Canonical Ordering for Triangulations on the Cylinder, with Applications to Periodic Straight-line Drawings

Luca Castelli Aleardi, Olivier Devillers and Éric Fusy

LIX, École Polytechnique, Palaiseau, France

GD'12, Redmond

Planar straight-line drawings

[Wagner'36]
[Fary'48] [Stein'51]

Planar straight-line drawings

[Wagner'36]
[Fary'48]
[Stein'51]

Classical algorithms:

[Tutte'63]
spring-embedding

[De Fraysseix,Pach,Pollack'88]
"FPP algo" incremental

[Schnyder'90] face-counting principle

Periodic straight-line drawings
On the cylinder (\Leftrightarrow annulus)

lifts to x-periodic drawing

[Kocay et al'01]
[Gortler et al'06]
[Gonçalves-Lévêque'12]
lifts to
x-periodic \& y-periodic drawing

1. Recall FPP algorithm 2. Extend to the cylinder 3. Get toroidal drawings [Castelli,Devillers,F'12]

Plane

Grid $(2 n-4) \times(n-2)$

Cylinder

Torus

1. Recall FPP algorithm 2. Extend to the cylinder 3. Get toroidal drawings [Castelli,Devillers,F'12]

Plane

Torus

$\operatorname{Grid} \leq 2 n \times(1+n(2 c+1))$

Canonical ordering for planar triangulations T a planar triangulation with marked bottom-edge e Canonical ordering $=$ shelling order (from top to bottom)

$T \backslash e$ has 7 vertices

At each step:

\Downarrow

Canonical ordering for planar triangulations T a planar triangulation with marked bottom-edge e Canonical ordering $=$ shelling order (from top to bottom)
$T \backslash e$ has 7 vertices

Canonical ordering for planar triangulations T a planar triangulation with marked bottom-edge e Canonical ordering $=$ shelling order (from top to bottom)

- 7

At each step:

\Downarrow

Canonical ordering for planar triangulations T a planar triangulation with marked bottom-edge e Canonical ordering $=$ shelling order (from top to bottom)

- 7

At each step:

\Downarrow
$T \backslash e$ has 7 vertices

Canonical ordering for planar triangulations T a planar triangulation with marked bottom-edge e Canonical ordering $=$ shelling order (from top to bottom) - 7

At each step:

$T \backslash e$ has 7 vertices

Canonical ordering for planar triangulations T a planar triangulation with marked bottom-edge e Canonical ordering $=$ shelling order (from top to bottom) -7
$T \backslash e$ has 7 vertices

At each step:

\Downarrow

Canonical ordering for planar triangulations T a planar triangulation with marked bottom-edge e Canonical ordering $=$ shelling order (from top to bottom) $\bullet 7$
$T \backslash e$ has 7 vertices

At each step:

\Downarrow

Canonical ordering for planar triangulations T a planar triangulation with marked bottom-edge e Canonical ordering $=$ shelling order (from top to bottom) - 7
$T \backslash e$ has 7 vertices

At each step:

\Downarrow

Canonical ordering: primal tree \& dual tree

 primal tree: parent of each vertex $v=$ neighbour of v of largest label dual tree: dual of primal tree (augmented with two outer edges)

Canonical ordering: successive induced graphs

Notation: G_{k} is the graph formed by e and $\{1, \ldots, k\}$

Canonical ordering: successive induced graphs

Notation: G_{k} is the graph formed by e and $\{1, \ldots, k\}$

Canonical ordering: successive induced graphs

Notation: G_{k} is the graph formed by e and $\{1, \ldots, k\}$

Incremental drawing algorithm

[de Fraysseix, Pollack, Pach'89]

Incremental drawing algorithm [de Fraysseix, Pollack, Pach'89]

Incremental drawing algorithm [de Fraysseix, Pollack, Pach'89]

Incremental drawing algorithm [de Fraysseix, Pollack, Pach'89]

[de Fraysseix, Pollack, Pach'89]

1. \triangle

2.

