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Planar maps
Def. Planar map = connected graph embedded on the sphere

Rooted map

= map with marked corner

Easier to draw in the plane (choosing root-face to be the outer face)
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Universality properties for planar maps

e Nice counting formulas for many natural families

2
3" Cat,,
n + 2

e More generally, generating functions are algebraic

e.g. # rooted maps n edges =
& universal asymptotic behaviour for counting coefficients ¢ 7”71‘5/2

e Bijective proofs in many cases

e Universal scaling limit (Brownian sphere)
for random planar maps

(rescaling distances by n!/4)

y

Link to Liouville Quantum Gravity

© Nicolas Curien
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Decorated planar maps
Decorated planar map = planar map + structure + Eulerian orientation

4-regular map

(Ising model, proper coloring, Potts model,
spanning tree, spanning forest, specific orientations,...)

e new bijections & counting behaviours compared to “pure” planar maps

e Universality class “indicated” by asymptotic estimates C’}/J
link to “central charge”
conjectural scaling limits & bounds on magnitude of typical distances

e Some of these structures give nice geometric representations of maps
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Called “generic” if no +

Generic Not generic

used in “cartogram’ representations
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Rectangulations
Rectangulation = tiling of a rectangle by rectangles

Called “generic” if no +

Generic Not generic

This talk:
e Link to decorated planar maps & bijections to walks

e Exact enumeration

e Asymptotic enumeration



Two types of equivalences for rectangulations
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Two types of equivalences for rectangulations

Strong

2

(order of contacts along each maximal segment is preserved)

Weak _I_I_

1

(order of contacts on each side of maximal segments is preserved)

_IZ_

¢

2
_I_I_

wn = £ weak equivalence classes with n regions

Sn = 7 strong equivalence classes with n regions




Weak equivalence class: shelling order

n n_
t
Contract top-left region:
two cases
: . 3
= shelling order on regions 7 6
2
4
5
1




Diagonal representation

— 0 1 0 0 1 1 canopy .

twin pair of binary trees



Encoding by a triple of walks

upper O 0 1 0 1 1
middle (canopy) 0 1 0 0 1 1 —>
lower 0 1 1 0 0 1




Baxter nhumbers and Baxter famllles
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Baxter numbers and Baxter families

G
2 n—l n+1\Nm+1\N/m+1 Baxter
Gessel-Viennot = | Wn = ( ) ( ) ( ) b
n(n + 1)2 — r r—+ 1/ \r 4 2/ NUMDErS
~ 2° n..—4
W, 7r\/§8 n

Baxter families are families counted by Baxter numbers
among which Baxter permutations, plane bipolar orientations, ...

Various bijections relating these families (common generating tree)

Link to weak order on permutations:
mapping &,, — Rn
grouping permutations by rectangulation gives a lattice congruence



Plane bipolar orientations

Acyclic orientation on planar map
with single min and single max

both incident to the outer face

S

Plane bipolar orientations < local conditions

AN K ()



Bijective link with weak rectangulations
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Bijective link with weak rectangulations

Laays

25
36

Correspondence used in
il " 1 2., 16
problem “squaring the square 517

33 28

(www.squaring.net/history _theory/gfx/figure73.jpg)
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A more precise walk-encoding: the KMSW bijection

“Tandem walks” in the quadrant

Plane bipolar orientations

A step-set
a_l_l b_|_1 o« o -
aI
— g SE U {(—i,j),,j > 0}
n edges — length n — 1

face i+1<<>>j+1 - face-step (_ivj)

non-pole vertex <————» SE step
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Orientation is built step by step from the walk,

add (1, —1) —

/
add (%A

(face-step)

orientation
currently built

Starts with " Ends with b




The KMSW bijection

Example: build orientation associated to

Y
L NN
bbb ;/
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The KMSW bijection

From bipolar orientation to tandem walk




Link with non-intersecting triples of walks

i

non-intersecting triple tandem walk



Summary of bijections so far




Summary of bijections so far

to treat

black box
other models




Strong rectangulations
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Strong rectangulations

%—K

Pair of transversal
plane bipolar orientations

A
& ...

tT_';“' NN Y
T Local conditions

causal locally causal

cf locally causal dynamical triangulations
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Encoding by (weighted) tandem walks

weight (f"tizz)

~ for each <>

~ weight ("J;iIQ) for

each step (—14,7)

