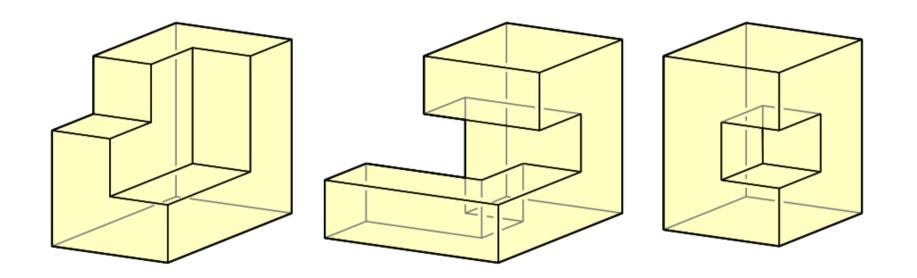
Enumeration of corner polyhedra and 3-connected Schnyder labelings

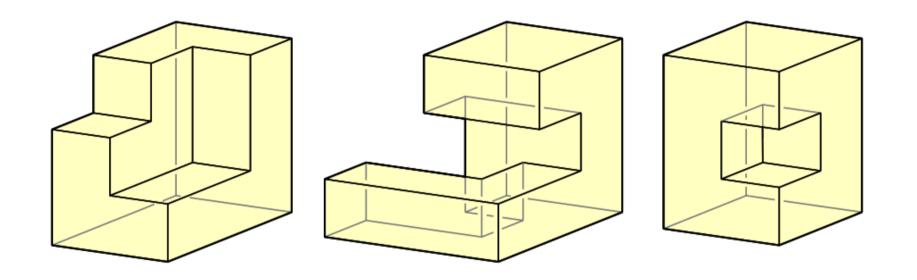
Éric Fusy (LIGM, Univ. Gustave Eiffel)

Joint work with Erkan Narmanli and Gilles Schaeffer

simple orthogonal polyhedron = 3d polyhedron such that, at each vertex three axis-aligned segments meet

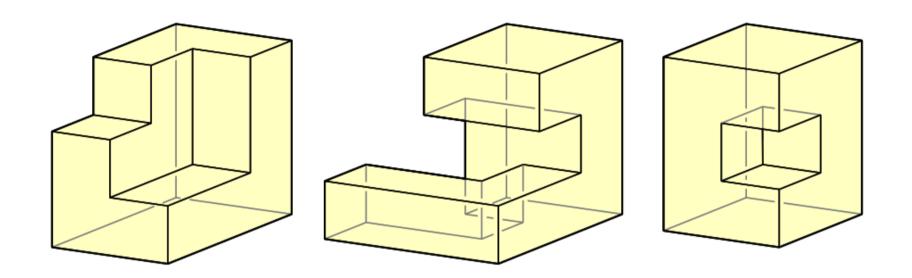


simple orthogonal polyhedron = 3d polyhedron such that, at each vertex three axis-aligned segments meet



Rk: boundary forms a cubic (and bipartite) map on the sphere

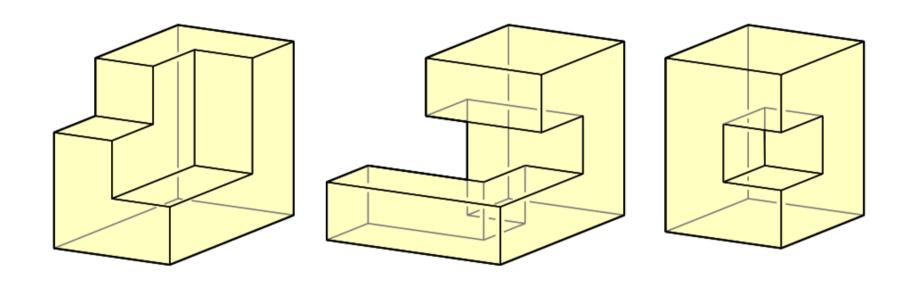
simple orthogonal polyhedron = 3d polyhedron such that, at each vertex three axis-aligned segments meet



Rk: boundary forms a cubic (and bipartite) map on the sphere

Q: Which cubic bipartite planar maps admit a realization as a simple orthogonal polyhedron?

simple orthogonal polyhedron = 3d polyhedron such that, at each vertex three axis-aligned segments meet

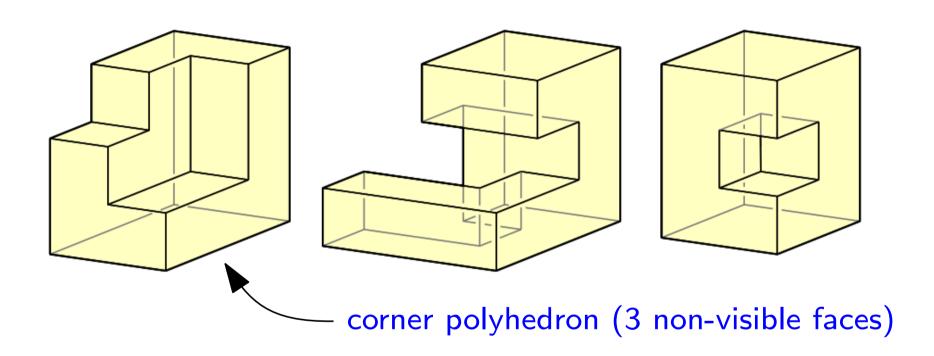


Rk: boundary forms a cubic (and bipartite) map on the sphere

Q: Which cubic bipartite planar maps admit a realization as a simple orthogonal polyhedron?

(cf Steinitz theorem for convex polyhedra)

simple orthogonal polyhedron = 3d polyhedron such that, at each vertex three axis-aligned segments meet



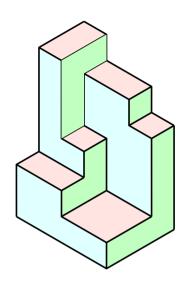
Rk: boundary forms a cubic (and bipartite) map on the sphere

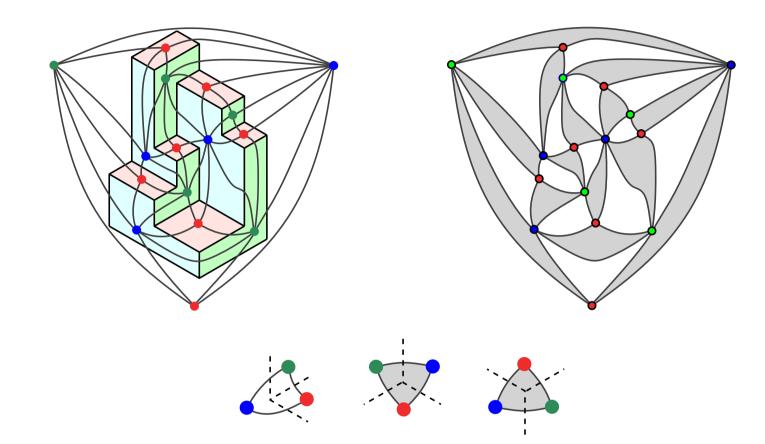
Q: Which cubic bipartite planar maps admit a realization as a simple orthogonal polyhedron?

(cf Steinitz theorem for convex polyhedra)

Characterization of corner polyhedra maps

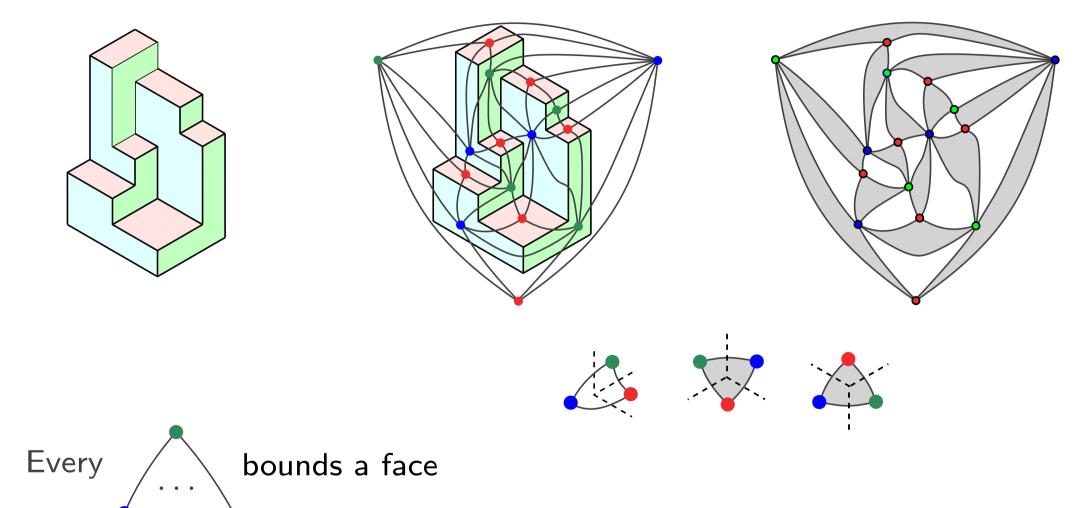
[Eppstein-Mumford'09]





