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=

Def. Planar map = connected graph embedded on the sphere

Easier to draw in the plane (choosing root-face to be the outer face)

⇒

Planar maps

=

Rooted map
= map with marked corner
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Universality properties for planar maps

Nicolas Curienc

• Nice counting formulas for many natural families [Tutte’60s]

• More generally, generating functions are algebraic
[Bousquet-Mélou-Jehanne’06]

# rooted maps n edges =
2

n+ 2
3nCatne.g.

• Bijective proofs in many cases

& universal asymptotic behaviour for counting coefficients

• Universal scaling limit (Brownian sphere)

c γnn−5/2

[Schaeffer’97, Bouttier,Di Francesco,Guitter’04, Bernardi, F’12,

(rescaling distances by n1/4)

[Chassaing,Schaeffer’04]
[Le Gall’13, Miermont’13]

for random planar maps

Link to Liouville Quantum Gravity
[Miller-Sheffield’12]

Albenque,Poulalhon’15, Bouttier-Guitter’15]
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Decorated planar maps
Decorated planar map = planar map + structure

(Ising model, proper coloring, Potts model,
spanning tree, spanning forest, specific orientations,...)

• new bijections & counting behaviours compared to “pure” planar maps

• Some of these structures give nice geometric representations of maps

4-regular map
+ Eulerian orientation

vR

vBvG

A

A = 4
9vR + 2

9vB + 3
9vG

vR

vBvG

• Universality class “indicated” by asymptotic estimates cγnn−α

[Mullin’67, Bernardi-Bonichon’09, F-Poulalhon-Schaeffer’09, Albenque-Poulalhon’15,
Sheffield’11, Kenyon-Miller-Sheffield-Wilson’15, Bousquet-Mélou-Elvey-Price’18]

link to “central charge”

conjectural scaling limits & bounds on magnitude of typical distances

Schnyder
wood

[Watabiki’93, Ding-Gwynne’18, Ding-Goswami’18, Ang’19, Gwynne-Pfeffer’19, Barkley-Budd’19]
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Rectangulations
Rectangulation = tiling of a rectangle by rectangles

Called “generic” if no

Generic Not generic

used in “cartogram” representations

[van Kreveld-Speckmann’04]

[Eppstein-Mumford-Speckmann-Verbeek’12]



Rectangulations
Rectangulation = tiling of a rectangle by rectangles

Called “generic” if no

Generic Not generic

• Link to decorated planar maps & bijections to walks

• Exact enumeration

• Asymptotic enumeration

This talk:
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Two types of equivalences for rectangulations

Strong
'

Weak

(order of contacts along each maximal segment is preserved)

'

(order of contacts on each side of maximal segments is preserved)

'

'

sn = # strong equivalence classes with n regions

wn = # weak equivalence classes with n regions



Weak equivalence class: shelling order

Contract top-left region:
two cases

. . . . . .

n n

⇒ shelling order on regions 7 6

5
4

3

2

1

[Ackerman, Barequet, Pinter’06]



Diagonal representation

0 1 0 0 1 1

7 6

5
4

3

2

1

7

6

5

4

3

2

1

common
canopy

twin pair of binary trees



Encoding by a triple of walks

0 1 0 0 1 1
0 0 1 0 1 1

0 1 1 0 0 1

upper

middle (canopy)
lower

0

1

[Dulucq,Guibert’98]
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Baxter numbers and Baxter families

Baxter families are families counted by Baxter numbers

Gessel-Viennot ⇒ wn =
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r
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Link to weak order on permutations:
mapping Sn →Rn

grouping permutations by rectangulation gives a lattice congruence

[Reading’04,12]



Plane bipolar orientations

s

t

Plane bipolar orientations ⇔ local conditions

s

t

v f

Acyclic orientation on planar map

with single min and single max

both incident to the outer face



Bijective link with weak rectangulations



Bijective link with weak rectangulations

problem “squaring the square”
Correspondence used in

[Brooks, Smith, Stone, Tutte’40]



A more precise walk-encoding: the KMSW bijection

Plane bipolar orientations “Tandem walks” in the quadrant

. . .
a+1 b+1

step-set

. . .

SE ∪ {(−i, j), i, j ≥ 0}

a

b

[Kenyon, Miller, Sheffield, Wilson’15]



A more precise walk-encoding: the KMSW bijection

Plane bipolar orientations “Tandem walks” in the quadrant

. . .
a+1 b+1

step-set

. . .

