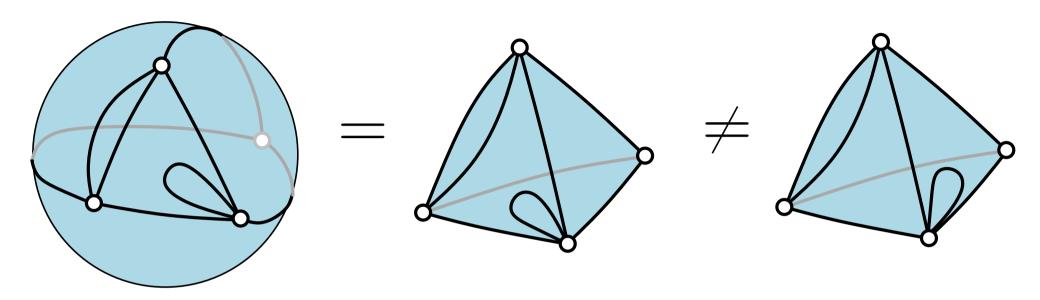
Enumeration of rectangulations

Éric Fusy (LIGM, Univ. Gustave Eiffel)

Joint work with Erkan Narmanli and Gilles Schaeffer

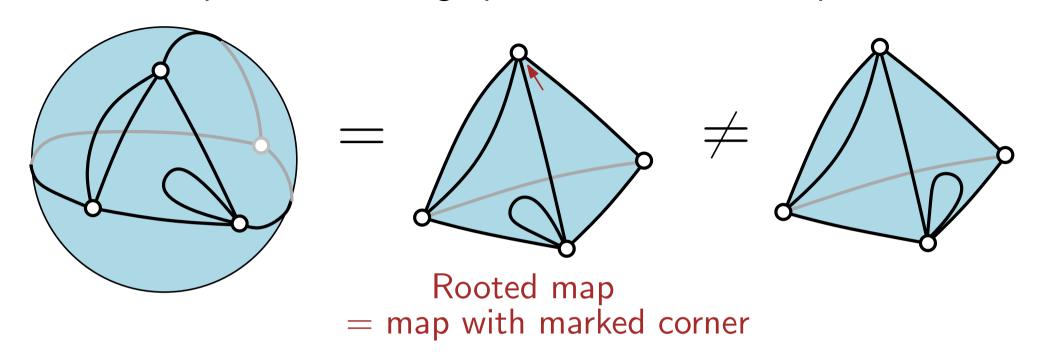
Planar maps

Def. Planar map = connected graph embedded on the sphere



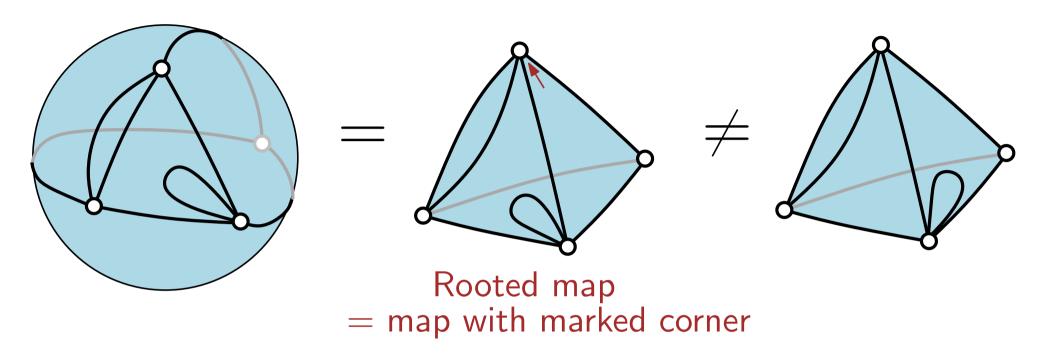
Planar maps

Def. Planar map = connected graph embedded on the sphere

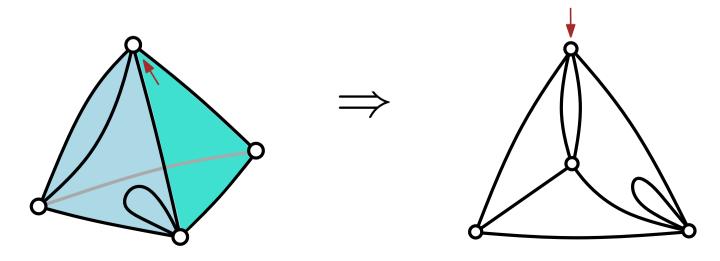


Planar maps

Def. Planar map = connected graph embedded on the sphere



Easier to draw in the plane (choosing root-face to be the outer face)



• Nice counting formulas for many natural families

[Tutte'60s]

e.g.
$$\#$$
 rooted maps n edges $=\frac{2}{n+2}3^n\mathrm{Cat}_n$

• Nice counting formulas for many natural families

[Tutte'60s]

e.g. # rooted maps
$$n$$
 edges = $\frac{2}{n+2}3^n \operatorname{Cat}_n$

• More generally, generating functions are algebraic

[Bousquet-Mélou-Jehanne'06]

& universal asymptotic behaviour for counting coefficients $c \gamma^n n^{-5/2}$

Nice counting formulas for many natural families

[Tutte'60s]

e.g. # rooted maps
$$n$$
 edges = $\frac{2}{n+2}3^n \operatorname{Cat}_n$

• More generally, generating functions are algebraic

[Bousquet-Mélou-Jehanne'06]

- & universal asymptotic behaviour for counting coefficients $c \gamma^n n^{-5/2}$
- Bijective proofs in many cases

[Schaeffer'97, Bouttier, Di Francesco, Guitter'04, Bernardi, F'12,

• Nice counting formulas for many natural families

[Tutte'60s]

- e.g. # rooted maps n edges = $\frac{2}{n+2}3^n \operatorname{Cat}_n$
- More generally, generating functions are algebraic

[Bousquet-Mélou-Jehanne'06]

- & universal asymptotic behaviour for counting coefficients $c \gamma^n n^{-5/2}$
- Bijective proofs in many cases

[Schaeffer'97, Bouttier, Di Francesco, Guitter'04, Bernardi, F'12, Albenque, Poulalhon'15, Bouttier-Guitter'15]

• Universal scaling limit (Brownian sphere) for random planar maps (rescaling distances by $n^{1/4}$)

[Chassaing, Schaeffer'04] [Le Gall'13, Miermont'13]

Link to Liouville Quantum Gravity [Miller-Sheffield'12]



Decorated planar map = planar map + structure (Ising model, proper coloring, Potts model, spanning tree, spanning forest, specific orientations,...)

Decorated planar map = planar map + structure (Ising model, proper coloring, Potts model,

spanning tree, spanning forest, specific orientations,...) new bijections & counting behaviours compared to "pure" planar maps

[Mullin'67, Bernardi-Bonichon'09, F-Poulalhon-Schaeffer'09, Albenque-Poulalhon'15,

Sheffield'11, Kenyon-Miller-Sheffield-Wilson'15, Bousquet-Mélou-Elvey-Price'18]

Decorated planar map = planar map + structure (Ising model, proper coloring, Potts model, spanning tree, spanning forest

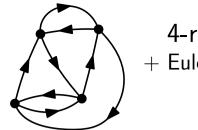
spanning tree, spanning forest, specific orientations,...)

new bijections & counting behaviours compared to "pure" planar maps

[Mullin'67, Bernardi-Bonichon'09, F-Poulalhon-Schaeffer'09, Albenque-Poulalhon'15, Sheffield'11, Kenyon-Miller-Sheffield-Wilson'15, Bousquet-Mélou-Elvey-Price'18]

• Universality class "indicated" by asymptotic estimates $c\gamma^n n^{-\alpha}$ link to "central charge"

Decorated planar map = planar map + structure (Ising model, proper coloring, Potts model, spanning tree, spanning forest, specific orientations,...)



4-regular map + Eulerian orientation

new bijections & counting behaviours compared to "pure" planar maps

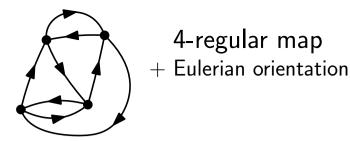
[Mullin'67, Bernardi-Bonichon'09, F-Poulalhon-Schaeffer'09, Albenque-Poulalhon'15, Sheffield'11, Kenyon-Miller-Sheffield-Wilson'15, Bousquet-Mélou-Elvey-Price'18]

• Universality class "indicated" by asymptotic estimates $c\gamma^n n^{-\alpha}$ link to "central charge" –

conjectural scaling limits & bounds on magnitude of typical distances

[Watabiki'93, Ding-Gwynne'18, Ding-Goswami'18, Ang'19, Gwynne-Pfeffer'19, Barkley-Budd'19]

Decorated planar map = planar map + structure (Ising model, proper coloring, Potts model,



spanning tree, spanning forest, specific orientations,...)

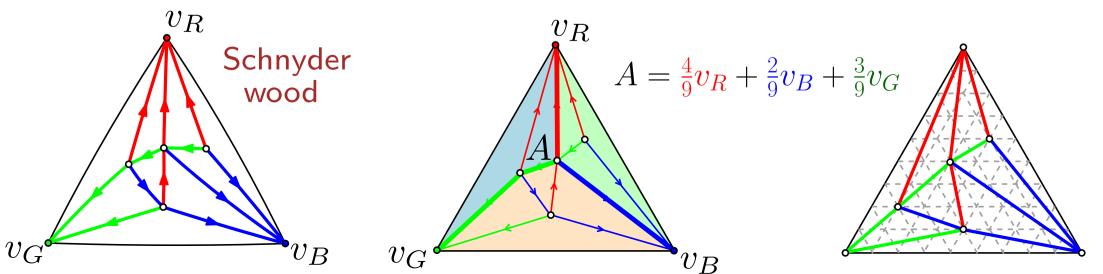
• new bijections & counting behaviours compared to "pure" planar maps

[Mullin'67, Bernardi-Bonichon'09, F-Poulalhon-Schaeffer'09, Albenque-Poulalhon'15, Sheffield'11, Kenyon-Miller-Sheffield-Wilson'15, Bousquet-Mélou-Elvey-Price'18]

• Universality class "indicated" by asymptotic estimates $c\gamma^n n^{-\alpha}$ link to "central charge"

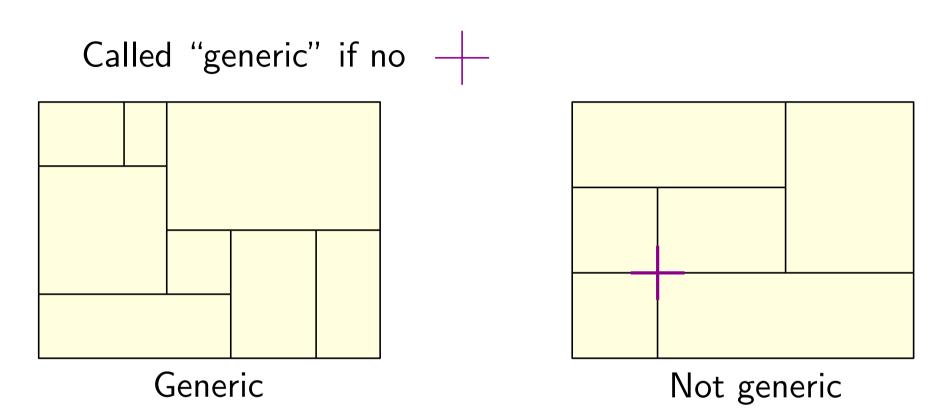
conjectural scaling limits & bounds on magnitude of typical distances [Watabiki'93, Ding-Gwynne'18, Ding-Goswami'18, Ang'19, Gwynne-Pfeffer'19, Barkley-Budd'19]