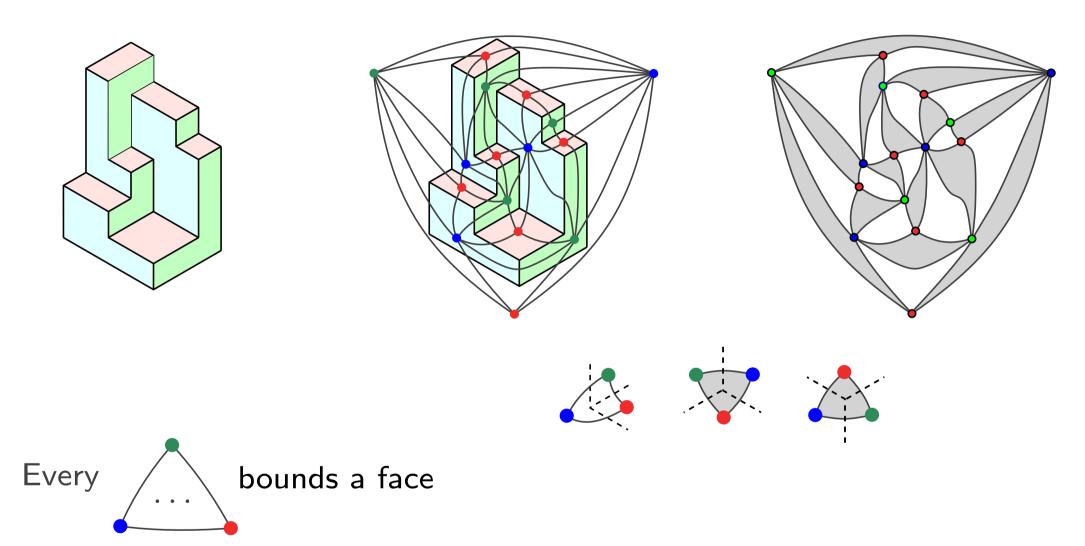
Characterization of corner polyhedra maps

[Eppstein-Mumford'09]



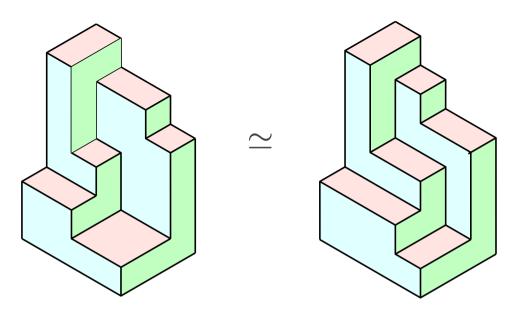
Characterization of corner polyhedra maps

[Eppstein-Mumford'09]

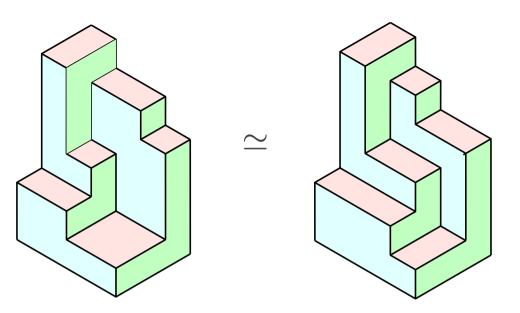


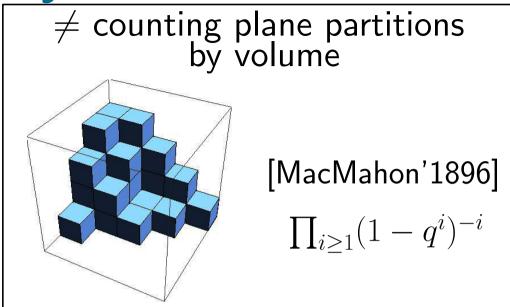
Enumeration of these "corner triangulations": [Dervieux, Poulalhon, Schaeffer'16] $C(t) = \sum_n c_n t^n = t^3 + 3t^5 + 4t^6 + 15t^7 + 39t^8 + 120t^9 + \cdots$

has rational expression in terms of Catalan generating function

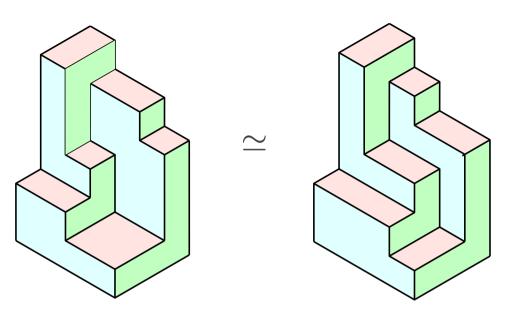


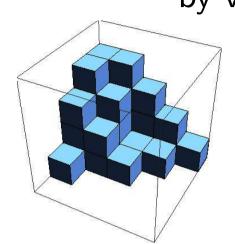
 $p_n=\#$ combinatorial types of corner polyhedra of size n where size =# flats -3





 $p_n=\#$ combinatorial types of corner polyhedra of size n where size =# flats -3



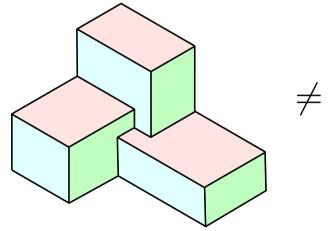


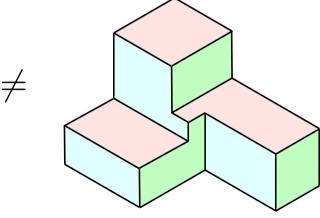
[MacMahon'1896]

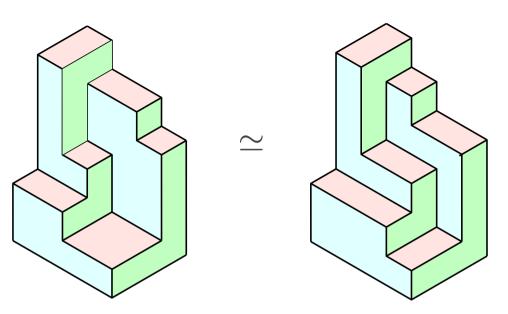
$$\prod_{i\geq 1} (1-q^i)^{-i}$$

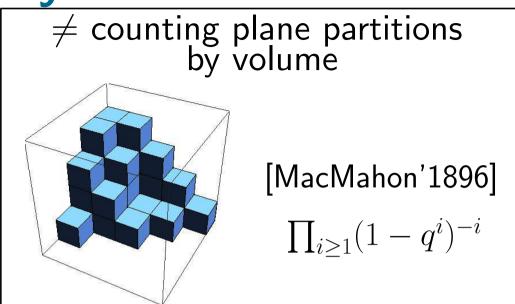
$$p_n=\#$$
 combinatorial types of corner polyhedra of size n where size $=\#$ flats -3

Rk: $p_n > c_n$ for $n \ge 9$



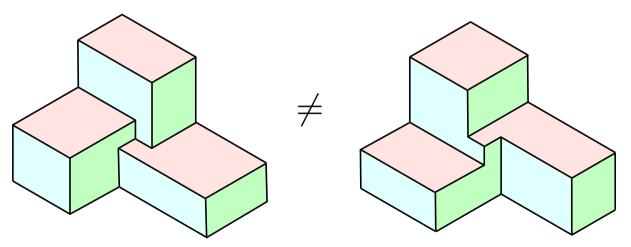






 $p_n=\#$ combinatorial types of corner polyhedra of size n where size =# flats -3

Rk: $p_n > c_n$ for $n \ge 9$



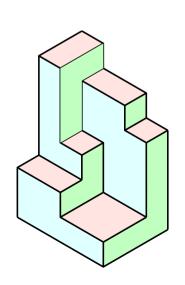
- **Q:** exact counting: formula? recurrence?
 - asymptotic estimate?

