Enumeration of rectangulations

Éric Fusy (LIGM, Univ. Gustave Eiffel)

Joint work with Erkan Narmanli and Gilles Schaeffer

Planar maps

Def. Planar map = connected graph embedded on the sphere

Planar maps

Def. Planar map = connected graph embedded on the sphere

Planar maps

Def. Planar map = connected graph embedded on the sphere

Easier to draw in the plane (choosing root-face to be the outer face)

• Nice counting formulas for many natural families

[Tutte'60s]

e.g.
$$\#$$
 rooted maps n edges $=\frac{2}{n+2}3^n\mathrm{Cat}_n$

• Nice counting formulas for many natural families

[Tutte'60s]

e.g. # rooted maps
$$n$$
 edges = $\frac{2}{n+2}3^n \operatorname{Cat}_n$

• More generally, generating functions are algebraic

[Bousquet-Mélou-Jehanne'06]

& universal asymptotic behaviour for counting coefficients $c \gamma^n n^{-5/2}$

Nice counting formulas for many natural families

[Tutte'60s]

e.g. # rooted maps
$$n$$
 edges = $\frac{2}{n+2}3^n \operatorname{Cat}_n$

• More generally, generating functions are algebraic

[Bousquet-Mélou-Jehanne'06]

- & universal asymptotic behaviour for counting coefficients $c \gamma^n n^{-5/2}$
- Bijective proofs in many cases

[Schaeffer'97, Bouttier, Di Francesco, Guitter'04, Bernardi, F'12,

• Nice counting formulas for many natural families

[Tutte'60s]

- e.g. # rooted maps n edges = $\frac{2}{n+2}3^n \operatorname{Cat}_n$
- More generally, generating functions are algebraic

[Bousquet-Mélou-Jehanne'06]

- & universal asymptotic behaviour for counting coefficients $c \gamma^n n^{-5/2}$
- Bijective proofs in many cases

[Schaeffer'97, Bouttier, Di Francesco, Guitter'04, Bernardi, F'12, Albenque, Poulalhon'15, Bouttier-Guitter'15]

• Universal scaling limit (Brownian sphere) for random planar maps (rescaling distances by $n^{1/4}$)

[Chassaing, Schaeffer'04] [Le Gall'13, Miermont'13]

Link to Liouville Quantum Gravity [Miller-Sheffield'12]

Decorated planar map = planar map + structure (Ising model, proper coloring, Potts model, spanning tree, spanning forest, specific orientations,...)

Decorated planar map = planar map + structure (Ising model, proper coloring, Potts model,

spanning tree, spanning forest, specific orientations,...) new bijections & counting behaviours compared to "pure" planar maps

[Mullin'67, Bernardi-Bonichon'09, F-Poulalhon-Schaeffer'09, Albenque-Poulalhon'15,

Sheffield'11, Kenyon-Miller-Sheffield-Wilson'15, Bousquet-Mélou-Elvey-Price'18]

Decorated planar map = planar map + structure (Ising model, proper coloring, Potts model, spanning tree, spanning forest

spanning tree, spanning forest, specific orientations,...)

new bijections & counting behaviours compared to "pure" planar maps

[Mullin'67, Bernardi-Bonichon'09, F-Poulalhon-Schaeffer'09, Albenque-Poulalhon'15, Sheffield'11, Kenyon-Miller-Sheffield-Wilson'15, Bousquet-Mélou-Elvey-Price'18]

• Universality class "indicated" by asymptotic estimates $c\gamma^n n^{-\alpha}$ link to "central charge"

Decorated planar map = planar map + structure (Ising model, proper coloring, Potts model, spanning tree, spanning forest, specific orientations,...)

4-regular map + Eulerian orientation

new bijections & counting behaviours compared to "pure" planar maps

[Mullin'67, Bernardi-Bonichon'09, F-Poulalhon-Schaeffer'09, Albenque-Poulalhon'15, Sheffield'11, Kenyon-Miller-Sheffield-Wilson'15, Bousquet-Mélou-Elvey-Price'18]

• Universality class "indicated" by asymptotic estimates $c\gamma^n n^{-\alpha}$ link to "central charge" –

conjectural scaling limits & bounds on magnitude of typical distances

[Watabiki'93, Ding-Gwynne'18, Ding-Goswami'18, Ang'19, Gwynne-Pfeffer'19, Barkley-Budd'19]

Decorated planar map = planar map + structure (Ising model, proper coloring, Potts model,

spanning tree, spanning forest, specific orientations,...)