• Some of these structures give nice geometric representations of maps



Rectangulations

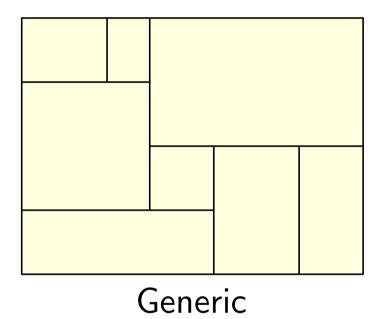
Rectangulation = tiling of a rectangle by rectangles

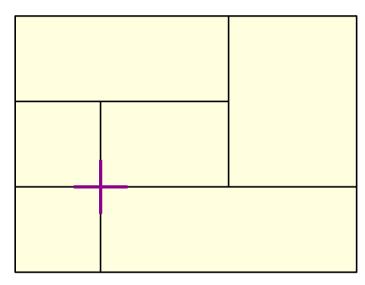


Rectangulations

Rectangulation = tiling of a rectangle by rectangles

Called "generic" if no

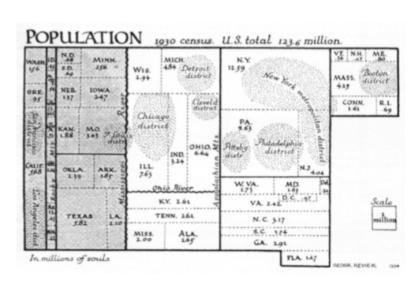




Not generic

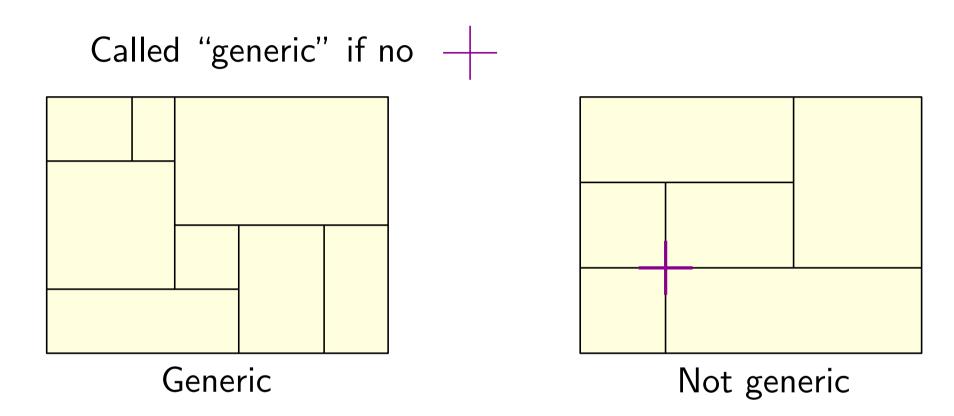
used in "cartogram" representations

[van Kreveld-Speckmann'04]
[Eppstein-Mumford-Speckmann-Verbeek'12]



Rectangulations

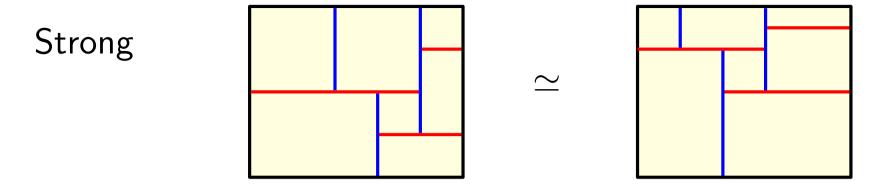
Rectangulation = tiling of a rectangle by rectangles



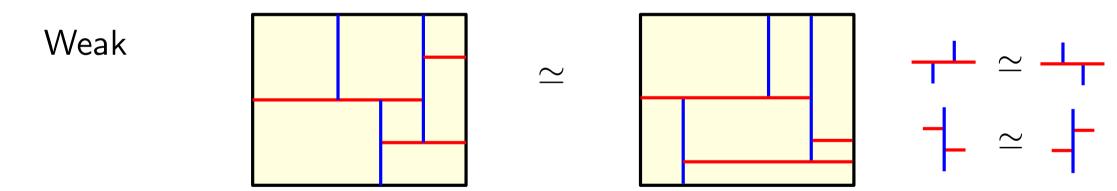
This talk:

- Link to decorated planar maps & bijections to walks
- Exact enumeration
- Asymptotic enumeration

Two types of equivalences for rectangulations



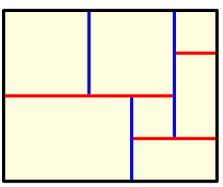
(order of contacts along each maximal segment is preserved)

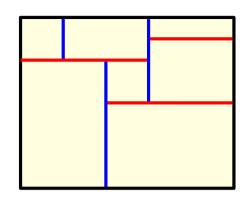


(order of contacts on each side of maximal segments is preserved)

Two types of equivalences for rectangulations

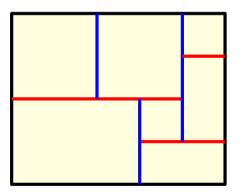
Strong



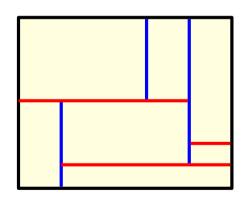


(order of contacts along each maximal segment is preserved)

Weak



 \simeq



_ ~ _

(order of contacts on each side of maximal segments is preserved)

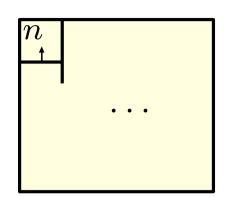
 $w_n = \#$ weak equivalence classes with n regions

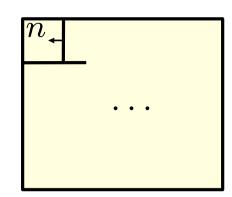
 $s_n = \#$ strong equivalence classes with n regions

Weak equivalence class: shelling order

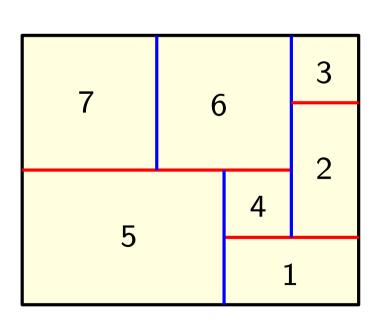
[Ackerman, Barequet, Pinter'06]

Contract top-left region: two cases

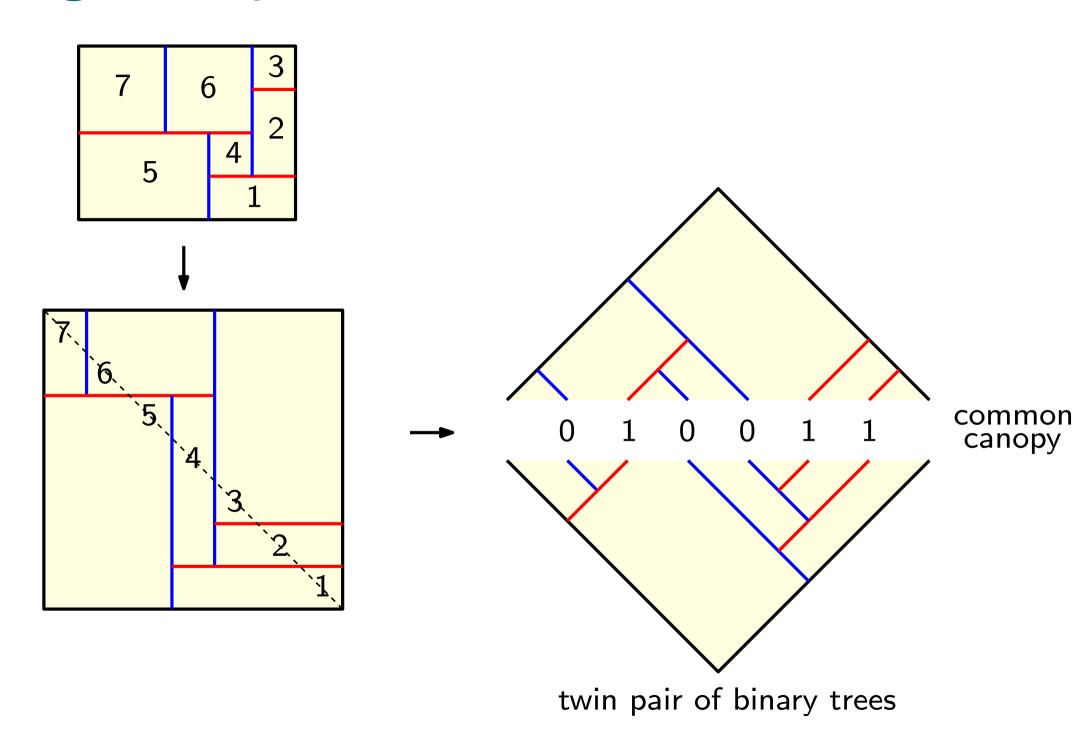




 \Rightarrow shelling order on regions

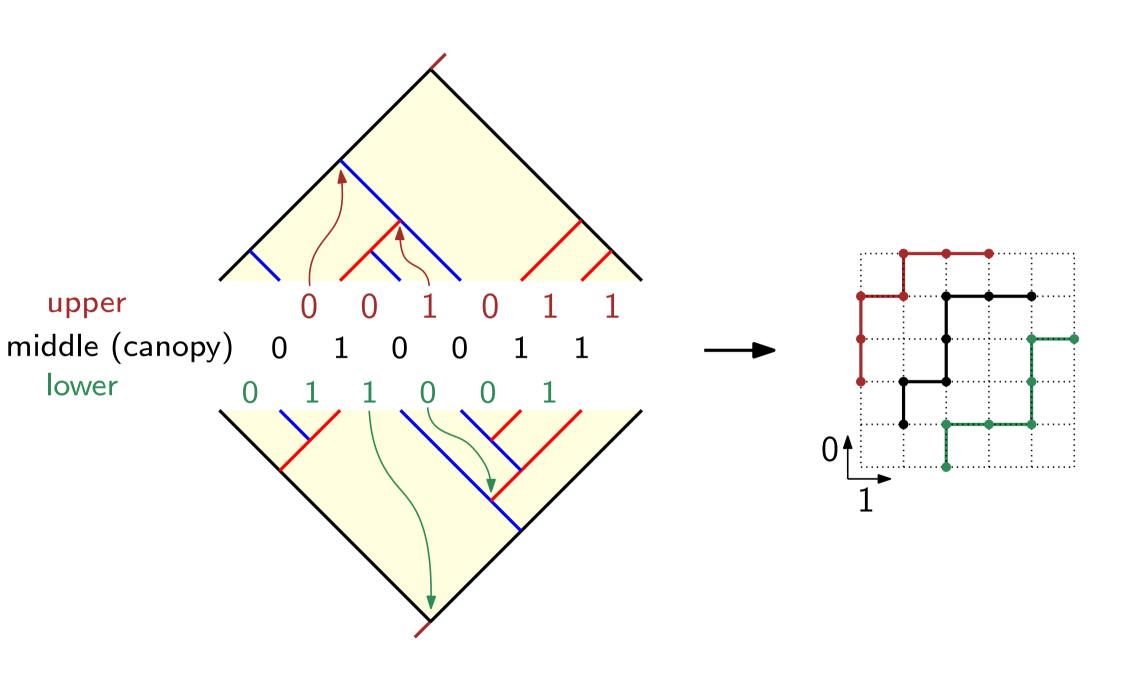


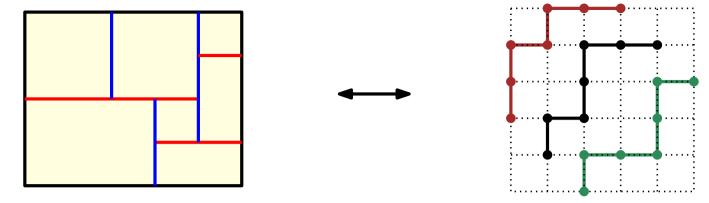
Diagonal representation



Encoding by a triple of walks

[Dulucq, Guibert'98]