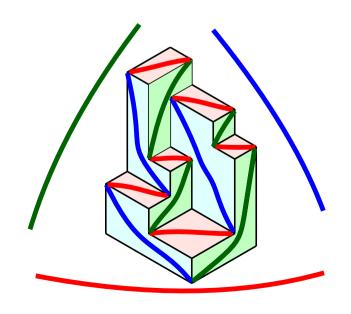
Relation to some tricolored contact-systems

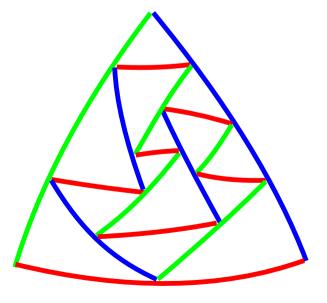
[Gonçalves'19]

every corner triangulation has a unique tricolored segment-contact representation as

Corner polyhedra (types) can be encoded bijectively by such a topological tricolored contact-system of (smooth) curves

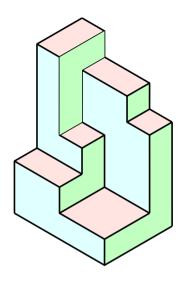


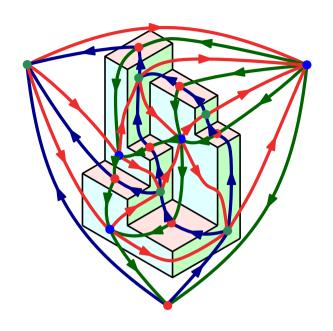


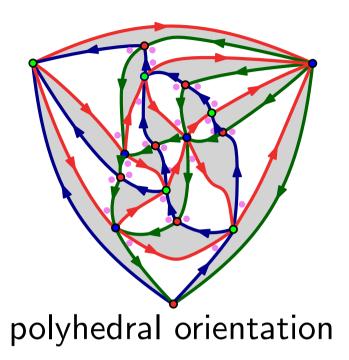


Encoding by orientations

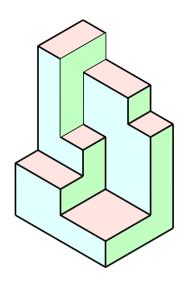
[Eppstein-Mumford'09]

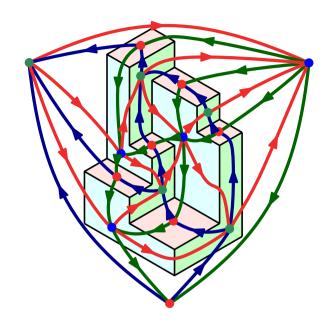


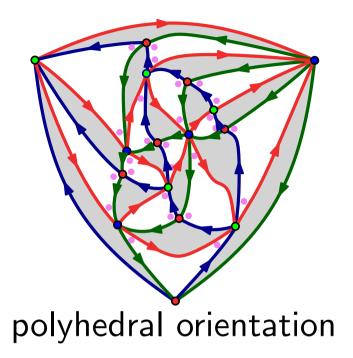




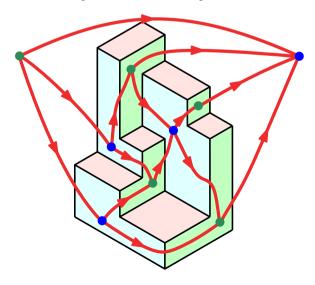
Encoding by orientations

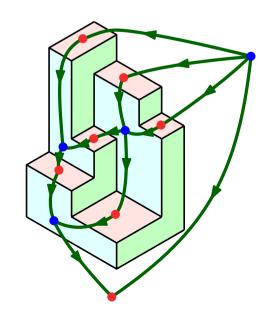


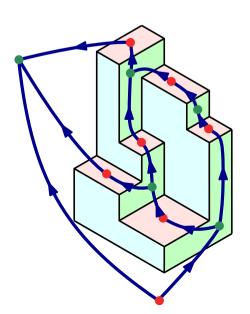




 \Rightarrow 3 plane bipolar orientations



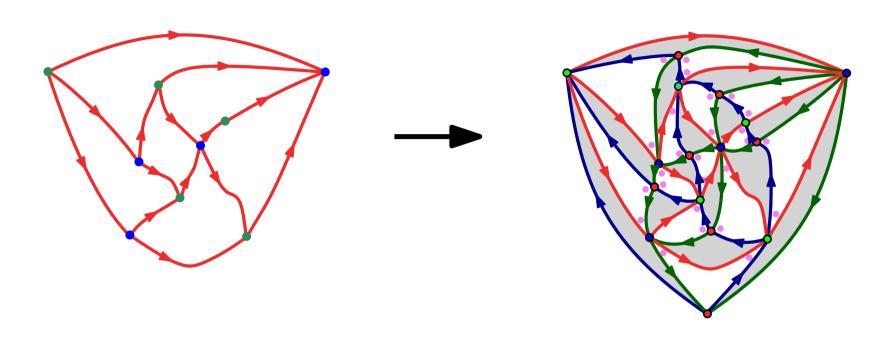




One bipolar orientation is sufficient

[F, Narmanli, Schaeffer'23]

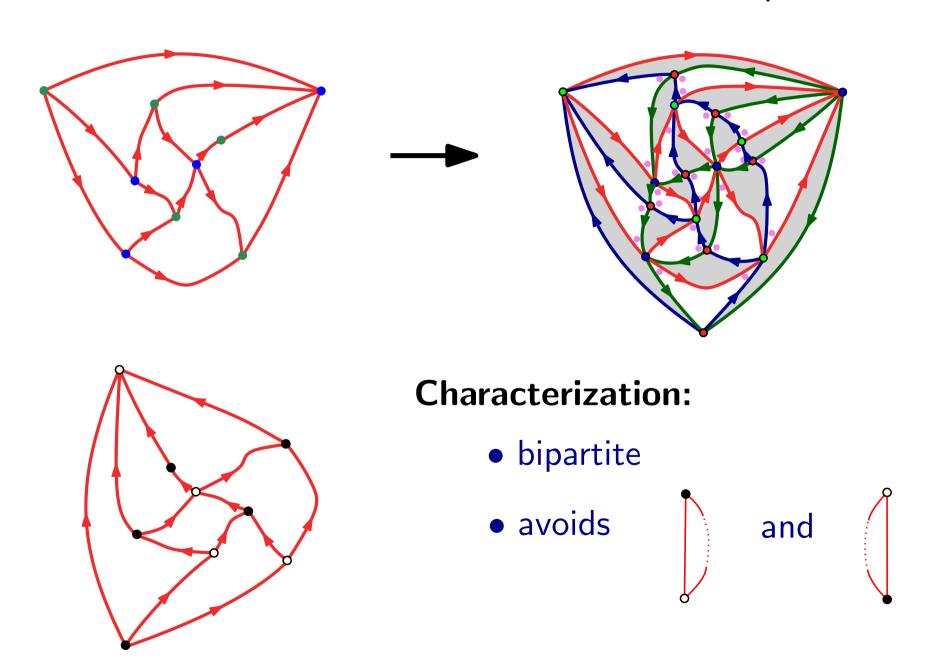
Polyhedral orientation can be reconstructed from red bipolar orientation



One bipolar orientation is sufficient

[F, Narmanli, Schaeffer'23]

Polyhedral orientation can be reconstructed from red bipolar orientation



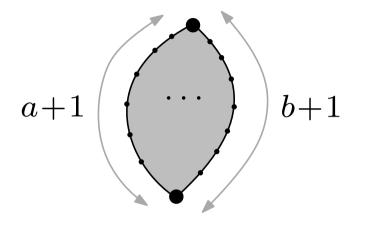
Encoding bipolar orientations by quadrant walks

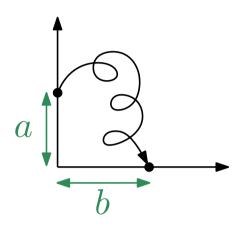
[Kenyon, Miller, Sheffield, Wilson'15]

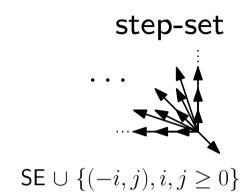
Plane bipolar orientations

←

"Tandem walks" in the quadrant







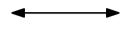
n edges

length n-1

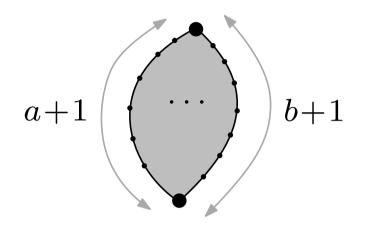
Encoding bipolar orientations by quadrant walks

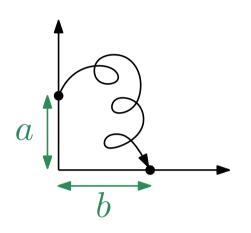
[Kenyon, Miller, Sheffield, Wilson'15]