SE ∪ {(−i, j), i, j ≥ 0}

a

b

n edges length n− 1

face face-step (−i, j)

non-pole vertex SE step

i+1 j+1

[Kenyon, Miller, Sheffield, Wilson’15]



Orientation is built step by step from the walk,

. . .

a+1

orientation

add (1,−1)

add (−i, j)

currently built

y

(face-step)

x

marked
edge

. . .

+
i

j

The KMSW bijection



Orientation is built step by step from the walk,

. . .

a+1

orientation

add (1,−1)

add (−i, j)

currently built

y

(face-step)

x

Starts with
a

Ends with

marked
edge

. . .

a+1
b

+
i

j

The KMSW bijection



1
2

3
4

5
Example: build orientation associated to

1
2

3
4

5
1

2

3
4

1
2

3

1
21

The KMSW bijection



From bipolar orientation to tandem walk

The KMSW bijection



Link with non-intersecting triples of walks

. . .

. . .

non-intersecting triple tandem walk

y+1

x+1

4

4 5

. . .

. . .

x

y

[Bousquet-Mélou,F,Raschel’20]

5



Summary of bijections so far

1
2

3
4

5



Summary of bijections so far

1
2

3
4

5

black box
to treat

other models



Strong rectangulations [He’93]

Pair of transversal
plane bipolar orientations

Local conditions

. . .



Strong rectangulations [He’93]

Pair of transversal
plane bipolar orientations

Local conditions

. . .

cf locally causal dynamical triangulations

t

x causal locally causal

[Loll, Ruijl’15]
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Encoding by (weighted) tandem walks

Transversal structure

red bipolar poset
+ transversal edges

weight
(i+j−2
i−1

)
for each

i+1 j+1

n+ 4 vertices

[F-Narmanli-Schaeffer’21]

N

W
N

W

W N

N



Encoding by (weighted) tandem walks

Transversal structure

red bipolar poset
+ transversal edges

weight
(i+j−2
i−1

)
for each

i+1 j+1

n+ 4 vertices

weight
(i+j−2
i−1

)
for

each step (−i, j)

weighted tandem walk
with n SE steps

1
1

[F-Narmanli-Schaeffer’21]

N

W
N

W

W N

N



Encoding by tandem walks with small steps

face-step

⇔
weight(
i+j−2
i−1

)j

i

decoration by small-step portion

[F-Narmanli-Schaeffer’21]

N

W
N

W

W N

N



Encoding by tandem walks with small steps

face-step

⇔
weight(
i+j−2
i−1

)j

i

decoration by small-step portion

[F-Narmanli-Schaeffer’21]
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N
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sn = # walks
1

1

on step-set n− 2 steps

with no patterns



Encoding by tandem walks with small steps

face-step

⇔
weight(
i+j−2
i−1

)j

i

decoration by small-step portion

⇒ explicit recurrence

other recurrence (& small step walks) [Inoue, Takahashi, Fujimaki’09]

[F-Narmanli-Schaeffer’21]

∑
n snt

n = t+ 2t2 + 6t3 + 24t4 + 116t5 + 642t6 + 3938t7 + · · ·

N

W
N

W

W N

N

sn = # walks
1

1

on step-set n− 2 steps

with no patterns



Asymptotic enumeration
[Denisov-Wachtel’11, Bostan-Raschel-Salvy’14]

Each of the counting sequences wn, sn

c γn n−α

1 + π
θ

4

cos(θ)

α

1/2 7/8

≈ 7.21 /∈ Q

weak strong

γ 8 27/2

has asymptotics of the form

P(τ > n) ∼ c n− π
2θ

θ
exit time τ

relies on

[F-Narmanli-Schaeffer’21]

P(τ > n & excursion)
∼ c′ n−1−πθ
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Asymptotic enumeration
[Denisov-Wachtel’11, Bostan-Raschel-Salvy’14]

Each of the counting sequences wn, sn

c γn n−α

1 + π
θ

4

cos(θ)

α

1/2 7/8

≈ 7.21 /∈ Q

weak strong

γ 8 27/2

has asymptotics of the form

P(τ > n) ∼ c n− π
2θ

θ
exit time τ

not D-finite

optimal encoding
[Takahashi, Fujimaki, Inoue’09]

sn ≤
(
3n
n

)
2n

relies on

[F-Narmanli-Schaeffer’21]

P(τ > n & excursion)
∼ c′ n−1−πθ
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(triangulated bipolar orientations)
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N W SE

(triangulated bipolar orientations)

Random walk P(each step) = 1
3

Cov =

(
E(X2) E(XY )
E(XY ) E(Y 2)

)
=

(
2
3 − 1

3
− 1

3
2
3

)



Illustration on tandem walks with small steps
Step-set

N W SE

(triangulated bipolar orientations)

Random walk P(each step) = 1
3

Cov =

(
E(X2) E(XY )
E(XY ) E(Y 2)

)
=

(
2
3 − 1

3
− 1

3
2
3

)

π/2

sheer

π/3

Cov =

(
1 0
0 1

)

⇒ # quadrant excursions length 3n ∼ c · 27nn−4
(α = 4 universal for plane bipolar orientations)
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Non-generic rectangulations

Pair of transversal
plane bipolar orientations

Local conditions

. . .