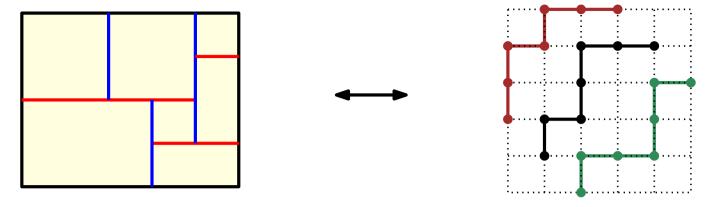




Gessel-Viennot
$$\Rightarrow$$

Gessel-Viennot
$$\Rightarrow$$
 $w_n = \frac{2}{n(n+1)^2} \sum_{r=0}^{n-1} {n+1 \choose r} {n+1 \choose r+1} {n+1 \choose r+2}$ Baxter numbers

$$w_n \sim \frac{2^5}{\pi\sqrt{3}} 8^n n^{-4}$$



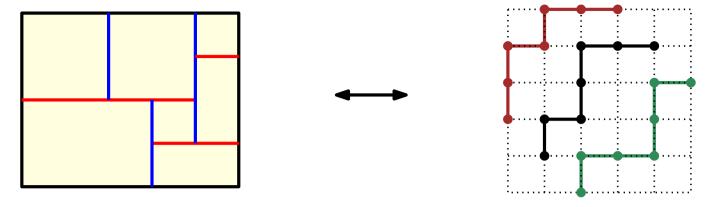
Gessel-Viennot
$$\Rightarrow$$
 $w_n = \frac{2}{n(n+1)^2} \sum_{r=0}^{n-1} \binom{n+1}{r} \binom{n+1}{r+1} \binom{n+1}{r+2}$ Baxter numbers

 $w_n \sim \frac{2^5}{\pi \sqrt{3}} 8^n n^{-4}$

Baxter families are families counted by Baxter numbers among which Baxter permutations, plane bipolar orientations, ...

Various bijections relating these families (common generating tree)

[Dulucg-Guibert'98, Chow-Erikkson-Fan'05, Ackerman-Barequet-Pinter'06, F-Poulalhon-Schaeffer'07 F-Poulalhon-Schaeffer'07, Felsner-F-Noy-Orden'10, Bonichon-Bousquet-Mélou-F'09, Albenque-Poulalhon'13



Gessel-Viennot
$$\Rightarrow$$

$$w_n = \frac{2}{n(n+1)^2} \sum_{r=0}^{n-1} \binom{n+1}{r} \binom{n+1}{r+1} \binom{n+1}{r+2}$$
 Baxter numbers

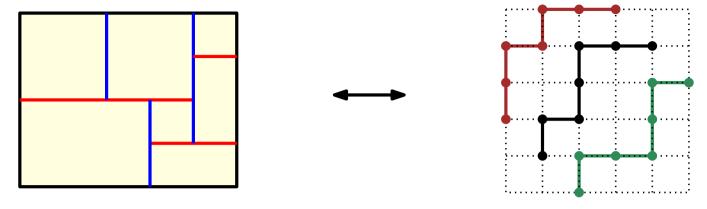
 $w_n \sim \frac{2^5}{\pi \sqrt{3}} 8^n n^{-4}$

Baxter families are families counted by Baxter numbers among which Baxter permutations, plane bipolar orientations, ...

Various bijections relating these families (common generating tree)

[Dulucg-Guibert'98, Chow-Erikkson-Fan'05, Ackerman-Barequet-Pinter'06, F-Poulalhon-Schaeffer'07

F-Poulalhon-Schaeffer'07, Felsner-F-Noy-Orden'10, Bonichon-Bousquet-Mélou-F'09, Albenque-Poulalhon'13



Gessel-Viennot
$$\Rightarrow$$
 $w_n = \frac{2}{n(n+1)^2} \sum_{r=0}^{n-1} \binom{n+1}{r} \binom{n+1}{r+1} \binom{n+1}{r+2}$ Baxter numbers

 $w_n \sim \frac{2^5}{\pi \sqrt{3}} 8^n n^{-4}$

Baxter families are families counted by Baxter numbers among which Baxter permutations, plane bipolar orientations, ...

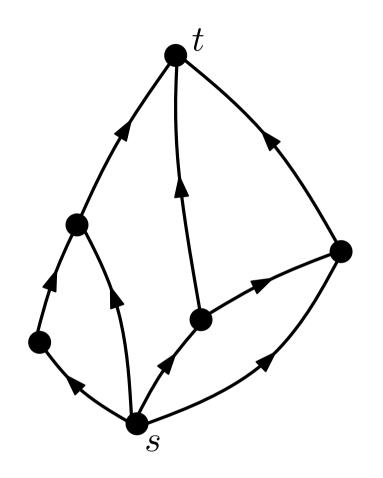
Various bijections relating these families (common generating tree)

[Dulucg-Guibert'98, Chow-Erikkson-Fan'05, Ackerman-Barequet-Pinter'06, F-Poulalhon-Schaeffer'07 F-Poulalhon-Schaeffer'07, Felsner-F-Noy-Orden'10, Bonichon-Bousquet-Mélou-F'09, Albenque-Poulalhon'13

Link to weak order on permutations: [Reading'04,12] mapping $\mathfrak{S}_n o \mathcal{R}_n$

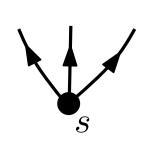
grouping permutations by rectangulation gives a lattice congruence

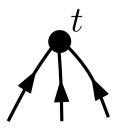
Plane bipolar orientations

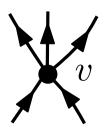


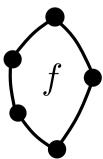
Acyclic orientation on planar map with single min and single max both incident to the outer face

Plane bipolar orientations ⇔ local conditions

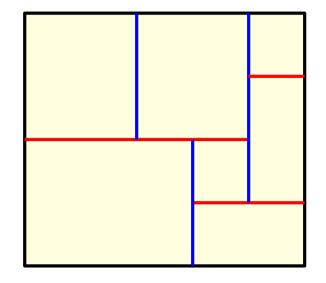


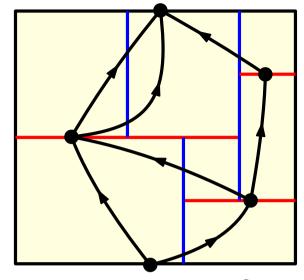


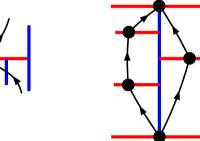


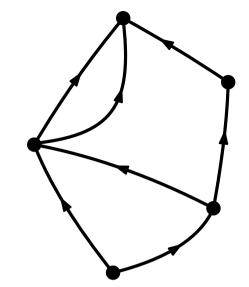


Bijective link with weak rectangulations

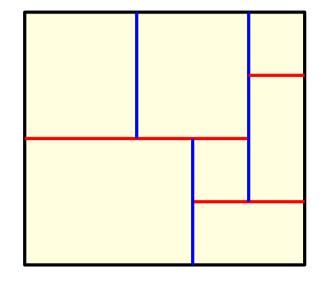


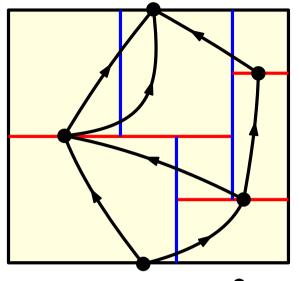


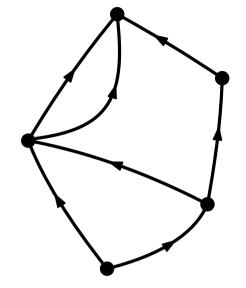


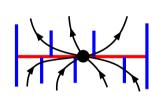


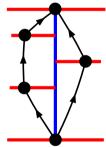
Bijective link with weak rectangulations





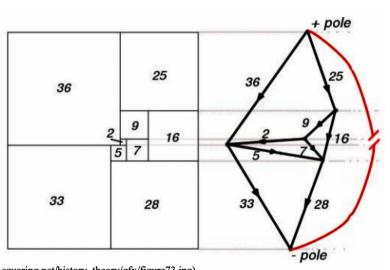






Correspondence used in problem "squaring the square"

[Brooks, Smith, Stone, Tutte'40]

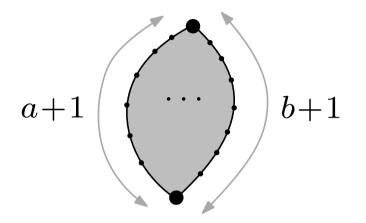


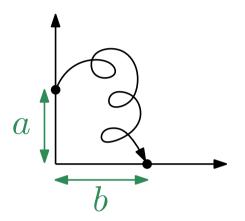
A more precise walk-encoding: the KMSW bijection

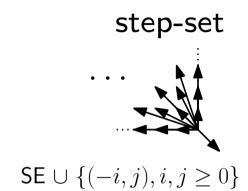
[Kenyon, Miller, Sheffield, Wilson'15]

Plane bipolar orientations

"Tandem walks" in the quadrant





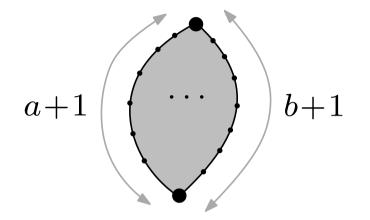


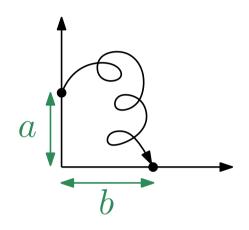
A more precise walk-encoding: the KMSW bijection

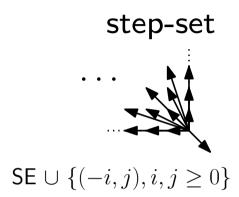
[Kenyon, Miller, Sheffield, Wilson'15]

Plane bipolar orientations

"Tandem walks" in the quadrant







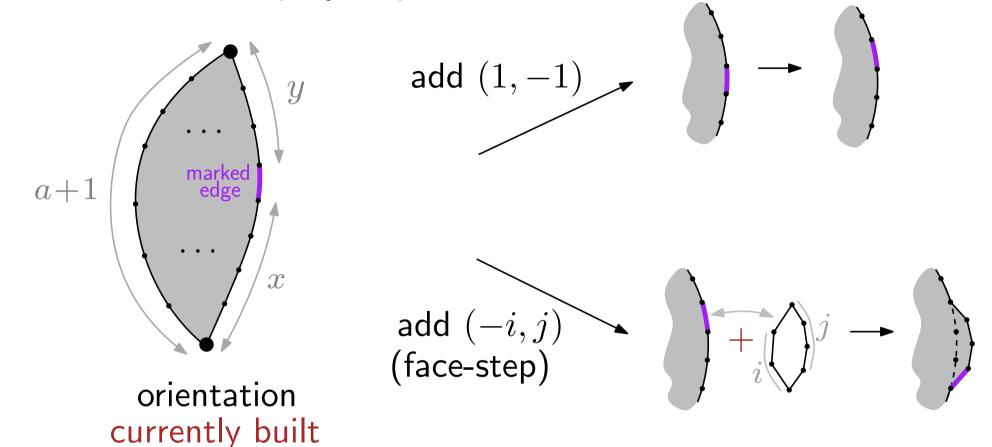
n edges

face
$$i+1$$
 face-step $(-i,j)$

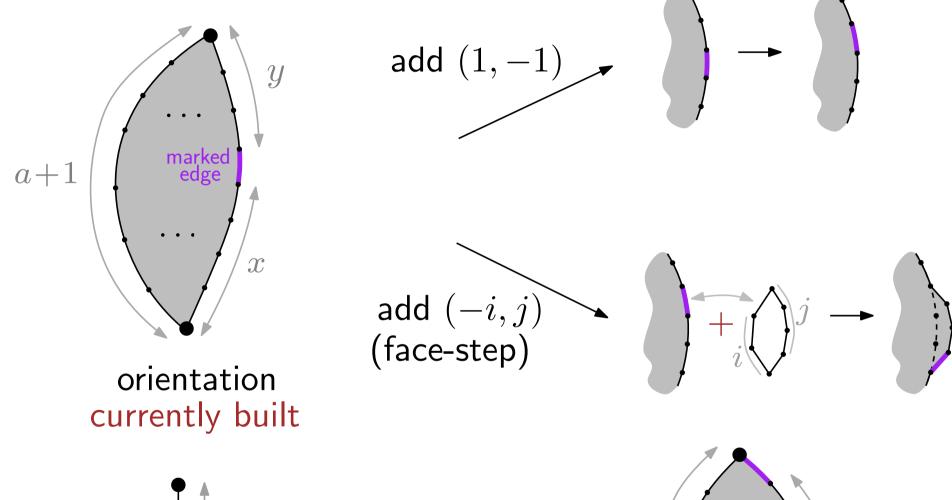
non-pole vertex

SE step

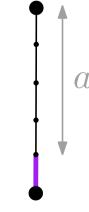
Orientation is built step by step from the walk,



