Rk: \quad girth \leq pseudo-girth \leq contractible girth

The map is called pseudo-simple if the pseudo-girth is ≥ 3

Results for pseudo-simple triangulations with boundaries

A triangulation with boundaries (outer face being a triangular boundary-face) is pseudo simple iff admits a pseudo 3-orientation

bijection with explicit mobiles

internal face (degree 3) \longleftrightarrow black vertex of degree 3 inner boundary of length $i \longleftrightarrow$ white vertex with i legs and $i+3$ neighbours

Counting formula:

Let $N\left[n ; a, \ell_{1}, \ldots, \ell_{r}\right]$ be the number of pseudo-simple triangulations where:

- the outer boundary has length a
- the inner boundaries B_{1}, \ldots, B_{r} have lengths $\ell_{1}, \ldots, \ell_{r}$
- there are m internal vertices
- in every boundary, a vertex is distinguished

$$
N\left[m ; a ; \ell_{1}, \ldots, \ell_{r}\right]=\frac{2(2 a-3)!}{(a-3)!(a-1)!} \frac{(4 m+4 r+2 L-5)!}{m!(3 m+3 r+2 L-3)!} \prod_{i=1}^{r} \ell_{i}\binom{2 \ell_{i}+2}{\ell_{i}}
$$

where $L=a+\sum_{i=1}^{r} \ell_{i}$ (total boundary length)
Rk: Similar formula for pseudo-loopless triangulations with boundaries

Results in any given pseudo-girth

We have a bijection in each pseudo-girth $d \geq 1$ for maps with boundaries, with inner face degrees in $\{d, d+1, d+2\}$

Results in any given pseudo-girth

[Bernardi, F'15] We have a bijection in each pseudo-girth $d \geq 1$ for maps with boundaries, with inner face degrees in $\{d, d+1, d+2\}$

Pseudo-girth-constraint is void for
$d=1$ (recover Krikun's formula)
$d=2$ bipartite case (new formula for quadrangulations with boundaries)

Factorized counting formulas

- Let $m \geq 0$ and $\ell_{1}, \ldots, \ell_{r}$ positive integers
- Let $\mathcal{T}\left[m ; \ell_{1}, \ldots, \ell_{r}\right]\left(r e s p . ~ \mathcal{Q}\left[m ; \ell_{1}, \ldots, \ell_{r}\right]\right)$ be the set of triangulations (resp. quadrangulations) with r boundaries B_{1}, \ldots, B_{r} s.t.
- there are m internal vertices
- every boundary B_{i} has length ℓ_{i} and a marked corner

Triangulations : Krikun's formula (2007)
$\left|\mathcal{T}\left[m ; a_{1}, \ldots, a_{r}\right]\right|=\frac{4^{k}(e-2)!!}{m!(2 b+k)!!} \prod_{i=1}^{r} a_{i}\binom{2 a_{i}}{a_{i}}$
with $b=\sum_{i} a_{i}, k=r+m-2$, and $e=2 b+3 k$

Quadrangulations : [Bernardi, F'15]

$$
\left|\mathcal{Q}\left[m ; 2 a_{1}, \ldots, 2 a_{r}\right]\right|=\frac{3^{k}(e-1)!}{m!(3 b+k)!} \prod_{i=1}^{r} 2 a_{i}\binom{3 a_{i}}{a_{i}}
$$

with $b=\sum_{i} a_{i}, k=r+m-2$, and $e=2 b+3 k$

Solution of the dimer model on quadrangulations
Map with dimers = pair (M, X) where M is a map and X is a subset of edges giving a partial-matching

Solution of the dimer model on quadrangulations

Map with dimers = pair (M, X) where M is a map and X is a subset of edges giving a partial-matching

- Dimer model on (rooted) quadrangulations

Generating function : $F(t, w)=\sum_{\text {configurations }} t^{\# \text { faces }} w^{\# \text { dimers }}$

$\operatorname{map}_{\text {with }}$
2 dimers

Solution of the dimer model on quadrangulations

Map with dimers $=$ pair (M, X) where M is a map and X is a subset of edges giving a partial-matching

- Dimer model on (rooted) quadrangulations Generating function : $F(t, w)=\sum_{\text {configurations }} t^{\# \text { faces }} w^{\# \text { dimers }}$

dimer \leftrightarrow boundary of length 2

$$
\begin{gathered}
F(t, w)=R-1-t R^{3}-6 w t^{2} R^{6} \\
\text { où } R=1+3 t R^{2}+9 w t^{2} R^{5}
\end{gathered}
$$

Solution of the dimer model on quadrangulations

Map with dimers $=$ pair (M, X) where M is a map and X is a subset of edges giving a partial-matching

- Dimer model on (rooted) quadrangulations Generating function : $F(t, w)=\sum_{\text {configurations }} t^{\# \text { faces }} w^{\# \text { dimers }}$

dimer \leftrightarrow boundary of length 2

Asymptotics : for $w \in \mathrm{R}$ fixed, $\left[t^{n}\right] F \sim c_{w} \gamma_{w}^{n} n^{-5 / 2}$
except at critical weight $w_{0}=-3 / 125$ where $\left[t^{n}\right] F \sim c_{0} \gamma_{0}{ }^{n} n^{-7 / 3}$

Solution of the dimer model on quadrangulations

Map with dimers $=$ pair (M, X) where M is a map and X is a subset of edges giving a partial-matching

- Dimer model on (rooted) quadrangulations Generating function : $F(t, w)=\sum_{\text {configurations }} t^{\# \text { faces }} w^{\# \text { dimers }}$

map with
2 dimers
dimer \leftrightarrow boundary of length 2

bijection
\Downarrow

$F(t, w)=R-1-t R^{3}-6 w t^{2} R^{6}$
où $R=1+3 t R^{2}+9 w t^{2} R^{5}$

Asymptotics: for $w \in \mathrm{R}$ fixed, $\left[t^{n}\right] F \sim c_{w} \gamma_{w}^{n} n^{-5 / 2}$
except at critical weight $w_{0}=-3 / 125$ where $\left[t^{n}\right] F \sim c_{0} \gamma_{0}{ }^{n} n^{-7 / 3}$

- Solution of the dual model in [Bouttier, Di Francesco, Guitter'03]

poids $t^{7} w^{2}$

weight t per square face weight $3 t^{2} w$ per hexagonal face

$$
\begin{gathered}
F(t, w)=R-1-t R^{3}-15 w t^{2} R^{4} \\
\text { où } R=1+3 t R^{2}+30 w t^{2} R^{3}
\end{gathered}
$$

$$
\text { critical weight } w_{0}=-1 / 10
$$ where typical distance $\approx n^{1 / 6}$