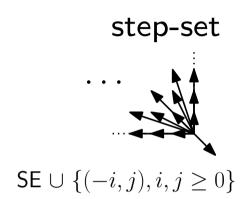
Plane bipolar orientations



"Tandem walks" in the quadrant







n edges

length n-1

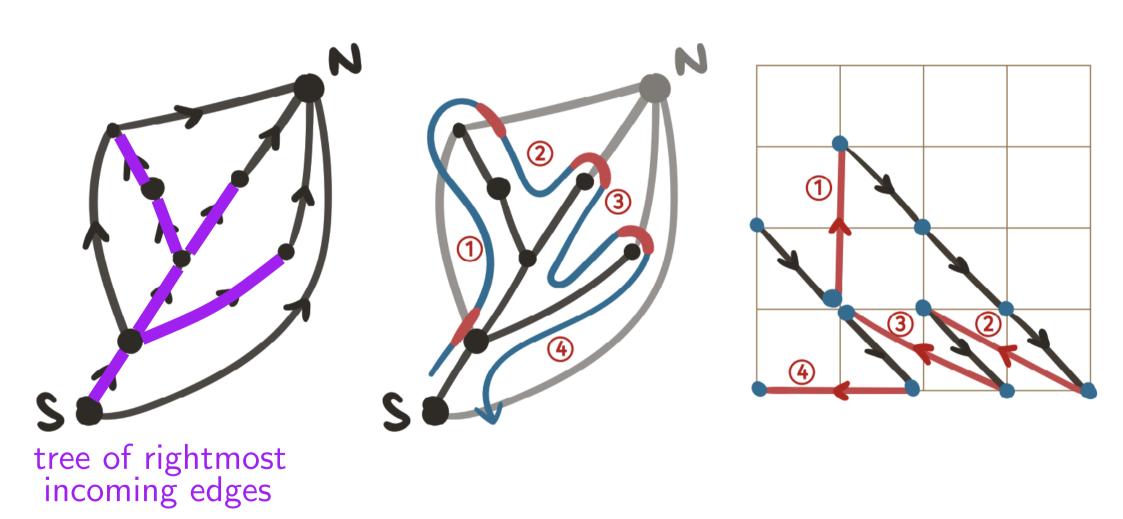
face
$$i+1$$
 face-step $(-i,j)$

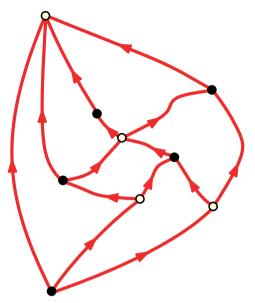
non-pole vertex

SE step

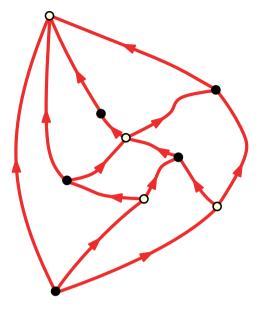
KMSW bijection

From bipolar orientation to tandem walk

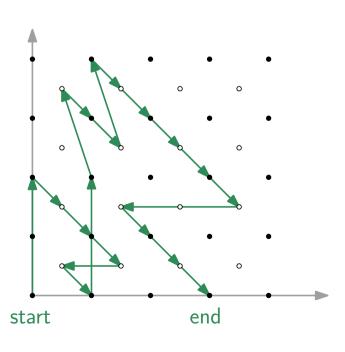


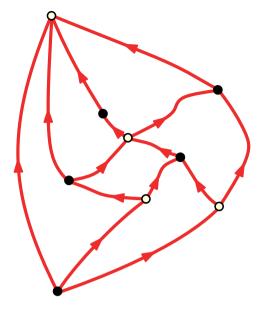


- bipartite
- avoids



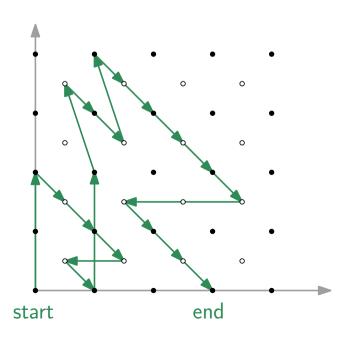
- bipartite
- avoids



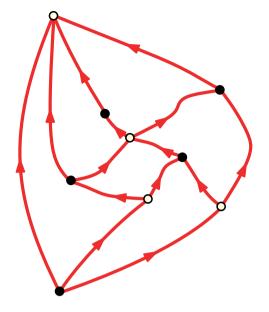


Characterization:

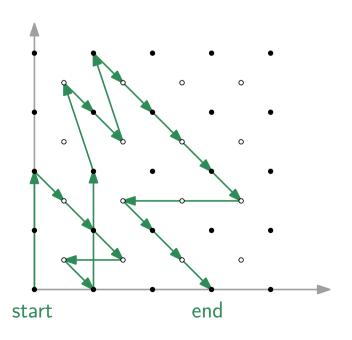
- bipartite
- avoids



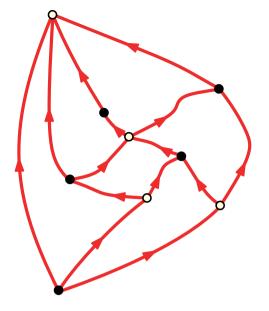
- starts at 0, ends on x-axis



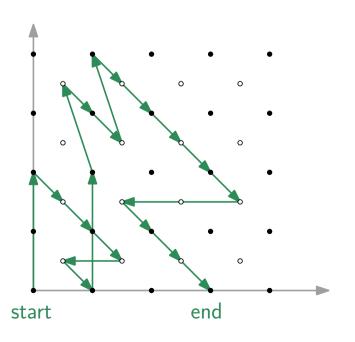
- bipartite
- avoids



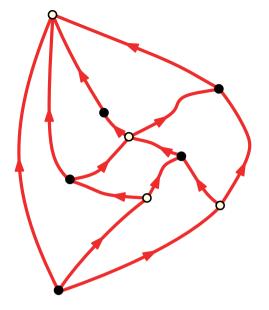
- starts at 0, ends on x-axis
- visits only points with x+y even



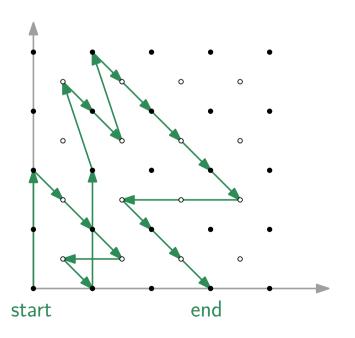
- bipartite
- avoids



- starts at 0, ends on x-axis
- visits only points with x+y even
- no horizontal step starting from •
- no vertical step starting from o



- bipartite
- avoids



- starts at 0, ends on x-axis
- visits only points with x+y even
- no horizontal step starting from •
- no vertical step starting from o(bimodal effect)

Exact counting: recurrence

By last step removal, obtain recurrence to compute p_n

$$(p_n = \sum_{i\geq 0} a_n(i,0),$$
 with recurrence on $a_n(i,j)$)

$$\sum_{n>1} p_n t^n = t^3 + 3t^5 + 4t^6 + 15t^7 + 39t^8 + \mathbf{122}t^9 + 375t^{10} + 1212t^{11} + \cdots$$

Exact counting: recurrence

By last step removal, obtain recurrence to compute p_n

$$(p_n = \sum_{i\geq 0} a_n(i,0),$$
 with recurrence on $a_n(i,j)$)

$$\sum_{n\geq 1} p_n t^n = t^3 + 3t^5 + 4t^6 + 15t^7 + 39t^8 + \mathbf{122}t^9 + 375t^{10} + 1212t^{11} + \cdots$$

Similarly, can obtain recurrence for $p_{a,b,c}=\#$ corner polyhedra with a blue flats, b red flats, c green flats

$$\sum_{a,b,c\geq 1} p_{a,b,c} u^a v^b w^c = uvw + (u^2v^2w + uv^2w^2 + u^2vw^2) + 4u^2v^2w^2$$
$$+ (u^3v^3w + 4u^3v^2w^2 + 4u^2v^3w^2 + u^3vw^3 + 4u^2v^2w^3 + uv^3w^3) + \cdots$$

General method (saddle bound), e.g. for
$$\mathcal{S}=$$
 Let $S(x,y)=xy^{-1}+x^{-2}+x^{-1}y+y^2$

General method (saddle bound), e.g. for
$$\mathcal{S} =$$
 Let $S(x,y) = xy^{-1} + x^{-2} + x^{-1}y + y^2$

Let $a_n(i,j) = \#S$ -walks of length n in \mathbb{Z}^2 ending at (i,j)