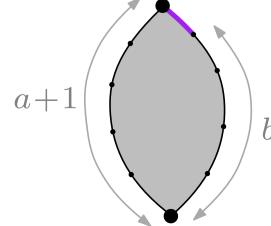
Orientation is built step by step from the walk,



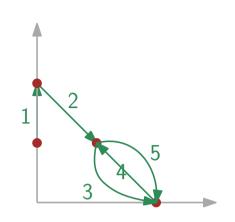
Starts with

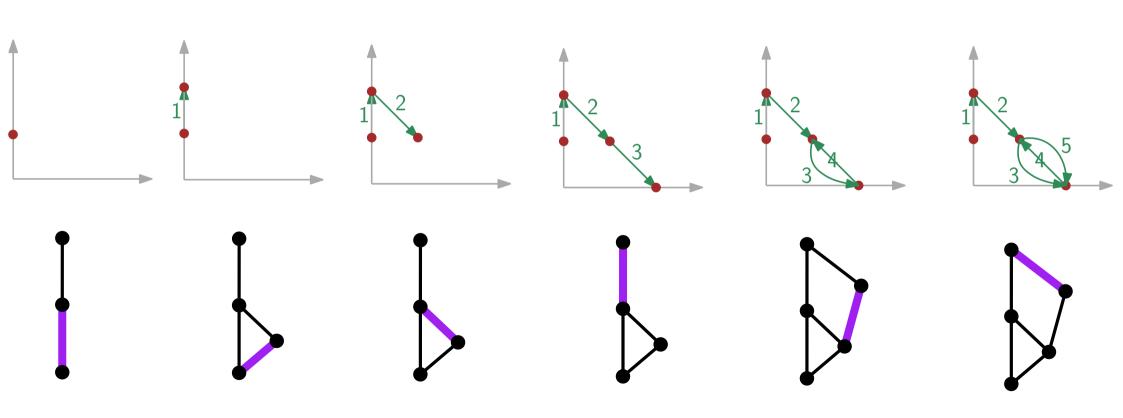


Ends with

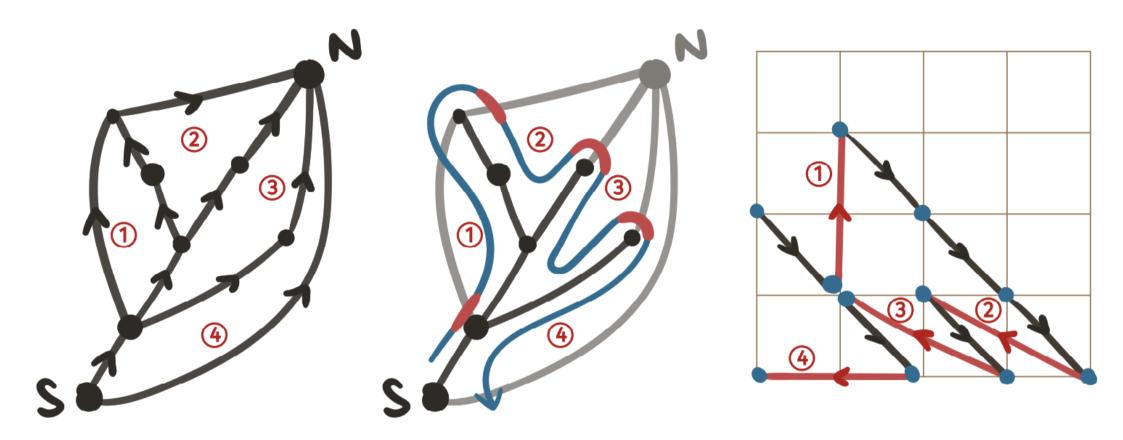


Example: build orientation associated to



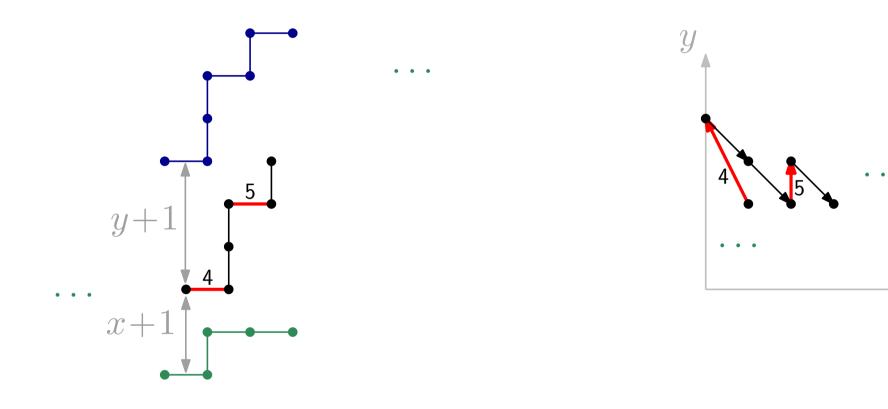


From bipolar orientation to tandem walk



Link with non-intersecting triples of walks

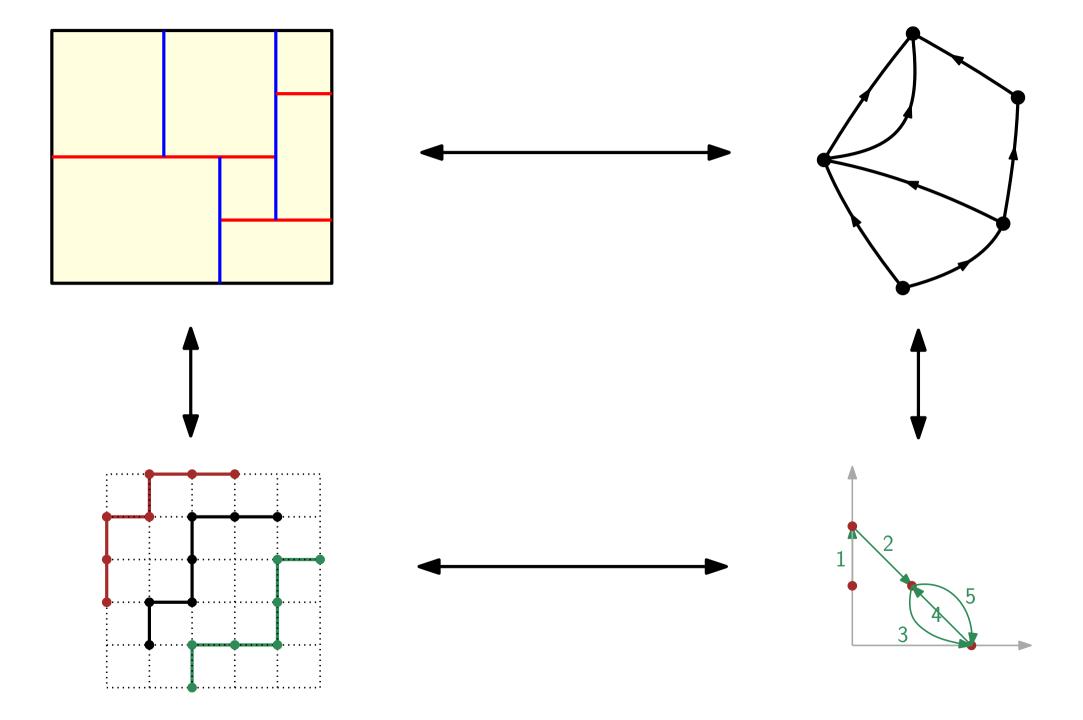
[Bousquet-Mélou, F, Raschel'20]