• new bijections & counting behaviours compared to "pure" planar maps

[Mullin'67, Bernardi-Bonichon'09, F-Poulalhon-Schaeffer'09, Albenque-Poulalhon'15, Sheffield'11, Kenyon-Miller-Sheffield-Wilson'15, Bousquet-Mélou-Elvey-Price'18]

• Universality class "indicated" by asymptotic estimates $c\gamma^n n^{-\alpha}$ link to "central charge"

conjectural scaling limits & bounds on magnitude of typical distances [Watabiki'93, Ding-Gwynne'18, Ding-Goswami'18, Ang'19, Gwynne-Pfeffer'19, Barkley-Budd'19]

• Some of these structures give nice geometric representations of maps

Rectangulations

Rectangulation = tiling of a rectangle by rectangles

Rectangulations

Rectangulation = tiling of a rectangle by rectangles

Called "generic" if no

Not generic

used in "cartogram" representations

[van Kreveld-Speckmann'04]
[Eppstein-Mumford-Speckmann-Verbeek'12]

Rectangulations

Rectangulation = tiling of a rectangle by rectangles

This talk:

- Link to decorated planar maps & bijections to walks
- Exact enumeration
- Asymptotic enumeration

Two types of equivalences for rectangulations

(order of contacts along each maximal segment is preserved)

(order of contacts on each side of maximal segments is preserved)

Two types of equivalences for rectangulations

Strong

(order of contacts along each maximal segment is preserved)

Weak

 \simeq

_ ~ _

(order of contacts on each side of maximal segments is preserved)

 $w_n = \#$ weak equivalence classes with n regions

 $s_n = \#$ strong equivalence classes with n regions

Weak equivalence class: shelling order

[Ackerman, Barequet, Pinter'06]

Contract top-left region: two cases

 \Rightarrow shelling order on regions

Diagonal representation

Encoding by a triple of walks

[Dulucq, Guibert'98]

Gessel-Viennot
$$\Rightarrow$$

Gessel-Viennot
$$\Rightarrow$$
 $w_n = \frac{2}{n(n+1)^2} \sum_{r=0}^{n-1} {n+1 \choose r} {n+1 \choose r+1} {n+1 \choose r+2}$ Baxter numbers

$$w_n \sim \frac{2^5}{\pi\sqrt{3}} 8^n n^{-4}$$

Gessel-Viennot
$$\Rightarrow$$
 $w_n = \frac{2}{n(n+1)^2} \sum_{r=0}^{n-1} \binom{n+1}{r} \binom{n+1}{r+1} \binom{n+1}{r+2}$ Baxter numbers

 $w_n \sim \frac{2^5}{\pi \sqrt{3}} 8^n n^{-4}$

Baxter families are families counted by Baxter numbers among which Baxter permutations, plane bipolar orientations, ...

Various bijections relating these families (common generating tree)

[Dulucg-Guibert'98, Chow-Erikkson-Fan'05, Ackerman-Barequet-Pinter'06, F-Poulalhon-Schaeffer'07 F-Poulalhon-Schaeffer'07, Felsner-F-Noy-Orden'10, Bonichon-Bousquet-Mélou-F'09, Albenque-Poulalhon'13

Gessel-Viennot
$$\Rightarrow$$

$$w_n = \frac{2}{n(n+1)^2} \sum_{r=0}^{n-1} \binom{n+1}{r} \binom{n+1}{r+1} \binom{n+1}{r+2}$$
 Baxter numbers

 $w_n \sim \frac{2^5}{\pi \sqrt{3}} 8^n n^{-4}$

Baxter families are families counted by Baxter numbers among which Baxter permutations, plane bipolar orientations, ...