1@
1
¥ _

weighted tandem walk
with n SE steps

Transversal structure
n + 4 vertices

red bipolar poset
+ transversal edges
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Encoding by tandem walks with small steps

face-step decoration by small-step portion

on step-set >‘ n — 2 steps \
Sy, = # walks @
1

with no patterns \J >
= explicit recurrence

ST st =t + 2t2 + 6t3 + 24t* + 116t° + 642t5 4- 39387 - - - -
other recurrence (& small step walks)



Asymptotic enumeration

relies on [Denisov-Wachtel'11, Bostan-Raschel-Salvy’'14]

Each of the counting sequences w,,, S,
has asymptotics of the form
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Asymptotic enumeration

relies on [Denisov-Wachtel'11, Bostan-Raschel-Salvy’'14]

Each of the counting sequences w,,, S,
has asymptotics of the form

(8%

s

cy' n—

exit time T

P(r>n)~cn 20

P(7 > n & excursion)

~c n”

1—

7T

0

weak strong
cos(f)| 1/2 7/8 \ optimal encoding
o 4 ~721¢Q

\ not D-finite

sn < (5)2"




lllustration on tandem walks with small steps

Step-set T -~ \ (triangulated bipolar orientations)
N W SE
Random walk 1‘\_}\ P(eagh Step) — %

AN



lllustration on tandem walks with small steps
Step-set T -~ \ (triangulated bipolar orientations)
N W SE
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lllustration on tandem walks with small steps
Step-set T -~ \ (triangulated bipolar orientations)
N W SE

Random walk 1‘\_}\ P(each step) = A

AN

Cov = ( IIE?(())((;)) 1%(()1(/123) ) _ ( 2 _1 )

A
1 0
\ Cov = ( )
sheer ‘i‘ 01

/2 -

A . 4 _

= # quadrant excursions length 3n ~ ¢ - 27"n~4
(oo = 4 universal for plane bipolar orientations)



Non-generic rectangulations
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Non-generic rectangulations

%

>IV

+
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Generic case: inner faces of 4 types

APV <

Non-generic case: inner faces of 5 types

AV < L

Pair of transversal
plane bipolar orientations

A
N

| ocal conditions



Non-generic rectangulations with weighted quadrangles
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Non-generic rectangulations with weighted quadrangles

A
i

—

R

Let sn(v) = # rectangulations with n regions, weight v per —I—

— # transversal structures with n 4 4 vertices, weight v per I::I

>, sn (V)T =+ 2t2 + 613 + (24 + )t + (116 + 12v)t°
+(642 + 114v + 20?)t® + (3938 + 1028v + 48v2)t" + - - -



Encoding by tandem walks




Asymptotic behaviour
For v > 0, s (V) ~ c(v) y(v)® n—eW)
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Asymptotic behaviour

Forv>0,  sn(v)~c(v) y(v)" n="
LT 7o)
T
y(v) = 2(21,0) (202 +18 v+27+(9+4v)%/?) E(v) = T 241r 2 (40 + 14v + 11 + V9 + 4v)
v(0) = 27/2 ‘K HU £(0) =7/8
Rk: v(v),&(v) > 0 for v > —2 cos(Blv)
Regime v — o0 v(v) ~ v, alv) = o0 ~ regular grid

Regime v = O(1) random lattice (universality class evolves with v)

Eulerian quadrangulations
(other interpolating model) weight v—1 per
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Drawing algorithm

x-coordinates

X

y-coordinates

Expected:

for v = 0(1)

E forv >>1
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Reduction of a transversal structure

Reduction of a transversal structure (that possibly has quadrangles)

Apply in parallel A _ i _

Property: A transversal structure gives same drawing as its reduced form

Property: Drawing is bijection from(reduced transversal structures
. . no
to semi-Baxter permutations (no 3142) N AN
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v-weighted modele on reduced transversal structures

reduced = no |/ S

weight v3
weight v per I:I A
C

D
Rk: v=0 < no |/] \ and triangulated

< weak rectangulations |1

(Baxter numbers)

reduced transversal structure <+—  semi-Baxter permutation

I:I ——> pattern

v =0 < Baxter permutations (no 3142 241 3)
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Link between the two v-weighted modeles

Reduction of a transversal structure (that possibly has quadrangles)

Apply in parallel |Z| _ §| _

reduced = no |/ S

Property: s, (v) := analogue of s,,(v) on reduced transversal structures
Sn(v) — gn(2‘|‘?}) cf — E + Z -+

So s, (v) has combinatorial meaning for v > —2

v = —2  Baxter structures, asymptotics in n~*

v = —1 semi-Baxter structures, asymptotics in n—°