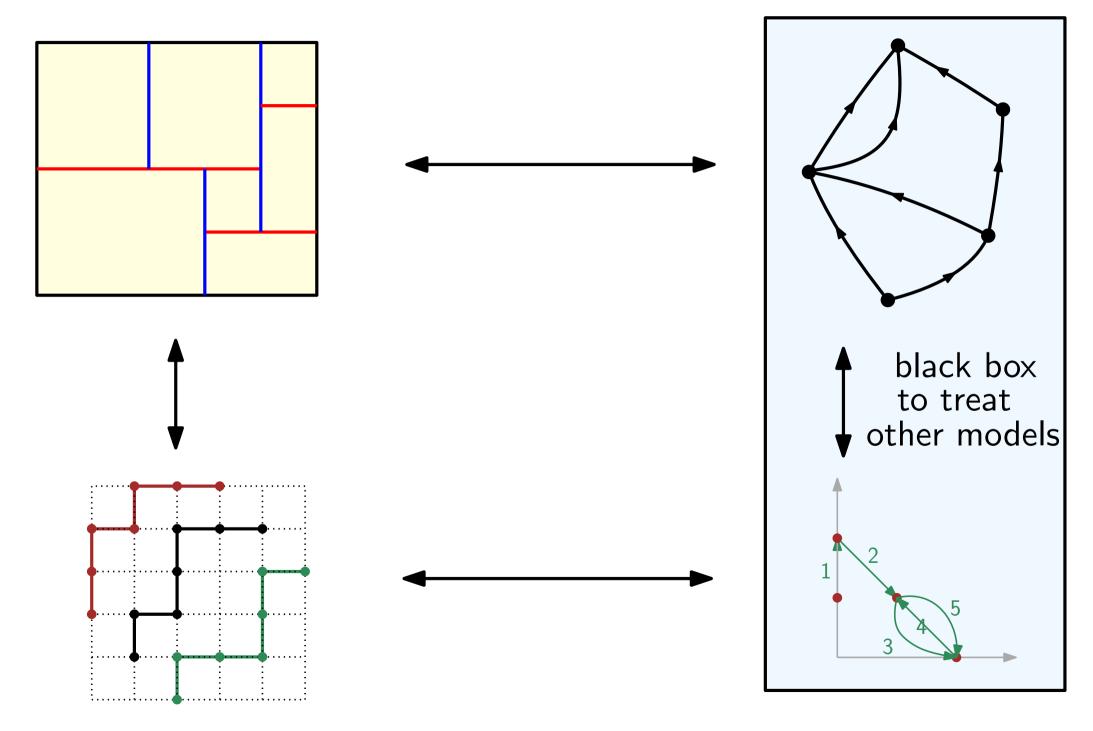
non-intersecting triple

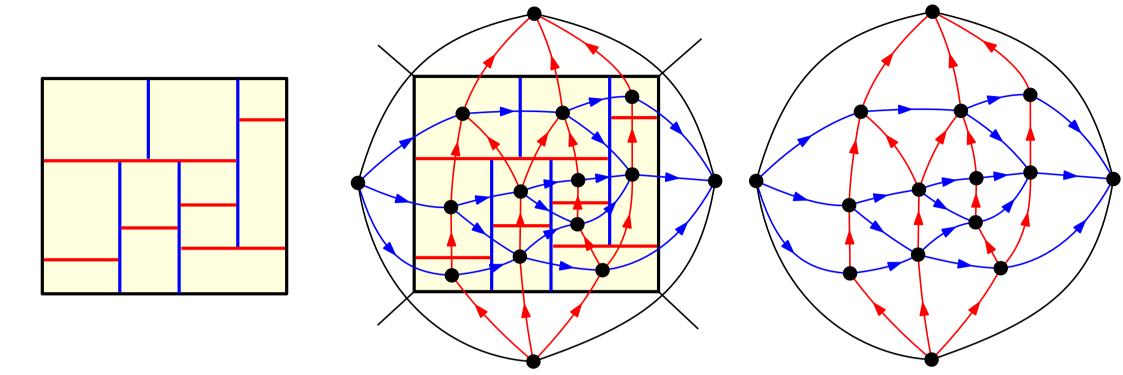
tandem walk

Summary of bijections so far

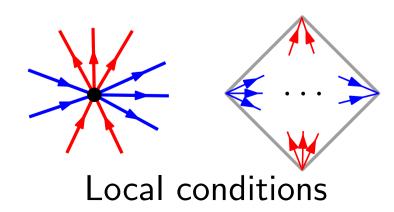


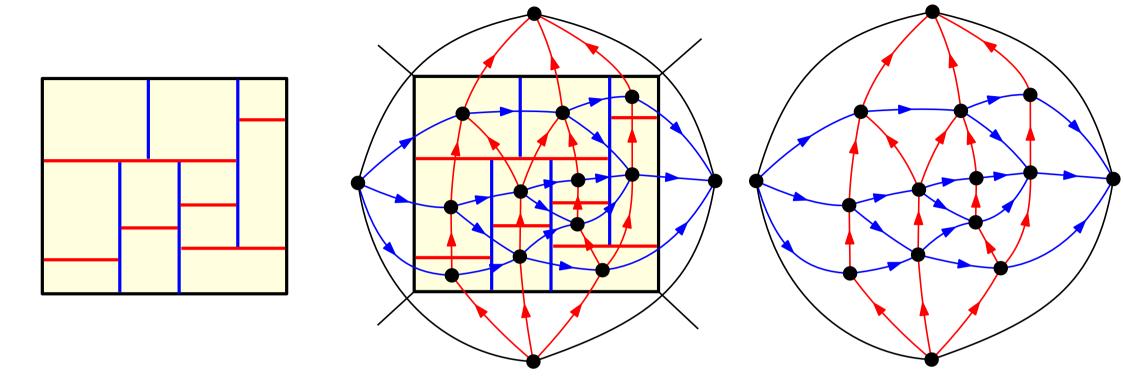
Summary of bijections so far

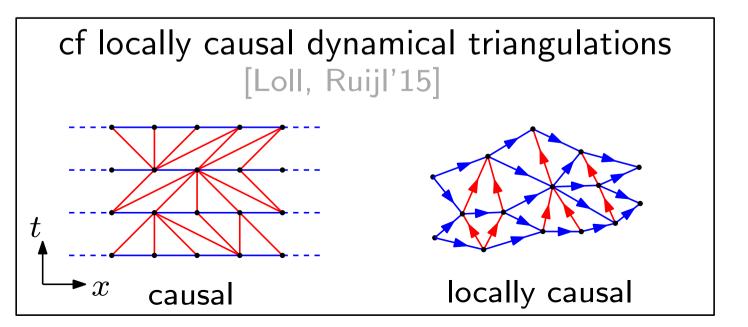




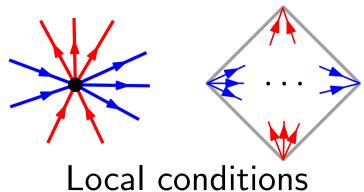
Pair of transversal plane bipolar orientations



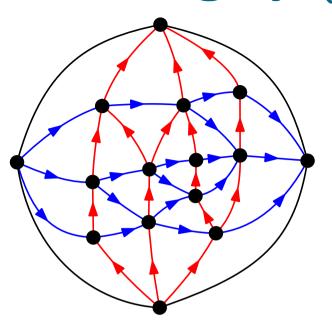




Pair of transversal plane bipolar orientations

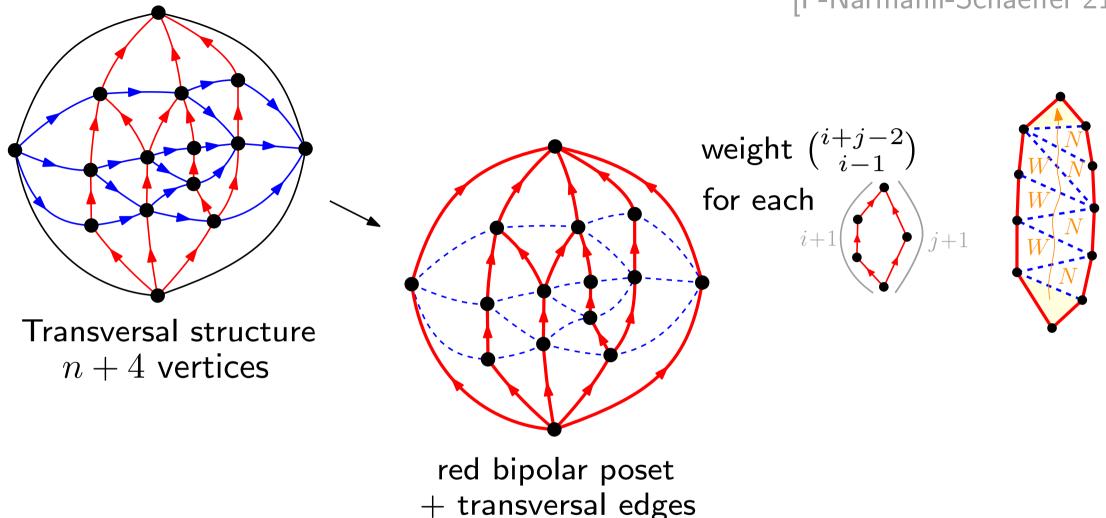


Encoding by (weighted) tandem walks



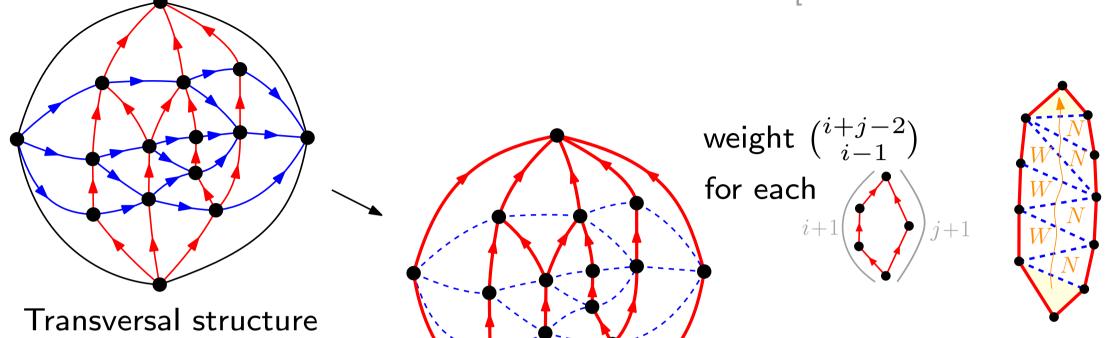
Transversal structure n+4 vertices

Encoding by (weighted) tandem walks [F-Narmanli-Schaeffer'21]



Encoding by (weighted) tandem walks

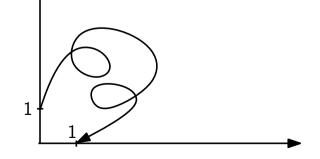
[F-Narmanli-Schaeffer'21]



Transversal structure n+4 vertices

red bipolar poset+ transversal edges

weight $\binom{i+j-2}{i-1}$ for each step (-i,j)



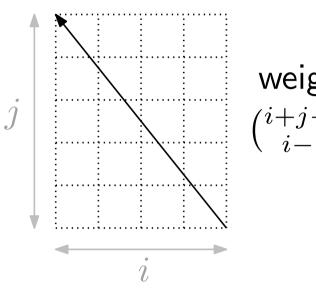
weighted tandem walk with n SE steps

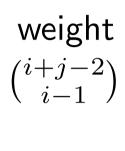
Encoding by tandem walks with small steps

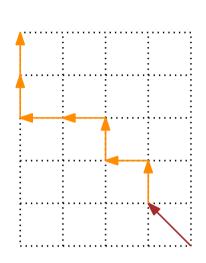
[F-Narmanli-Schaeffer'21]

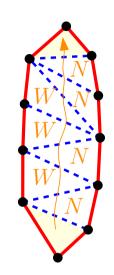
face-step

decoration by small-step portion







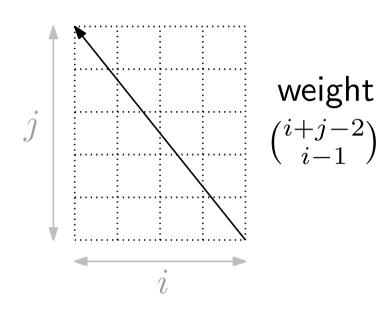


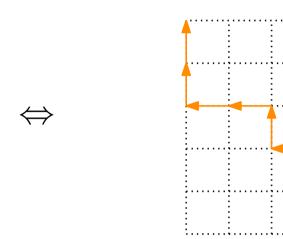
Encoding by tandem walks with small steps

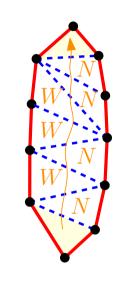
[F-Narmanli-Schaeffer'21]

face-step

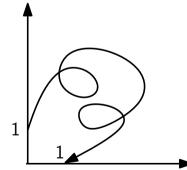
decoration by small-step portion



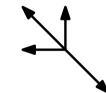




$$s_n = \#$$
 walks



on step-set



n-2 steps

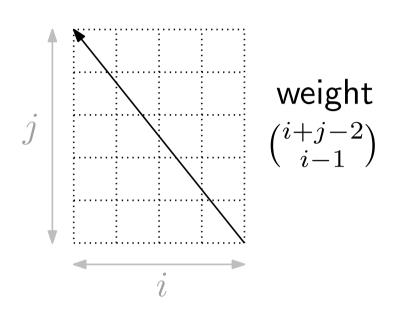
with no patterns

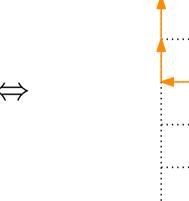
Encoding by tandem walks with small steps

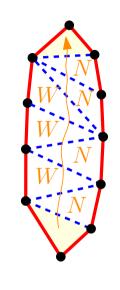
[F-Narmanli-Schaeffer'21]

face-step

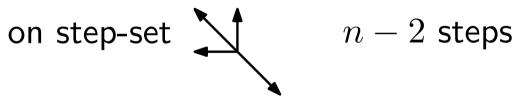
decoration by small-step portion







$$s_n = \#$$
 walks



with no patterns

⇒ explicit recurrence

$$\sum_{n} s_n t^n = t + 2t^2 + 6t^3 + 24t^4 + 116t^5 + 642t^6 + 3938t^7 + \cdots$$

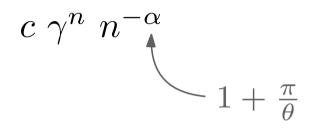
other recurrence (& small step walks) [Inoue, Takahashi, Fujimaki'09]

Asymptotic enumeration

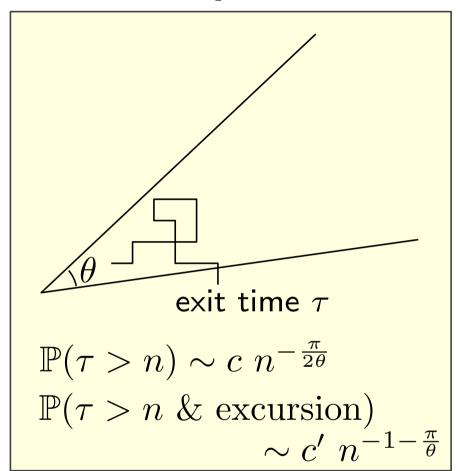
[F-Narmanli-Schaeffer'21]

relies on [Denisov-Wachtel'11, Bostan-Raschel-Salvy'14]