Various bijections relating these families (common generating tree)

[Dulucg-Guibert'98, Chow-Erikkson-Fan'05, Ackerman-Barequet-Pinter'06, F-Poulalhon-Schaeffer'07

F-Poulalhon-Schaeffer'07, Felsner-F-Noy-Orden'10, Bonichon-Bousquet-Mélou-F'09, Albenque-Poulalhon'13

Gessel-Viennot
$$\Rightarrow$$
 $w_n = \frac{2}{n(n+1)^2} \sum_{r=0}^{n-1} \binom{n+1}{r} \binom{n+1}{r+1} \binom{n+1}{r+2}$ Baxter numbers

 $w_n \sim \frac{2^5}{\pi \sqrt{3}} 8^n n^{-4}$

Baxter families are families counted by Baxter numbers among which Baxter permutations, plane bipolar orientations, ...

Various bijections relating these families (common generating tree)

[Dulucg-Guibert'98, Chow-Erikkson-Fan'05, Ackerman-Barequet-Pinter'06, F-Poulalhon-Schaeffer'07 F-Poulalhon-Schaeffer'07, Felsner-F-Noy-Orden'10, Bonichon-Bousquet-Mélou-F'09, Albenque-Poulalhon'13

Link to weak order on permutations: [Reading'04,12] mapping $\mathfrak{S}_n o \mathcal{R}_n$

grouping permutations by rectangulation gives a lattice congruence

Plane bipolar orientations

Acyclic orientation on planar map with single min and single max both incident to the outer face

Plane bipolar orientations ⇔ local conditions

Bijective link with weak rectangulations

Bijective link with weak rectangulations

Correspondence used in problem "squaring the square"

[Brooks, Smith, Stone, Tutte'40]

A more precise walk-encoding: the KMSW bijection

[Kenyon, Miller, Sheffield, Wilson'15]

Plane bipolar orientations

"Tandem walks" in the quadrant

A more precise walk-encoding: the KMSW bijection

[Kenyon, Miller, Sheffield, Wilson'15]

Plane bipolar orientations

"Tandem walks" in the quadrant

n edges

face
$$i+1$$
 face-step $(-i,j)$

non-pole vertex

SE step

Orientation is built step by step from the walk,

Orientation is built step by step from the walk,

Starts with

Ends with

Example: build orientation associated to

From bipolar orientation to tandem walk

Link with non-intersecting triples of walks

[Bousquet-Mélou, F, Raschel'20]

non-intersecting triple

tandem walk

Summary of bijections so far

Summary of bijections so far

Pair of transversal plane bipolar orientations

Pair of transversal plane bipolar orientations

Encoding by (weighted) tandem walks

Transversal structure n+4 vertices

Encoding by (weighted) tandem walks [F-Narmanli-Schaeffer'21]

Encoding by (weighted) tandem walks

[F-Narmanli-Schaeffer'21]

Transversal structure n+4 vertices

red bipolar poset+ transversal edges

weight $\binom{i+j-2}{i-1}$ for each step (-i,j)

weighted tandem walk with n SE steps

Encoding by tandem walks with small steps

[F-Narmanli-Schaeffer'21]

face-step

decoration by small-step portion

Encoding by tandem walks with small steps

[F-Narmanli-Schaeffer'21]

face-step

decoration by small-step portion

$$s_n = \#$$
 walks

on step-set

n-2 steps

with no patterns

Encoding by tandem walks with small steps

[F-Narmanli-Schaeffer'21]

face-step

decoration by small-step portion

$$s_n = \#$$
 walks

with no patterns

⇒ explicit recurrence

$$\sum_{n} s_n t^n = t + 2t^2 + 6t^3 + 24t^4 + 116t^5 + 642t^6 + 3938t^7 + \cdots$$

other recurrence (& small step walks) [Inoue, Takahashi, Fujimaki'09]

Asymptotic enumeration

[F-Narmanli-Schaeffer'21]

relies on [Denisov-Wachtel'11, Bostan-Raschel-Salvy'14]

Each of the counting sequences w_n, s_n has asymptotics of the form

	weak	strong
γ	8	27/2
$\cos(\theta)$	1/2	7/8
α	4	$\approx 7.21 \notin \mathbb{Q}$

Asymptotic enumeration

[F-Narmanli-Schaeffer'21]

relies on [Denisov-Wachtel'11, Bostan-Raschel-Salvy'14]