Then
$$\forall x, y > 0$$
, $\sum_{i,j \in \mathbb{Z}^2} a_n(i,j) x^i y^j = S(x,y)^n$

General method (saddle bound), e.g. for
$$\mathcal{S} =$$
 Let $S(x,y) = xy^{-1} + x^{-2} + x^{-1}y + y^2$

Let $a_n(i,j) = \#\mathcal{S}$ -walks of length n in \mathbb{Z}^2 ending at (i,j)

Then
$$\forall x, y > 0$$
, $\sum_{i,j \in \mathbb{Z}^2} a_n(i,j) x^i y^j = S(x,y)^n$

In particular
$$a_n(0,0) \leq S(x,y)^n$$

$$\leq \gamma^n \quad \text{with } \gamma := \min_{x,y>0} S(x,y)$$

General method (saddle bound), e.g. for
$$\mathcal{S}=$$
 Let $S(x,y)=xy^{-1}+x^{-2}+x^{-1}y+y^2$

Let $a_n(i,j) = \#\mathcal{S}$ -walks of length n in \mathbb{Z}^2 ending at (i,j)

Then
$$\forall x, y > 0$$
, $\sum_{i,j \in \mathbb{Z}^2} a_n(i,j) x^i y^j = S(x,y)^n$

In particular
$$a_n(0,0) \leq S(x,y)^n$$

$$\leq \gamma^n \qquad \text{with } \gamma := \min_{x,y>0} S(x,y)$$
 (here $\gamma = 2\sqrt{3}$)

General method (saddle bound), e.g. for
$$\mathcal{S}=$$
 Let $S(x,y)=xy^{-1}+x^{-2}+x^{-1}y+y^2$

Let $a_n(i,j) = \#\mathcal{S}$ -walks of length n in \mathbb{Z}^2 ending at (i,j)

Then
$$\forall x, y > 0$$
, $\sum_{i,j \in \mathbb{Z}^2} a_n(i,j) x^i y^j = S(x,y)^n$

In particular $a_n(0,0) \leq S(x,y)^n$ $\leq \gamma^n \qquad \text{with } \gamma := \min_{x,y>0} S(x,y)$ $(\text{here } \gamma = 2\sqrt{3})$

Rk: optimal $(x,y) \leftrightarrow (x,y)$ -weighted random \mathcal{S} -walk has drift= 0 each step $s=(i,j)\in\mathcal{S}$ has proba $\frac{x^iy^j}{S(x,y)}$

Asymptotic results for corner polyhedra

- Growth rate: $\lim_{n} (p_n)^{1/n} = 9/2$
- Conjecture: $p_n \sim c (9/2)^n n^{-\alpha}$ where c > 0

$$\alpha = 1 + \frac{\pi}{\arccos(9/16)} \approx 4.23$$

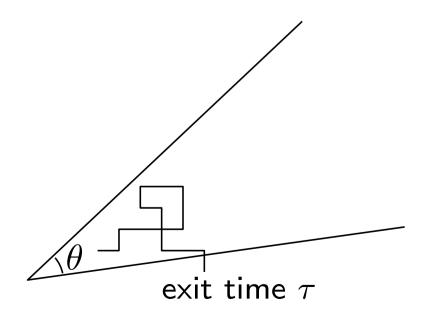
Asymptotic results for corner polyhedra

- Growth rate: $\lim_{n} (p_n)^{1/n} = 9/2$
- Conjecture: $p_n \sim c (9/2)^n n^{-\alpha}$ where c > 0

$$\alpha = 1 + \frac{\pi}{\arccos(9/16)} \approx 4.23$$

Explanation:

reduction to Denisov and Wachtel'15 "random walks in cones"



$$\mathbb{P}(\tau > n) \sim c' \ n^{-\frac{\pi}{2\theta}}$$

$$\mathbb{P}(\tau > n \ \& \text{ excursion})$$

$$\sim c \ n^{-1-\frac{\pi}{\theta}}$$

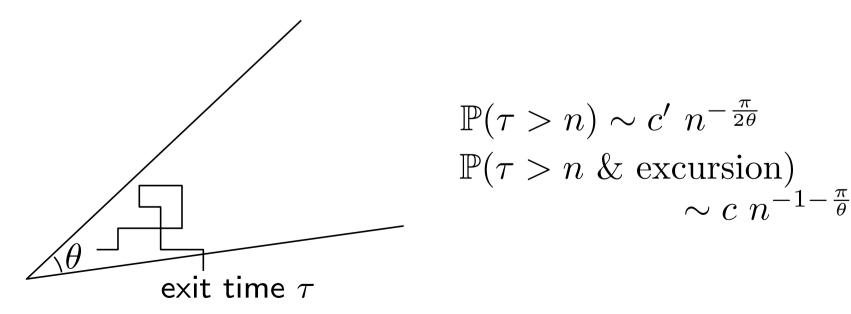
Asymptotic results for corner polyhedra

- Growth rate: $\lim_{n} (p_n)^{1/n} = 9/2$
- Conjecture: $p_n \sim c \, (9/2)^n \, n^{-\alpha}$ where c>0

$$\alpha = 1 + \frac{\pi}{\arccos(9/16)} \approx 4.23$$

Explanation:

reduction to Denisov and Wachtel'15 "random walks in cones"



(would need to be extended to bimodal setting)

Asymptotic results for corner polyhedra

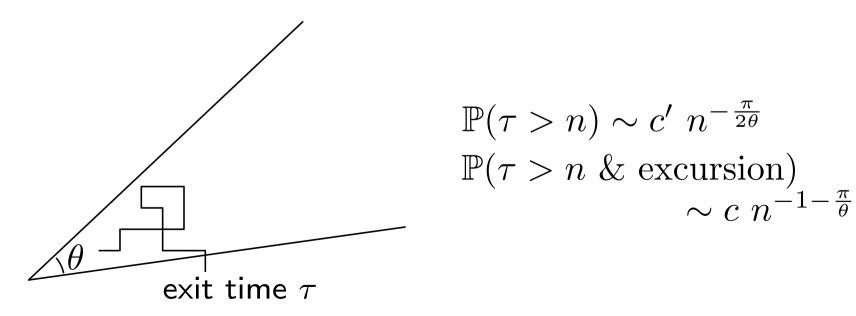
- Growth rate: $\lim_{n} (p_n)^{1/n} = 9/2$
- Conjecture: $p_n \sim c \, (9/2)^n \, n^{-\alpha}$ where c>0

$$\alpha = 1 + \frac{\pi}{\arccos(9/16)} \approx 4.23$$
 Rk: Conjecture would imply $\sum_n p_n z^n$ not D-finite (since $\alpha \notin \mathbb{Q}$)

criterion in [Boston, Raschel, Salvy'14]

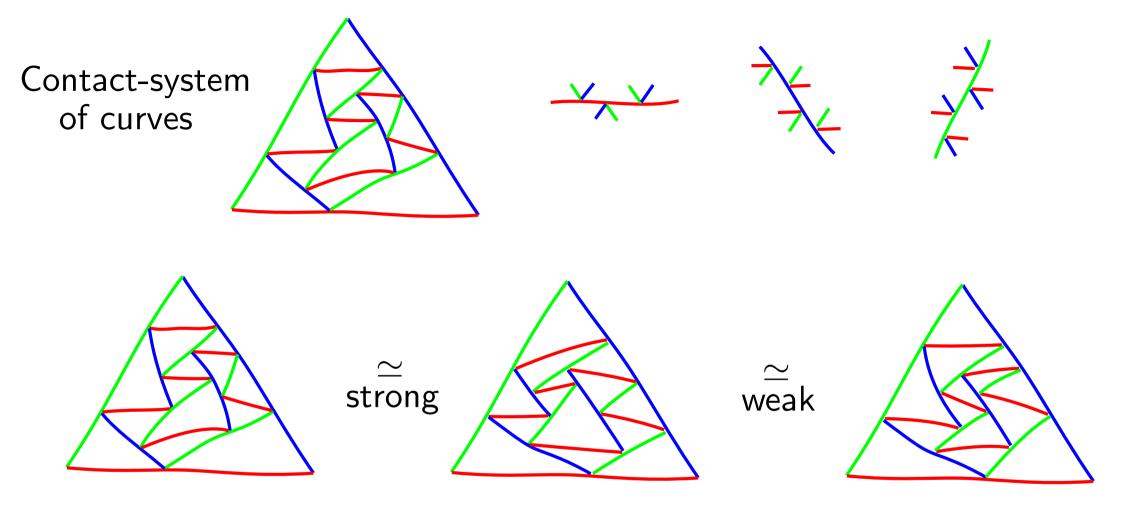
Explanation:

reduction to Denisov and Wachtel'15 "random walks in cones"