Each of the counting sequences w_n, s_n has asymptotics of the form



	weak	strong
γ	8	27/2
$\cos(\theta)$	1/2	7/8
α	4	$\approx 7.21 \notin \mathbb{Q}$

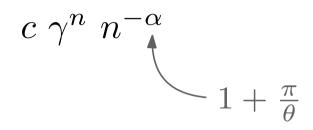


Asymptotic enumeration

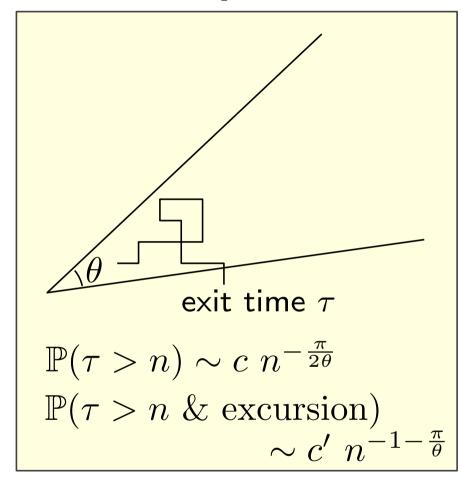
[F-Narmanli-Schaeffer'21]

relies on [Denisov-Wachtel'11, Bostan-Raschel-Salvy'14]

Each of the counting sequences w_n, s_n has asymptotics of the form



	weak	strong
γ	8	27/2
$\cos(\theta)$	1/2	7/8
$\overline{\alpha}$	4	$\approx 7.21 \notin \mathbb{Q}$



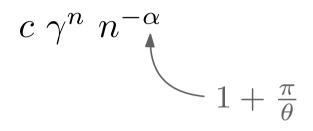
not D-finite

Asymptotic enumeration

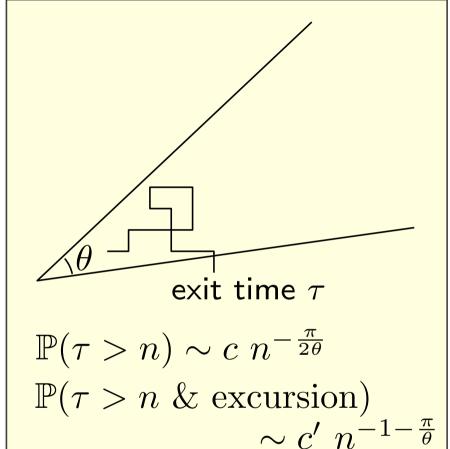
[F-Narmanli-Schaeffer'21]

relies on [Denisov-Wachtel'11, Bostan-Raschel-Salvy'14]

Each of the counting sequences w_n, s_n has asymptotics of the form



	weak	strong
γ	8	27/2
$\cos(\theta)$	1/2	7/8
$\overline{\alpha}$	4	$\approx 7.21 \notin \mathbb{Q}$



optimal encoding

► [Takahashi, Fujimaki, Inoue'09]

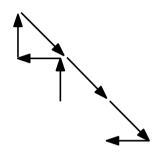
$$s_n \le {3n \choose n} 2^n$$

not D-finite

Illustration on tandem walks with small steps

(triangulated bipolar orientations)

Random walk

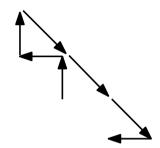


$$\mathbb{P}(\text{each step}) = \frac{1}{3}$$

Illustration on tandem walks with small steps

(triangulated bipolar orientations)

Random walk



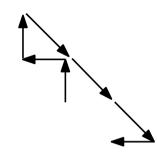
$$\mathbb{P}(\text{each step}) = \frac{1}{3}$$

$$Cov = \begin{pmatrix} \mathbb{E}(X^2) & \mathbb{E}(XY) \\ \mathbb{E}(XY) & \mathbb{E}(Y^2) \end{pmatrix} = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{pmatrix}$$

Illustration on tandem walks with small steps

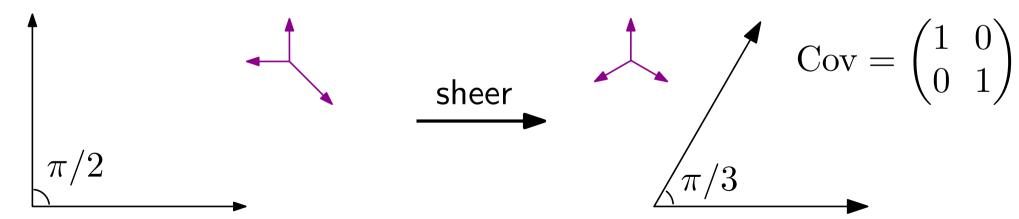
(triangulated bipolar orientations)

Random walk



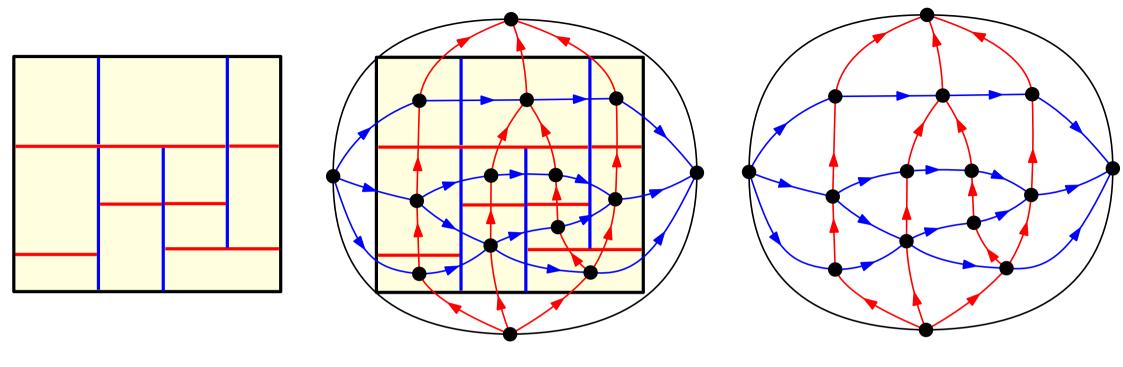
$$\mathbb{P}(\text{each step}) = \frac{1}{3}$$

$$Cov = \begin{pmatrix} \mathbb{E}(X^2) & \mathbb{E}(XY) \\ \mathbb{E}(XY) & \mathbb{E}(Y^2) \end{pmatrix} = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{pmatrix}$$

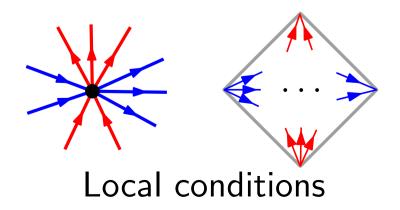


 \Rightarrow # quadrant excursions length $3n \sim c \cdot 27^n n^{-4}$ ($\alpha = 4$ universal for plane bipolar orientations)

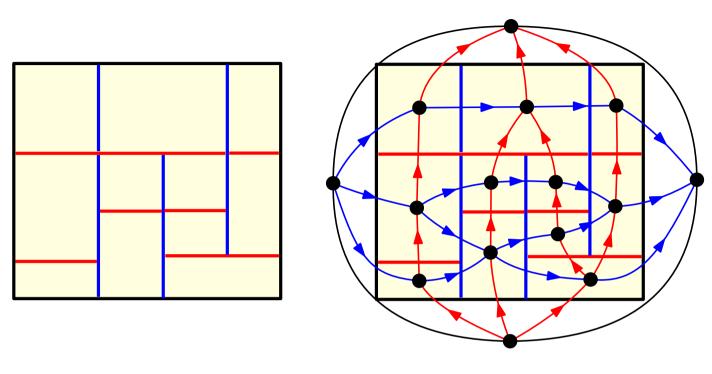
Non-generic rectangulations

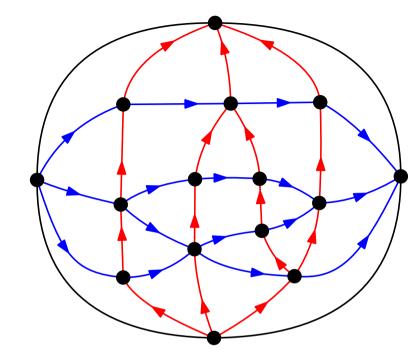


Pair of transversal plane bipolar orientations

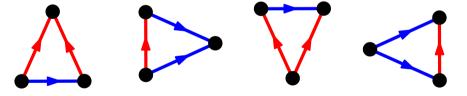


Non-generic rectangulations

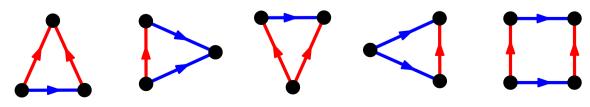




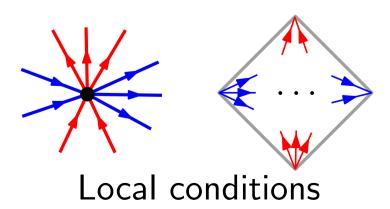
Generic case: inner faces of 4 types



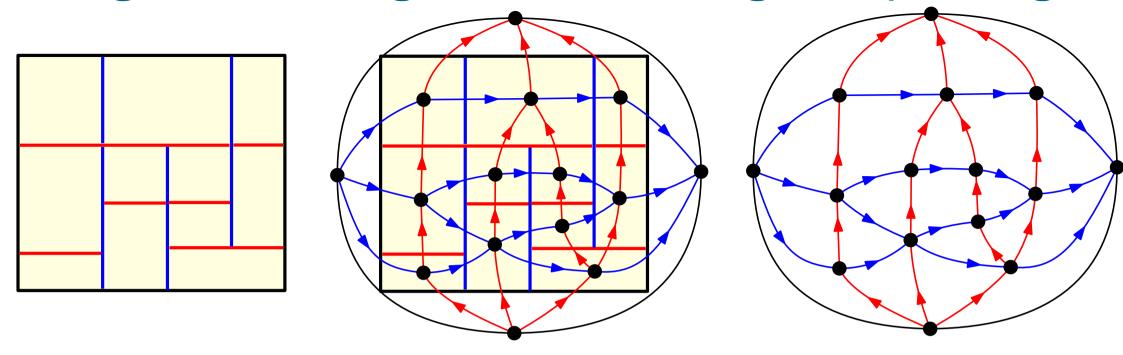
Non-generic case: inner faces of 5 types



Pair of transversal plane bipolar orientations



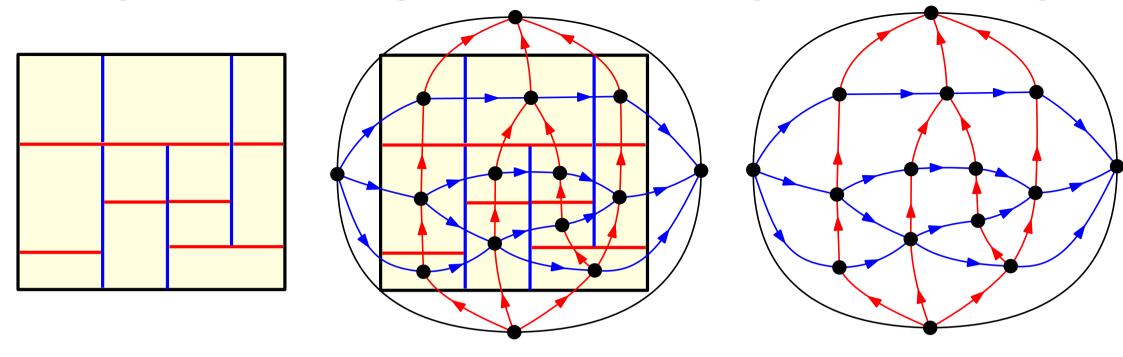
Non-generic rectangulations with weighted quadrangles



