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Simple orthogonal polyhedra

simple orthogonal polyhedron = 3d polyhedron such that, at each vertex
three axis-aligned segments meet

P <
: -

\ corner polyhedron (3 non-visible faces)

Rk: boundary forms a cubic (and bipartite) map on the sphere

Q: Which cubic bipartite planar maps admit a realization as
a simple orthogonal polyhedron?

(cf Steinitz theorem for convex polyhedra)
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Characterization of corner polyhedra maps

Every Abounds a face

Enumeration of these “corner triangulations”:
C(t) = cnt™ =3 + 3t° + 4t° + 157 + 39¢® 4 120tY + - - -
has rational expression in terms of Catalan generating function
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Enumeration of corner polyhedra

= counting plane partitions
by volume

[MacMahon'1896]
[I5:(1— q')"

P, = F# combinatorial types of corner polyhedra of size n
where size = # flats —3

Rk: p,, > ¢, forn>9

Q: e exact counting: formula? recurrence?
e asymptotic estimate?



Relation to some tricolored contact-systems
[Goncalves'19]

every corner triangulation has a unique
tricolored segment-contact representation as

\

Corner polyhedra (types) can be encoded bijectively by such a
topological tricolored contact-system of (smooth) curves
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Encoding by orientations

polyhedral orientation
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Encoding by orientations

polyhedral orientation

= 3 plane bipolar orientations
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Polyhedral orientation can be reconstructed from red bipolar orientation

Characterization:

e bipartite

e avoids and




Encoding bipolar orientations by quadrant walks

“Tandem walks” in the quadrant

Plane bipolar orientations

4 step-set
a+1 b-+1
d
— g SE U {(—i,),i,j > 0}

n edges length n — 1



Encoding bipolar orientations by quadrant walks

“Tandem walks” in the quadrant

Plane bipolar orientations

4 step-set
a+1 b-+1 -
d
— g SE U {(—i,),i,j > 0}
n edges length n — 1

face i+1<<>>j+1 - face-step (_ivj)

non-pole vertex <————» SE step



KMSW bijection

From bipolar orientation to tandem walk

S

tree of rightmost
incoming edges
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Specialization to the red bipolar orientations

Characterization:

e bipartite

e avoids - and 5/

- starts at 0, ends on z-axis

- visits only points with x + y even

- no horizontal step starting from e
- no vertical step starting from o

(bimodal effect)




Exact counting: recurrence

By last step removal, obtain recurrence to compute p,,
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Exact counting: recurrence

By last step removal, obtain recurrence to compute p,,

(P = D .50 an(2,0), with recurrence on a,(%,7))

S Pt =12+ 38 + 415+ 1517 4+ 391" + 122¢7 + 375 ¢ + 12124 + - -

Similarly, can obtain recurrence for p, 3 . = # corner polyhedra with
a blue flats, b red flats, ¢ green flats

> b ezt Pap 0w’ = wow + (uv'w + wwtw® + vrvw?) + 4utviw’

+(uvtw + dutvw? + dutviw® + wow? + dutvw® + wotw?) + - -
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Asymptotic bounds for excursions in quadrant

General method (saddle bound), e.g. for § =
Let S(z,y) =axy ' + 272+ ty + y°

Let a,(i,7) = #S-walks of length n in Z* ending at (4, j)

Then Vz,y > 0, Ei,ng? an(iaj)xiyj = S(z,y)"

[

S(z,y)"

A" with v := minx,y>05($a y)
(here v = 2+/3)

Rk: optimal (z,y) < (z,y)-weighted random S-walk has drift= 0

In particular a5, (0,0)

VAN

x'y’

each step s = (i,7) € S has proba
S(z,y)
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Asymptotic results for corner polyhedra
e Growth rate: lim,, (p,)'/™ = 9/2

e Conjecture: p, ~c(9/2)"n™% where ¢ > ()

a =1+ arccos?E9/16) ~ 4.23

Rk: Conjecture would imply > p,2" not D-finite (since o ¢ Q)

. criterion in [Boston, Raschel, Salvy’14] —JA
Explanation:

reduction to Denisov and Wachtel'15 “random walks in cones”

P(r>n) ~c n 20
P(7 > n & excursion)
~CT

-3

exit time T

(would need to be extended to bimodal setting)
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Back to tricolored contact-systems

Contact-system .
of curves 7 %g\l_ 2%

Stm”g/@ - @\

wyn = 7 weak equivalence classes with 2n regions | = Dp,

Sn = 7 strong equivalence classes with 2n regions
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Strong tricolored systems
Duality:

NN

strong contact-system

quadrangulation of hexagon
+ edge-tricoloration

satisfying %{é

Rk: 3-rooted 3-connected maps
have same counting series as
corner triangulations

t3 + 3t° + 4t + 15¢7 + 39¢° + 120¢” + - - ;

(possibly explained via “minimal” structures)

3-rooted 3-connected map + Schnyder labeling
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Corresponding corner polyhedra

Rigidity condition:
facets have “zig-zag" shape
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dominance drawing
[Miller'02,Felsner'03]
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bipartite bipolar orientation
+ transversal edges

tandem walks have a bimodal condition + binomial weights

e recurrence for s,
® Conjecture: Sn ™~ C (16/3)n n~* forc>0and o =1+ arccos?22/27

¢ Q

e triangulated case: <> non-crossing pairs of Dyck walks
recover [Bernardi-Bonichon'09]
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Similar models in 2d with 2 colors
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1-bent orthogonal drawing

%
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2-colored contact-system

rectangulation

strong

weak




Summary on asymptotic enumeration

s

Asymptotic estimate

cy" n—

S\

weak strong weak strong

8 3 27/2 9/2 16/3
cos(f) || 1/2 7/8 9/16 " | 22/27 ©
o) 4 ~ 721 ¢Q ~4.23 ¢ Q ~ 6.08 ¢ Q

(*) up to extending [Denisov-Wachtel] to bimodal setting
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Extension to models with degeneracies

= _

\ weight v per —|—

— 1\

also counted In

@\ /% weight v per %

Asymptotic exponent a(v) computable a(v) — 0o as v = oo

\ regular grid

behaviour




Some open questions

e Combinatorial explanation of growth rates 9/2 (resp. 16/3)
(would be convenient for entropic encoding)

e Counting (types of) simple orthogonal polyhedra (and subfamilies)

e Models of 2d (or 3d) permutations in bijection to corner polyhedra