Generic case: inner faces of 4 types

Non-generic case: inner faces of 5 types



Non-generic rectangulations with weighted quadrangles

Let sn(v) = # rectangulations with n regions, weight v per

= # transversal structures with n+ 4 vertices, weight v per



Non-generic rectangulations with weighted quadrangles

Let sn(v) = # rectangulations with n regions, weight v per

= # transversal structures with n+ 4 vertices, weight v per

∑
n sn(v)t

n = t+ 2t2 + 6t3 + (24 + v)t4 + (116 + 12v)t5

+(642 + 114v + 2v2)t6 + (3938 + 1028v + 48v2)t7 + · · ·



Encoding by tandem walks

N

W
N

W

NW

N

small-step portion for a face
j

i

weight v

weight on face-step (−i, j): w(i, j) =
∑
k v

k
(i+j−2−k

k

)(i+j−2−2k
i−1−k

)



Asymptotic behaviour
For v > 0, sn(v) ∼ c(v) γ(v)n n−α(v)

1 + π
θ(v)

cos(θ(v))

[F-Narmanli-Schaeffer’21]

γ(0) = 27/2
ξ(0) = 7/8
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Asymptotic behaviour
For v > 0, sn(v) ∼ c(v) γ(v)n n−α(v)

1 + π
θ(v)

cos(θ(v))

Regime v →∞ γ(v) ∼ v, α(v)→∞ ∼ regular grid

[F-Narmanli-Schaeffer’21]

cf [Kazakov, Staudacher, Wynter’96]
(other interpolating model)

Regime v = O(1) random lattice (universality class evolves with v)

weight v−1 per

Eulerian quadrangulations

γ(0) = 27/2
ξ(0) = 7/8



Asymptotic behaviour
For v > 0, sn(v) ∼ c(v) γ(v)n n−α(v)

1 + π
θ(v)

cos(θ(v))

Regime v →∞ γ(v) ∼ v, α(v)→∞ ∼ regular grid

[F-Narmanli-Schaeffer’21]

cf [Kazakov, Staudacher, Wynter’96]
(other interpolating model)

Regime v = O(1) random lattice (universality class evolves with v)

weight v−1 per

Eulerian quadrangulations

γ(0) = 27/2
ξ(0) = 7/8

Rk: γ(v), ξ(v) > 0 for v ≥ −2
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Drawing algorithm

x-coordinates

1
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3

4

5

6
7
8

y-coordinates

10

119

12

0

0

1 2 3

4
5 6

7
8 9

10

11

12

x

y

A

B

C

D

D

A B

C

Expected:

for v = O(1)

for v >> 1
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Reduction of a transversal structure (that possibly has quadrangles)

Apply in parallel ⇒ ⇒

Property: A transversal structure gives same drawing as its reduced form



Reduction of a transversal structure
Reduction of a transversal structure (that possibly has quadrangles)

Apply in parallel ⇒ ⇒

Property: A transversal structure gives same drawing as its reduced form

Property: Drawing is bijection from reduced transversal structures

to semi-Baxter permutations
no

(no 3 1 4 2)
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v-weighted modele on reduced transversal structures

noreduced =

weight v per A

B

C

D

weight v3

Rk: v = 0 ⇔ no and triangulated

⇔ weak rectangulations
(Baxter numbers)

reduced transversal structure ←→ semi-Baxter permutation

←→ pattern

v = 0 ⇔ Baxter permutations (no 3 1 4 2 2 4 1 3)
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noreduced =
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sn(v) = s̃n(2 + v)

So sn(v) has combinatorial meaning for v ≥ −2

cf + +
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Link between the two v-weighted modeles
Reduction of a transversal structure (that possibly has quadrangles)

Apply in parallel ⇒ ⇒

Property: s̃n(v) := analogue of sn(v) on reduced transversal structures

sn(v) = s̃n(2 + v)

So sn(v) has combinatorial meaning for v ≥ −2

cf + +

v = −2 Baxter structures, asymptotics in n−4

v = −1 semi-Baxter structures, asymptotics in n−6

noreduced =