Let
$$s_n(v) = \#$$
 rectangulations with n regions, weight v per

=# transversal structures with n+4 vertices, weight v per

Non-generic rectangulations with weighted quadrangles

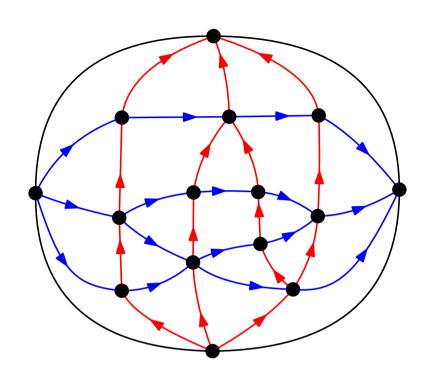


Let
$$s_n(v) = \#$$
 rectangulations with n regions, weight v per

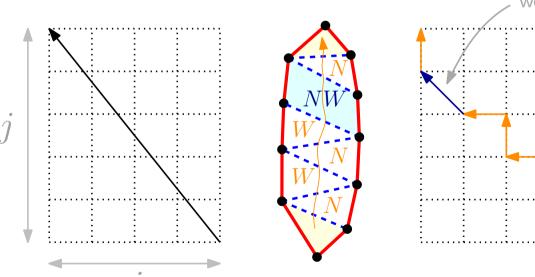
=# transversal structures with n+4 vertices, weight v per

$$\sum_{n} s_n(v)t^n = t + 2t^2 + 6t^3 + (24 + v)t^4 + (116 + 12v)t^5 + (642 + 114v + 2v^2)t^6 + (3938 + 1028v + 48v^2)t^7 + \cdots$$

Encoding by tandem walks



small-step portion for a face

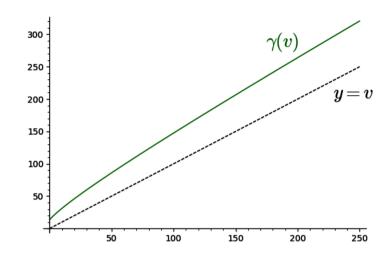


weight on face-step (-i,j): $w(i,j) = \sum_k v^k {i+j-2-k \choose k} {i+j-2-2k \choose i-1-k}$

[F-Narmanli-Schaeffer'21]

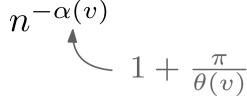
For
$$v > 0$$
,

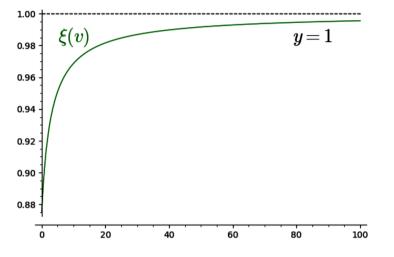
$$s_n(v) \sim c(v) \ \gamma(v)^n$$



$$\gamma(v) = \frac{1}{2(2+v)} (2v^2 + 18v + 27 + (9+4v)^{3/2})$$

$$\gamma(0) = 27/2$$





$$\xi(v) = \frac{1}{4(2+v)^2} \left(4v^2 + 14v + 11 + \sqrt{9+4v} \right)$$

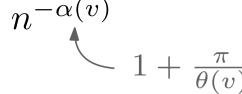
$$\xi(0) = 7/8$$

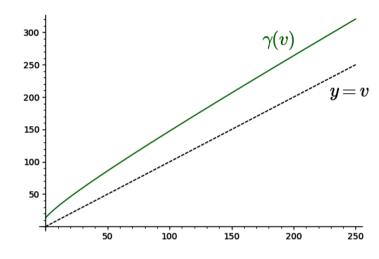
$$\cos(\theta(v))$$

[F-Narmanli-Schaeffer'21]

For
$$v > 0$$
,

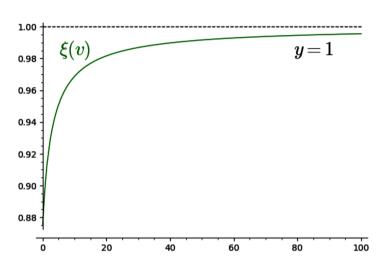
$$s_n(v) \sim c(v) \gamma(v)^n$$





$$\gamma(v) = \frac{1}{2(2+v)} (2v^2 + 18v + 27 + (9+4v)^{3/2})$$

$$\gamma(0) = 27/2$$



$$\xi(v) = \frac{1}{4(2+v)^2} \left(4v^2 + 14v + 11 + \sqrt{9+4v} \right)$$

$$\xi(0) = \frac{1}{\xi(0)}$$

Regime $v \to \infty$ $\gamma(v) \sim v, \quad \alpha(v) \to \infty$ \sim regular grid

$$\gamma(v) \sim v$$

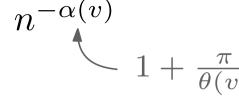
$$\alpha(v) \to \infty$$

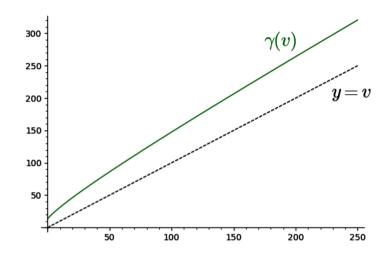
Regime v = O(1) random lattice (universality class evolves with v)

[F-Narmanli-Schaeffer'21]

For
$$v > 0$$
,

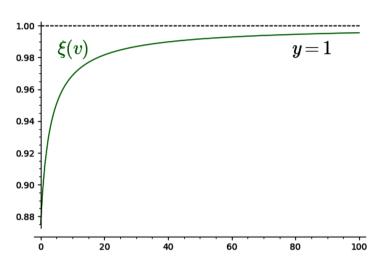
$$s_n(v) \sim c(v) \gamma(v)^n$$





$$\gamma(v) = \frac{1}{2(2+v)} (2v^2 + 18v + 27 + (9+4v)^{3/2})$$

$$\gamma(0) = 27/2$$



$$\xi(v) = \frac{1}{4(2+v)^2} \left(4v^2 + 14v + 11 + \sqrt{9+4v} \right)$$

$$\xi(0) = 7$$

$$\cos(\theta(v))$$

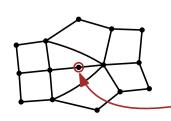
Regime
$$v \to \infty$$
 $\gamma(v) \sim v, \quad \alpha(v) \to \infty$ \sim regular grid

$$\gamma(v) \sim v$$

$$\alpha(v) \to \infty$$

Regime v = O(1) random lattice (universality class evolves with v)

cf [Kazakov, Staudacher, Wynter'96] (other interpolating model)



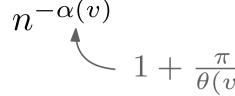
Eulerian quadrangulations

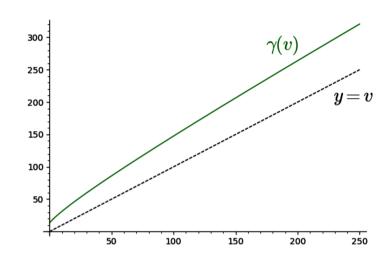
weight v^{-1} per -

[F-Narmanli-Schaeffer'21]

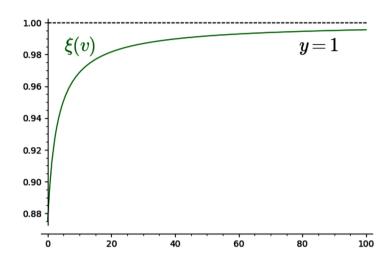
For
$$v > 0$$
,

$$s_n(v) \sim c(v) \ \gamma(v)^n$$





$$\gamma(v) = \frac{1}{2(2+v)} \left(2v^2 + 18v + 27 + (9+4v)^{3/2}\right)$$



$$\xi(v) = \frac{1}{4(2+v)^2} \left(4v^2 + 14v + 11 + \sqrt{9+4v} \right)$$

$$\xi(0) = \frac{1}{\xi(0)}$$

Rk: $\gamma(v), \xi(v) > 0$ for $v \ge -2$

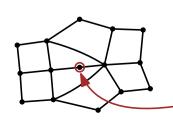
Regime
$$v \to \infty$$
 $\gamma(v) \sim v, \quad \alpha(v) \to \infty$ \sim regular grid

$$\gamma(v) \sim v$$

$$\alpha(v) \to \infty$$

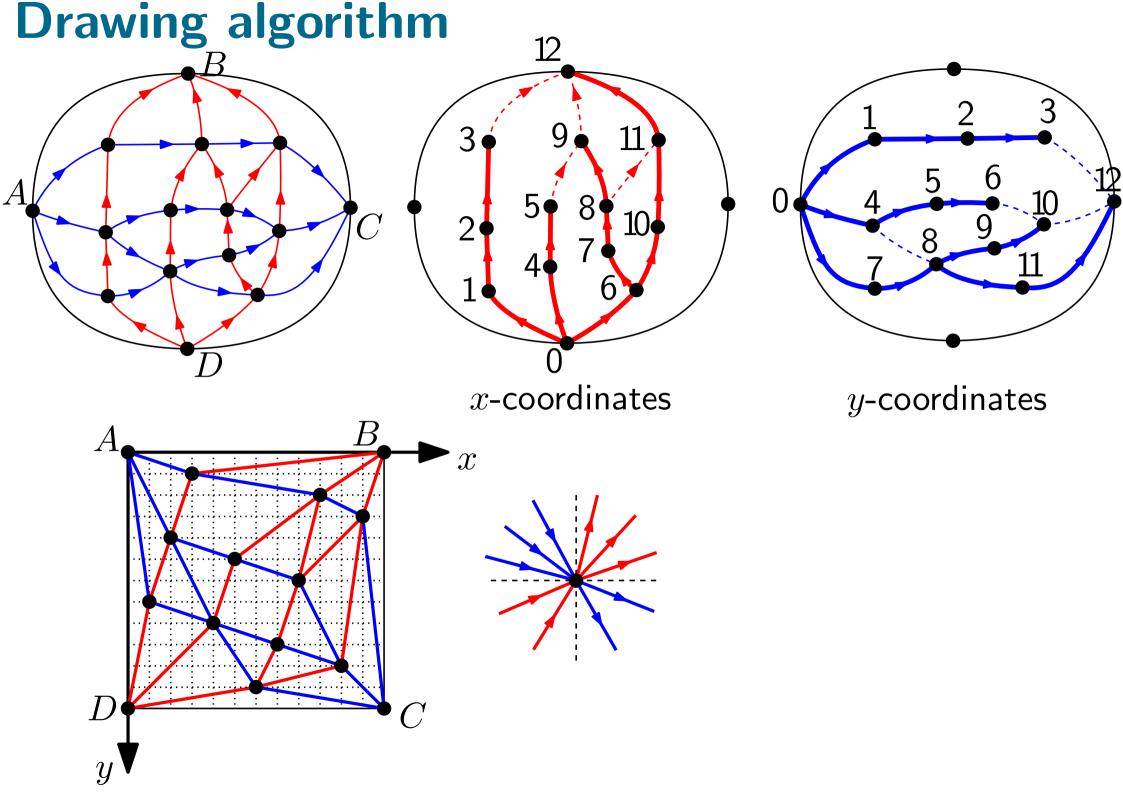
Regime v = O(1) random lattice (universality class evolves with v)