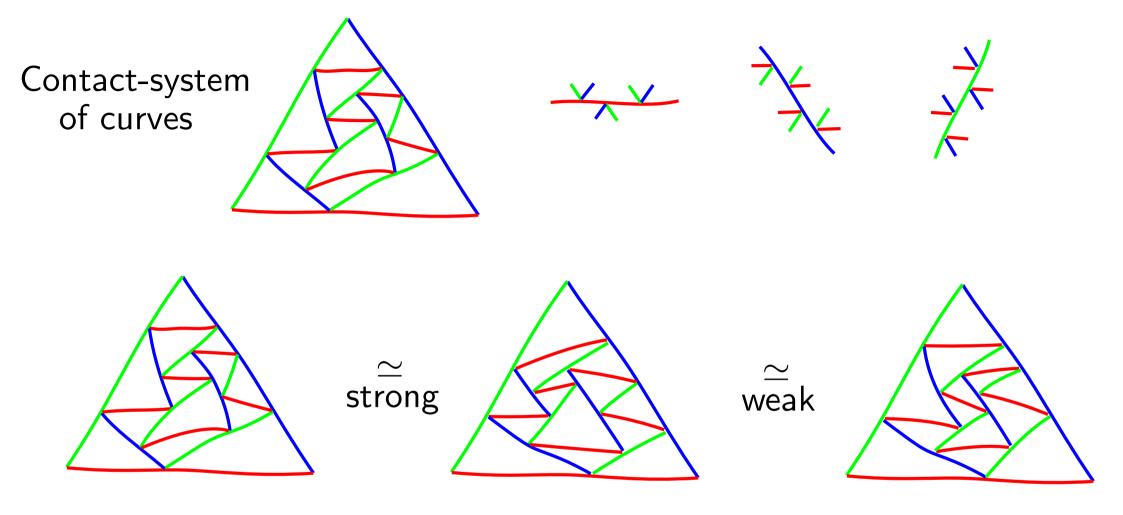
(would need to be extended to bimodal setting)

Back to tricolored contact-systems



 $w_n = \#$ weak equivalence classes with 2n regions $s_n = \#$ strong equivalence classes with 2n regions

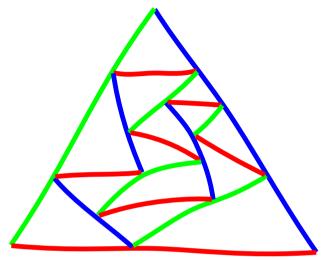
Back to tricolored contact-systems



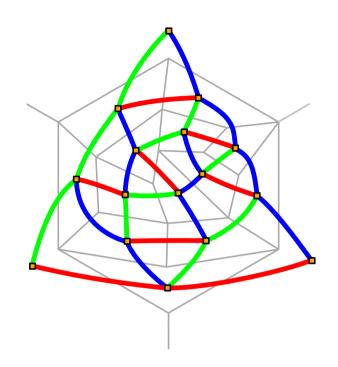
 $w_n = \#$ weak equivalence classes with 2n regions $s_n = \#$ strong equivalence classes with 2n regions

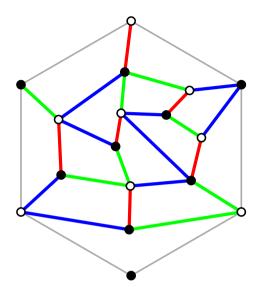
Strong tricolored systems

Duality:



strong contact-system



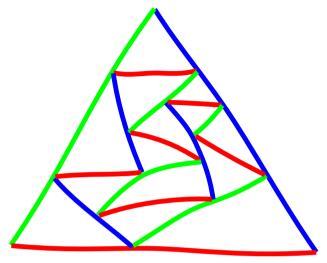


quadrangulation of hexagon + edge-tricoloration

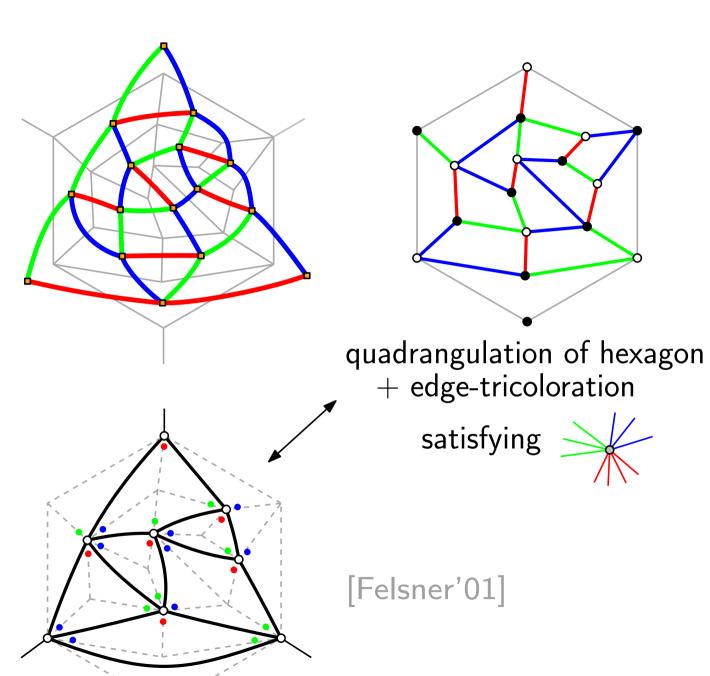
satisfying

Strong tricolored systems

Duality:



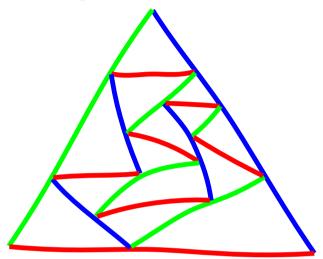
strong contact-system



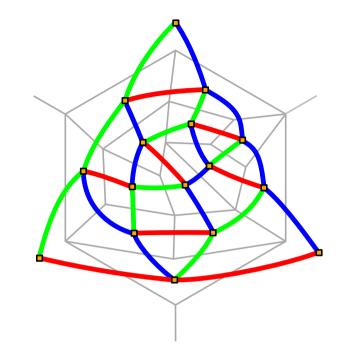
3-rooted 3-connected map + Schnyder labeling

Strong tricolored systems

Duality:

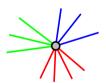


strong contact-system



quadrangulation of hexagon + edge-tricoloration

satisfying



Rk: 3-rooted 3-connected maps have same counting series as corner triangulations

 $t^3 + 3t^5 + 4t^6 + 15t^7 + 39t^8 + 120t^9 + \cdots$ (possibly explained via "minimal" structures)

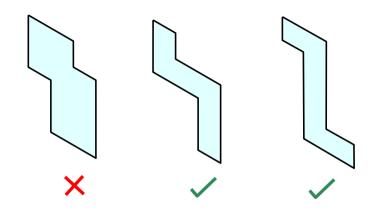


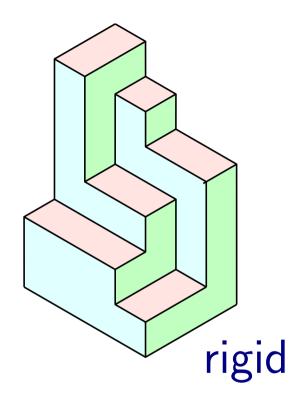
[Felsner'01]

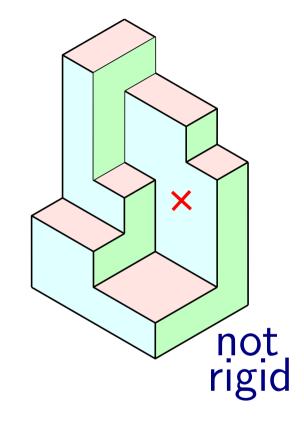
3-rooted 3-connected map + Schnyder labeling