Each of the counting sequences w_n, s_n has asymptotics of the form

	weak	strong
γ	8	27/2
$\cos(\theta)$	1/2	7/8
$\overline{\alpha}$	4	$\approx 7.21 \notin \mathbb{Q}$

not D-finite

Asymptotic enumeration

[F-Narmanli-Schaeffer'21]

relies on [Denisov-Wachtel'11, Bostan-Raschel-Salvy'14]

Each of the counting sequences w_n, s_n has asymptotics of the form

	weak	strong
γ	8	27/2
$\cos(\theta)$	1/2	7/8
$\overline{\alpha}$	4	$\approx 7.21 \notin \mathbb{Q}$

optimal encoding

► [Takahashi, Fujimaki, Inoue'09]

$$s_n \le {3n \choose n} 2^n$$

not D-finite

Illustration on tandem walks with small steps

(triangulated bipolar orientations)

Random walk

$$\mathbb{P}(\text{each step}) = \frac{1}{3}$$

Illustration on tandem walks with small steps

(triangulated bipolar orientations)

Random walk

$$\mathbb{P}(\text{each step}) = \frac{1}{3}$$

$$Cov = \begin{pmatrix} \mathbb{E}(X^2) & \mathbb{E}(XY) \\ \mathbb{E}(XY) & \mathbb{E}(Y^2) \end{pmatrix} = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{pmatrix}$$

Illustration on tandem walks with small steps

(triangulated bipolar orientations)

Random walk

$$\mathbb{P}(\text{each step}) = \frac{1}{3}$$

$$Cov = \begin{pmatrix} \mathbb{E}(X^2) & \mathbb{E}(XY) \\ \mathbb{E}(XY) & \mathbb{E}(Y^2) \end{pmatrix} = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{pmatrix}$$

 \Rightarrow # quadrant excursions length $3n \sim c \cdot 27^n n^{-4}$ ($\alpha = 4$ universal for plane bipolar orientations)

Non-generic rectangulations

Pair of transversal plane bipolar orientations

Non-generic rectangulations

Generic case: inner faces of 4 types

Non-generic case: inner faces of 5 types

Pair of transversal plane bipolar orientations

Non-generic rectangulations with weighted quadrangles

Let
$$s_n(v) = \#$$
 rectangulations with n regions, weight v per

=# transversal structures with n+4 vertices, weight v per

Non-generic rectangulations with weighted quadrangles

Let
$$s_n(v) = \#$$
 rectangulations with n regions, weight v per

=# transversal structures with n+4 vertices, weight v per

$$\sum_{n} s_n(v)t^n = t + 2t^2 + 6t^3 + (24 + v)t^4 + (116 + 12v)t^5 + (642 + 114v + 2v^2)t^6 + (3938 + 1028v + 48v^2)t^7 + \cdots$$

Encoding by tandem walks

small-step portion for a face

weight on face-step (-i,j): $w(i,j) = \sum_k v^k {i+j-2-k \choose k} {i+j-2-2k \choose i-1-k}$

[F-Narmanli-Schaeffer'21]

For
$$v > 0$$
,

$$s_n(v) \sim c(v) \ \gamma(v)^n$$

$$\gamma(v) = \frac{1}{2(2+v)} (2v^2 + 18v + 27 + (9+4v)^{3/2})$$

$$\gamma(0) = 27/2$$

$$\xi(v) = \frac{1}{4(2+v)^2} \left(4v^2 + 14v + 11 + \sqrt{9+4v} \right)$$

$$\xi(0) = 7/8$$

$$\cos(\theta(v))$$

[F-Narmanli-Schaeffer'21]

For
$$v > 0$$
,

$$s_n(v) \sim c(v) \gamma(v)^n$$

$$\gamma(v) = \frac{1}{2(2+v)} (2v^2 + 18v + 27 + (9+4v)^{3/2})$$

$$\gamma(0) = 27/2$$

$$\xi(v) = \frac{1}{4(2+v)^2} \left(4v^2 + 14v + 11 + \sqrt{9+4v} \right)$$

$$\xi(0) = \frac{1}{\xi(0)}$$

Regime $v \to \infty$ $\gamma(v) \sim v, \quad \alpha(v) \to \infty$ \sim regular grid

$$\gamma(v) \sim v$$

$$\alpha(v) \to \infty$$

Regime v = O(1) random lattice (universality class evolves with v)