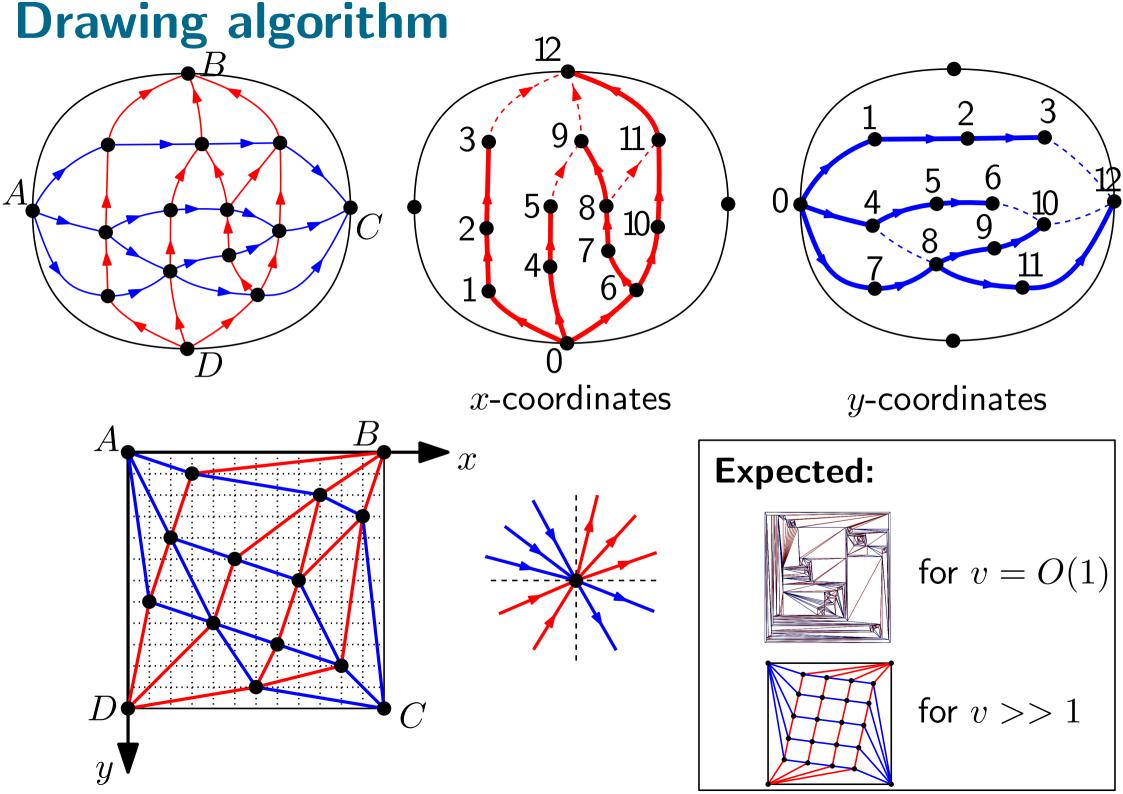
cf [Kazakov, Staudacher, Wynter'96] (other interpolating model)



Eulerian quadrangulations

weight v^{-1} per -

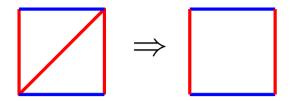


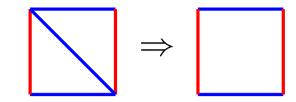


Reduction of a transversal structure

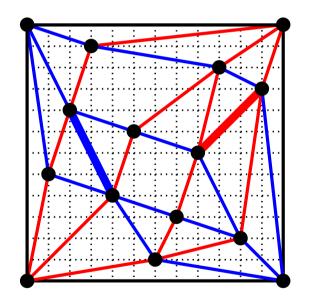
Reduction of a transversal structure (that possibly has quadrangles)

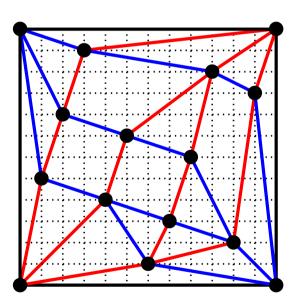
Apply in parallel





Property: A transversal structure gives same drawing as its reduced form

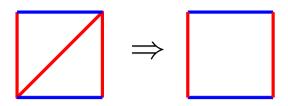


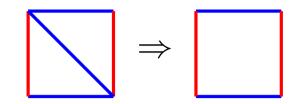


Reduction of a transversal structure

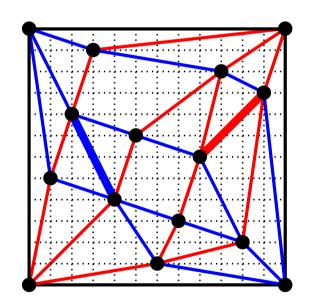
Reduction of a transversal structure (that possibly has quadrangles)

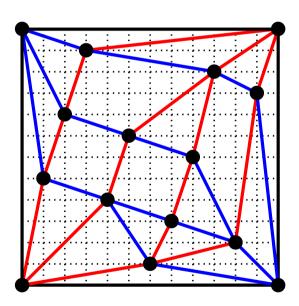
Apply in parallel





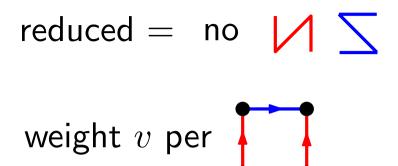
Property: A transversal structure gives same drawing as its reduced form

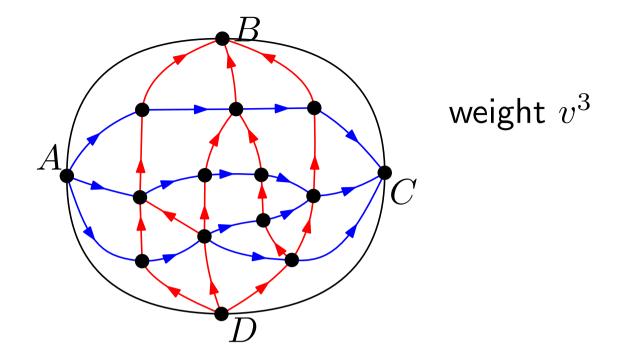


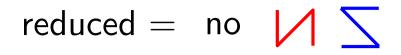


Property: Drawing is bijection from reduced transversal structures no

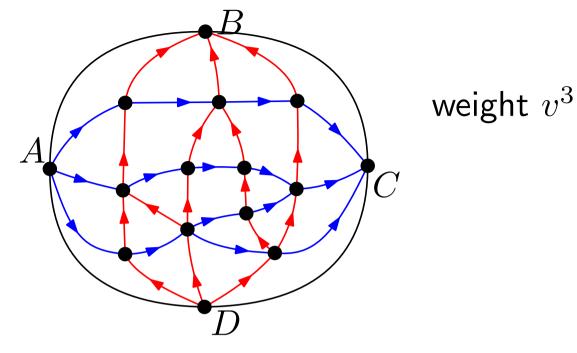
to semi-Baxter permutations (no $3\underline{14}2$)



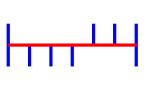


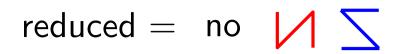


weight
$$v$$
 per

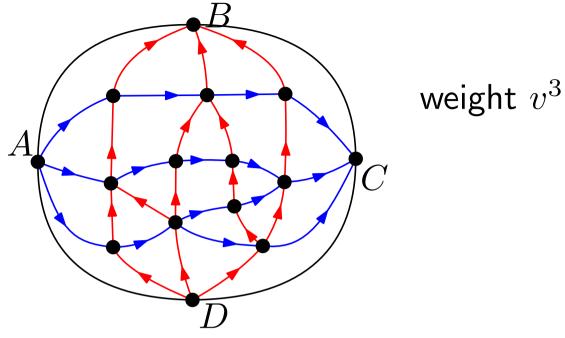


⇔ weak rectangulations (Baxter numbers)

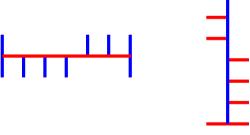




weight v per

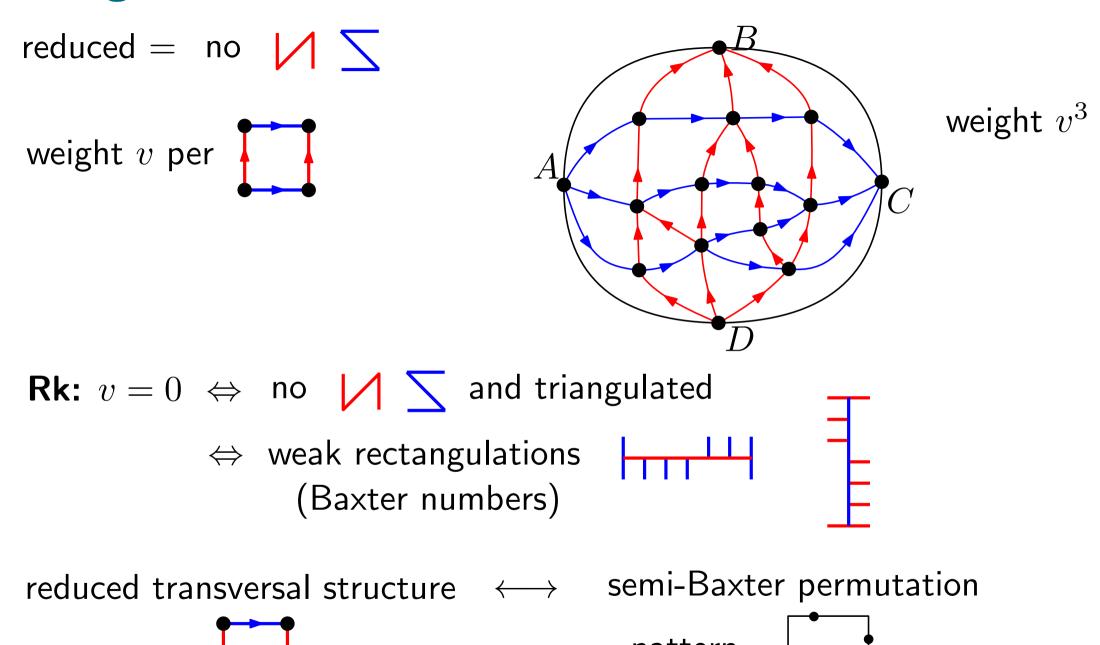


⇔ weak rectangulations (Baxter numbers)



reduced transversal structure \longleftrightarrow semi-Baxter permutation

<→ pattern

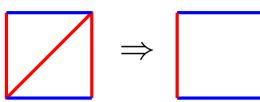


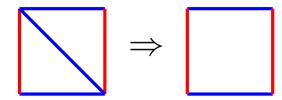
 $v=0 \Leftrightarrow \mathsf{Baxter\ permutations\ (no\ 3142\ 2413)}$

Link between the two v-weighted modeles

Reduction of a transversal structure (that possibly has quadrangles)

Apply in parallel



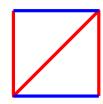


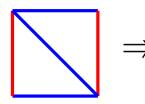
$$reduced = no$$

Link between the two v-weighted modeles

Reduction of a transversal structure (that possibly has quadrangles)

Apply in parallel

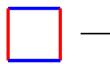




reduced = no

Property: $\tilde{s}_n(v) :=$ analogue of $s_n(v)$ on reduced transversal structures

$$s_n(v) = \tilde{s}_n(2+v) \quad \text{cf} \quad \longrightarrow \quad + \quad \boxed{} + \quad \boxed{}$$

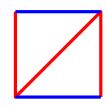


So $s_n(v)$ has combinatorial meaning for $v \ge -2$

Link between the two v-weighted modeles

Reduction of a transversal structure (that possibly has quadrangles)

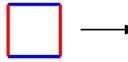
Apply in parallel



reduced = no

Property: $\tilde{s}_n(v) :=$ analogue of $s_n(v)$ on reduced transversal structures

$$s_n(v) = \tilde{s}_n(2+v) \quad \text{cf} \quad \longrightarrow \quad + \quad \boxed{} + \quad \boxed{}$$



So $s_n(v)$ has combinatorial meaning for $v \ge -2$

v=-2 Baxter structures, asymptotics in n^{-4}

v=-1 semi-Baxter structures, asymptotics in n^{-6}