Corresponding corner polyhedra

Rigidity condition: facets have "zig-zag" shape

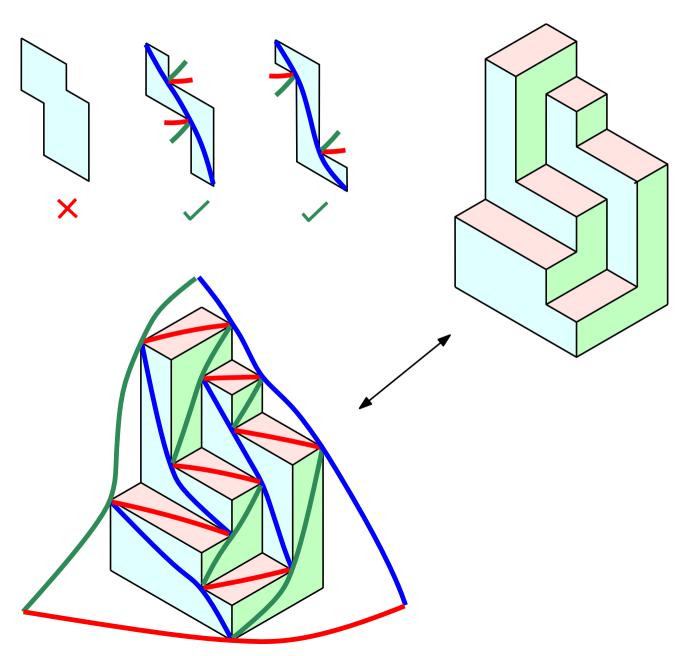






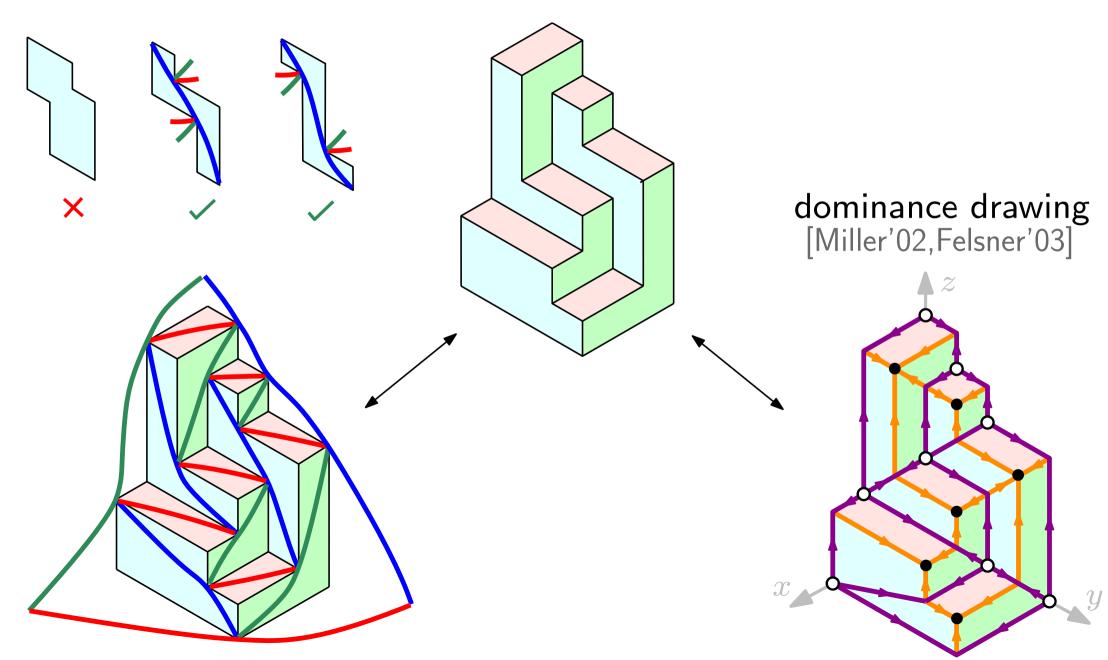
Corresponding corner polyhedra

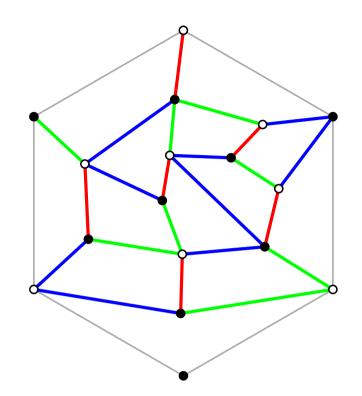
Rigidity condition: facets have "zig-zag" shape

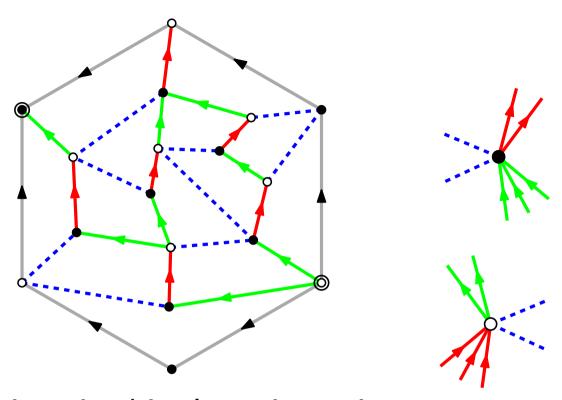


Corresponding corner polyhedra

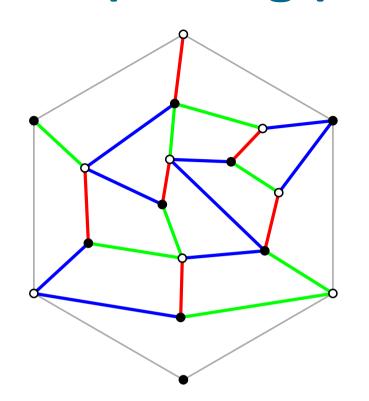
Rigidity condition: facets have "zig-zag" shape

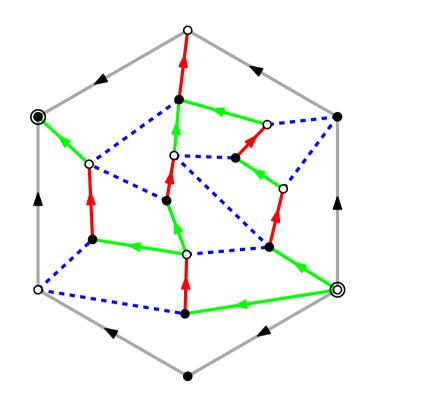


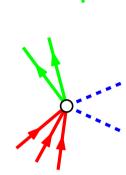




bipartite bipolar orientation + transversal edges

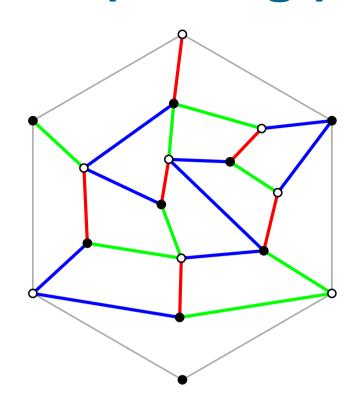


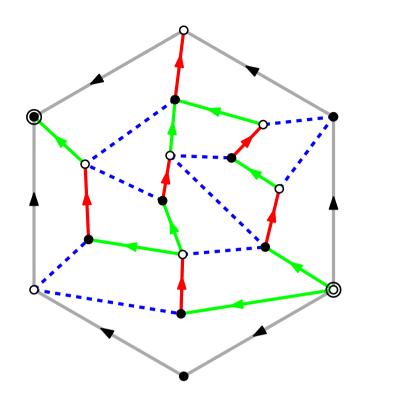


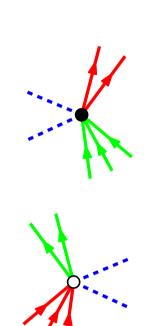


bipartite bipolar orientation + transversal edges

tandem walks have a bimodal condition + binomial weights



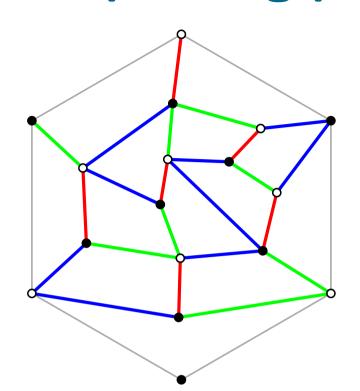


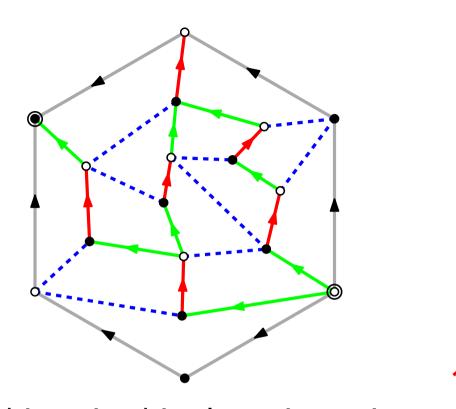


bipartite bipolar orientation + transversal edges

tandem walks have a bimodal condition + binomial weights

- \bullet recurrence for s_n
- Conjecture: $s_n \sim c \, (16/3)^n \, n^{-\alpha}$ for c>0 and $\alpha=1+\frac{\pi}{\arccos(22/27)}$