Grid size of $G_{k}: 2 k \times k$

Reformulation of the shift-step

At each step: insert two vertical strips of width 1 using the dual tree G_{k-1}

Reformulation of the shift-step

At each step: insert two vertical strips of width 1 using the dual tree

Reformulation of the shift-step

At each step: insert two vertical strips of width 1 using the dual tree

Reformulation of the shift-step

At each step: insert two vertical strips of width 1 using the dual tree

Reformulation of the shift-step

At each step: insert two vertical strips of width 1 using the dual tree

Reformulation of the shift-step

At each step: insert two vertical strips of width 1 using the dual tree

Reformulation of the shift-step

At each step: insert two vertical strips of width 1 using the dual tree

Reformulation of the shift-step

At each step: insert two vertical strips of width 1 using the dual tree

Reformulation of the shift-step

At each step: insert two vertical strips of width 1 using the dual tree

Reformulation of the shift-step

At each step: insert two vertical strips of width 1 using the dual tree

Reformulation of the shift-step

At each step: insert two vertical strips of width 1 using the dual tree

G_{k}

Extension to the cylinder: canonical ordering

annular representation

At each step:

Extension to the cylinder: canonical ordering

annular representation

At each step:

Extension to the cylinder: canonical ordering

annular representation

At each step:

Extension to the cylinder: canonical ordering

annular representation

At each step:

Extension to the cylinder: canonical ordering

annular representation

At each step:

Extension to the cylinder: canonical ordering

annular representation

At each step:

Extension to the cylinder: canonical ordering

annular representation

At each step:

Extension to the cylinder: canonical ordering

annular representation

At each step:

Terminates if no chordal edge incident to bottom cycle

Extension to the cylinder: canonical ordering

annular representation

At each step:

Underlying forest

annular representation

At each step:

Underlying forest + dual forest

Extension to the cylinder: drawing algorithm
G_{k-1}

At each step: - insert two vertical strips of width 1 - insert next vertex as in the planar case

Extension to the cylinder: drawing algorithm
G_{k-1}

At each step: - insert two vertical strips of width 1 - insert next vertex as in the planar case

Extension to the cylinder: drawing algorithm
G_{k-1}

At each step: - insert two vertical strips of width 1 - insert next vertex as in the planar case

Extension to the cylinder: drawing algorithm

G_{k-1}

At each step: - insert two vertical strips of width 1 - insert next vertex as in the planar case

Extension to the cylinder: drawing algorithm

G_{k-1}

At each step: - insert two vertical strips of width 1 - insert next vertex as in the planar case

Extension to the cylinder: drawing algorithm

G_{k-1}

At each step: - insert two vertical strips of width 1 - insert next vertex as in the planar case

Extension to the cylinder: drawing algorithm

G_{k-1}

At each step: - insert two vertical strips of width 1 - insert next vertex as in the planar case

Extension to the cylinder: drawing algorithm

G_{k-1}

At each step: - insert two vertical strips of width 1 - insert next vertex as in the planar case

Extension to the cylinder: drawing algorithm
G_{k-1}

G_{k}

At each step: - insert two vertical strips of width 1 - insert next vertex as in the planar case

Execution on an example

Execution on an example

Execution on an example

Execution on an example

Execution on an example

Execution on an example

Execution on an example

Execution on an example

Execution on an example

Execution on an example

Execution on an example

Execution on an example

Execution on an example

Grid size: $w=2 n$

Each edge has vertical extension at most w

$$
\Rightarrow h \leq n(2 d+1)
$$

with d the graph-distance between the two boundaries

Execution on an example

Grid size: $w=2 n$

Each edge has vertical extension at most w

$$
\Rightarrow h \leq n(2 d+1)
$$

with d the graph-distance between the two boundaries

Dealing with chordal edges at outer cycle initial spacing

Dealing with chordal edges at outer cycle initial spacing

Toroidal ṭriangulations \& tambourịne,, Every toroidal triangulation admits a "tambourine" [Bonichon, Gavoille, Labourel'06]

Torus

Cylinder

Getting a drawing on the (flat) torus

resinsert edges in tambourine

Getting a drawing on the (flat) torus

$\Delta h \leq 2 n+1$
resinsert edges in tambourine

$$
\begin{aligned}
& w \leq 2 n \\
& h \leq n(2 d+1)
\end{aligned}
$$

$$
d=2
$$

Getting a drawing on the (flat) torus

Torus

$\Delta h \leq 2 n+1$
resinsert edges in tambourine

Let $c=$ length shortest non-contractible cycle, $c \leq \sqrt{2 n}$
Can choose tambourine so that $d<c \Rightarrow h=O\left(n^{3 / 2}\right)$

Extensions and perspectives

- Extension to 3-connected maps on cylinder \& torus (cf Kant's extension of the FPP algorithm in the planar case)

weakly convex periodic straight-line drawing

Extensions and perspectives

- Extension to 3-connected maps on cylinder \& torus (cf Kant's extension of the FPP algorithm in the planar case)

weakly convex periodic straight-line drawing
- Extension of our method to higher genus ?

Polygonal scheme

[Duncan, Goodrich, Kobourov'99]
[Chambers, Eppstein, Goodrich, Löffler'00] drawing in polynomial area

periodic drawing out of circle packing