[F-Narmanli-Schaeffer'21]

For
$$v > 0$$
,

$$s_n(v) \sim c(v) \gamma(v)^n$$

$$\gamma(v) = \frac{1}{2(2+v)} (2v^2 + 18v + 27 + (9+4v)^{3/2})$$

$$\gamma(0) = 27/2$$

$$\xi(v) = \frac{1}{4(2+v)^2} \left(4v^2 + 14v + 11 + \sqrt{9+4v} \right)$$

$$\xi(0) = 7$$

$$\cos(\theta(v))$$

Regime
$$v \to \infty$$
 $\gamma(v) \sim v, \quad \alpha(v) \to \infty$ \sim regular grid

$$\gamma(v) \sim v$$

$$\alpha(v) \to \infty$$

Regime v = O(1) random lattice (universality class evolves with v)

cf [Kazakov, Staudacher, Wynter'96] (other interpolating model)

Eulerian quadrangulations

weight v^{-1} per -

[F-Narmanli-Schaeffer'21]

For
$$v > 0$$
,

$$s_n(v) \sim c(v) \ \gamma(v)^n$$

$$\gamma(v) = \frac{1}{2(2+v)} \left(2v^2 + 18v + 27 + (9+4v)^{3/2}\right)$$

$$\xi(v) = \frac{1}{4(2+v)^2} \left(4v^2 + 14v + 11 + \sqrt{9+4v} \right)$$

$$\xi(0) = \frac{1}{\xi(0)}$$

Rk: $\gamma(v), \xi(v) > 0$ for $v \ge -2$

Regime
$$v \to \infty$$
 $\gamma(v) \sim v, \quad \alpha(v) \to \infty$ \sim regular grid

$$\gamma(v) \sim v$$

$$\alpha(v) \to \infty$$

Regime v = O(1) random lattice (universality class evolves with v)

cf [Kazakov, Staudacher, Wynter'96] (other interpolating model)

Eulerian quadrangulations

weight v^{-1} per -

Reduction of a transversal structure

Reduction of a transversal structure (that possibly has quadrangles)

Apply in parallel

Property: A transversal structure gives same drawing as its reduced form

Reduction of a transversal structure

Reduction of a transversal structure (that possibly has quadrangles)

Apply in parallel

Property: A transversal structure gives same drawing as its reduced form

Property: Drawing is bijection from reduced transversal structures no

to semi-Baxter permutations (no $3\underline{14}2$)

weight
$$v$$
 per

⇔ weak rectangulations (Baxter numbers)

weight v per

⇔ weak rectangulations (Baxter numbers)

reduced transversal structure \longleftrightarrow semi-Baxter permutation

<→ pattern

 $v=0 \Leftrightarrow \mathsf{Baxter\ permutations\ (no\ 3142\ 2413)}$

Link between the two v-weighted modeles

Reduction of a transversal structure (that possibly has quadrangles)

Apply in parallel

$$reduced = no$$

Link between the two v-weighted modeles

Reduction of a transversal structure (that possibly has quadrangles)

Apply in parallel

reduced = no

Property: $\tilde{s}_n(v) :=$ analogue of $s_n(v)$ on reduced transversal structures

$$s_n(v) = \tilde{s}_n(2+v) \quad \text{cf} \quad \longrightarrow \quad + \quad \boxed{} + \quad \boxed{}$$

So $s_n(v)$ has combinatorial meaning for $v \ge -2$

Link between the two v-weighted modeles

Reduction of a transversal structure (that possibly has quadrangles)

Apply in parallel

reduced = no

Property: $\tilde{s}_n(v) :=$ analogue of $s_n(v)$ on reduced transversal structures

$$s_n(v) = \tilde{s}_n(2+v) \quad \text{cf} \quad \longrightarrow \quad + \quad \boxed{} + \quad \boxed{}$$

So $s_n(v)$ has combinatorial meaning for $v \ge -2$

v=-2 Baxter structures, asymptotics in n^{-4}

v=-1 semi-Baxter structures, asymptotics in n^{-6}