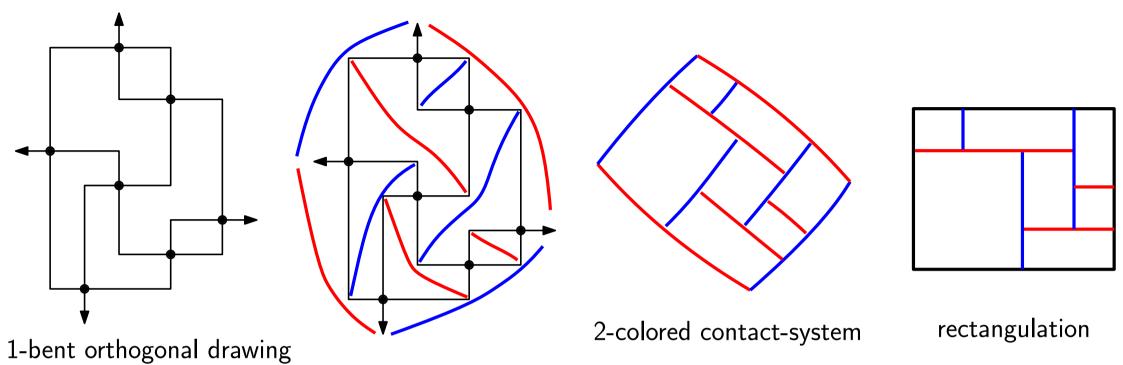


bipartite bipolar orientation+ transversal edges

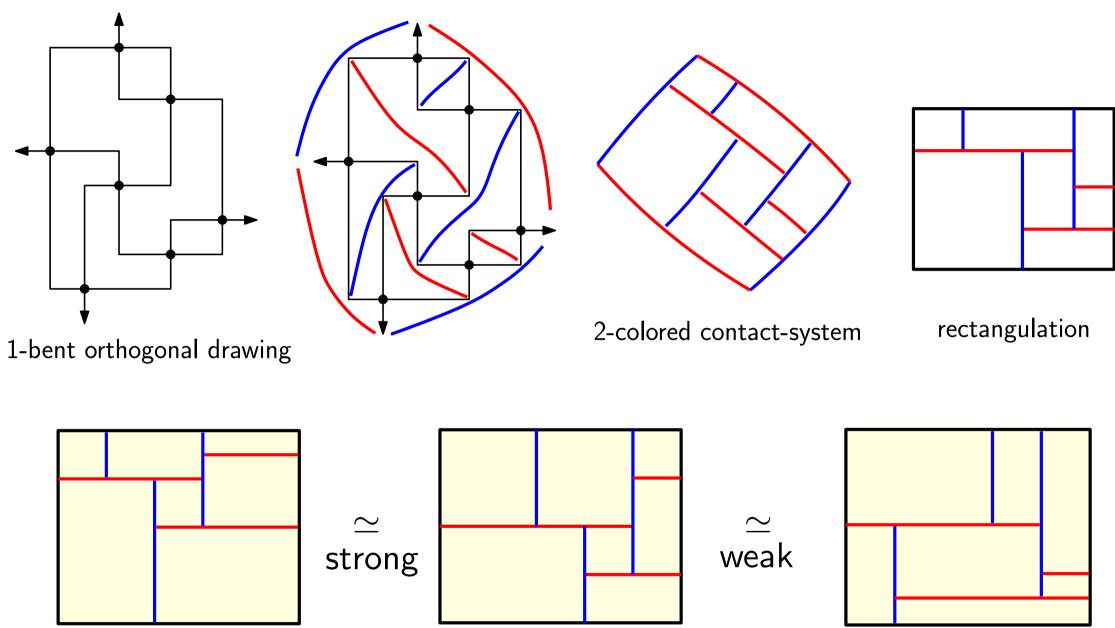
tandem walks have a bimodal condition + binomial weights

- \bullet recurrence for s_n
- Conjecture: $s_n \sim c \, (16/3)^n \, n^{-\alpha}$ for c>0 and $\alpha=1+\frac{\pi}{\arccos(22/27)}$

Similar models in 2d with 2 colors

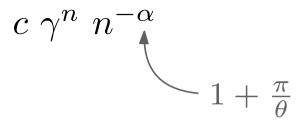


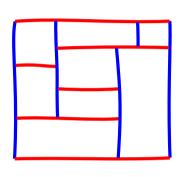
Similar models in 2d with 2 colors

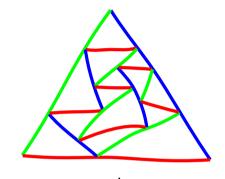


Summary on asymptotic enumeration

Asymptotic estimate $c \gamma^n n^{-\alpha}$



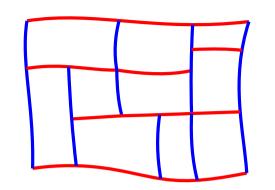


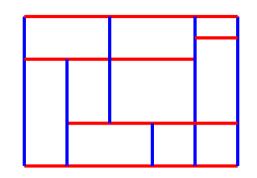


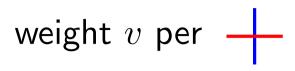
	weak	strong	weak	strong
	bipolar orientations	transversal structures	polyhedral orientations	(3c) Schnyder labelings
γ	8	27/2	9/2	16/3
$\cos(\theta)$	1/2	7/8	9/16 (*)	22/27 (*)
α	4	$\approx 7.21 \notin \mathbb{Q}$	$\approx 4.23 \notin \mathbb{Q}$	$\approx 6.08 \notin \mathbb{Q}$

^(*) up to extending [Denisov-Wachtel] to bimodal setting

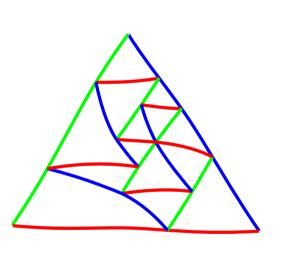
Extension to models with degeneracies

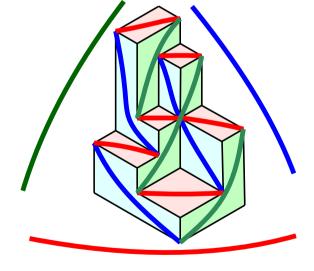


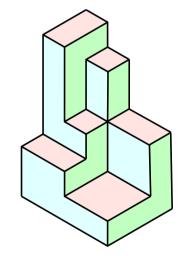




also counted in [Conant, Michaels'12]

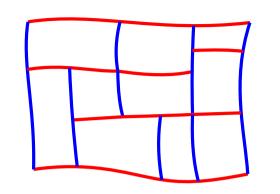


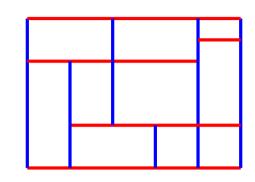


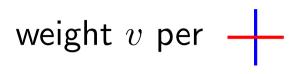


weight v per \longrightarrow

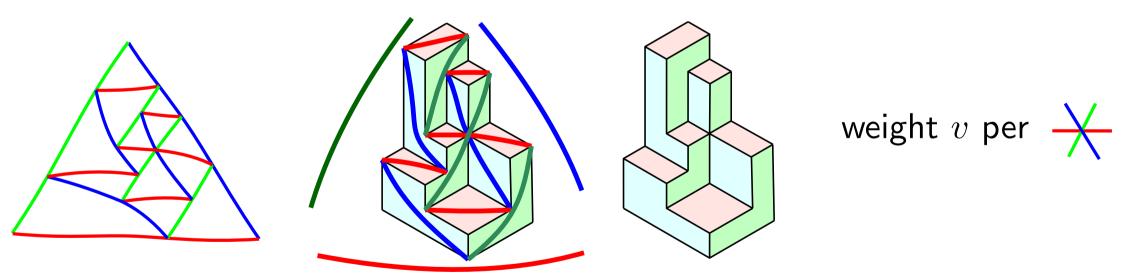
Extension to models with degeneracies







also counted in [Conant, Michaels'12]



Asymptotic exponent $\alpha(v)$ computable $\alpha(v) \to \infty$ as $v \to \infty$ regular grid behaviour

Some open questions

• Combinatorial explanation of growth rates 9/2 (resp. 16/3) (would be convenient for entropic encoding)

• Counting (types of) simple orthogonal polyhedra (and subfamilies)

• Models of 2d (or 3d) permutations in bijection to corner polyhedra