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e A 2-line meander encoded by a permutation
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e Monotone 2-line meander: | |
can be obtained from two monotone lines (one in x, the other in y)

B0E0E DS E N N E B associated
+ BRI U O permutation

Which permutations can be obtained this way 7
Maps odd numbers to odd numbers, even numbers to even numbers
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Permutations for monotone 2-line meanders
[Baxter’64, Boyce'67&'81]

Whlte points are either:
3 o
S B s
¢ % %
rising | desce'nding

Permutations mapping even to even, odd to odd, and satisfying condition
shown on the right are called complete Baxter permutations

Theorem (|Boyce’81] reformulated bijectively):
Monotone 2-line meanders with 2n — 1 crossings are in bijection with
complete Baxter permutations on 2n — 1 elements
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Inverse construction
From a complete Baxter permutation to a monotone 2-line meander

white points are either:

1) Draw the blue curve

2) Draw the red curve

The two curves meet only at the permutation points
(because of the empty area-property at white points)
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Complete and reduced Baxter permutations
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complete reduce

e complete one can be recovered from reduced one

e reduced one is characterized by forbidden patterns
2—41 —3and 3 — 14 — 2

e permutation on white points (called anti-Baxter)
Is characterized by forbidden patterns

2—14—3 and 3 —41 — 2
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Counting results
e Baxter permutations
- Number of reduced Baxter permutations with n elements

; _”il 2 n+1\ n+1\(n+1
n_r:()n(TH'l)Q r r+1/\r—+2

[Chung et al’78] [Mallows’79]
- Bijective proof: [Viennot’81], [Dulucq-Guibert’98]

5762143 &

e Subfamilies
- alternating [Cori-Dqucq-Viennot’Bg], [Dulucq-Guibert’98]
Cat,Caty 1If n = 2k CatpCatpiq if n =2k + 1

- doubly alternating [Guibert-Linusson’00]
Caty where k = [n/2]|
e anti-Baxter permutations [(n+1)/2] .
An+1—1
[Asinowski et al’10] Ap = Z (—1) ( . )bn—l—l—i
i—0




Local conditions for monotone 2-line meanders




Local conditions for monotone 2-line meanders

M\ /AT

Rt Rt Al RERRE > Conditions

AR "1 1 - two (bipartite) matchings missing a (black) point

________________

NI T (one matching above, one below the blue line)

ISR SR OV N . . .
- white points are either \ or [

\ /

rising descending




Local conditions for monotone 2-line meanders

M\ /AT

Rt Rt Al RERRE > Conditions

AR "1 1 - two (bipartite) matchings missing a (black) point

________________

NI T (one matching above, one below the blue line)

IR A O VA N . . .
- white points are either \ or

\ /

rising descending

Proof of <
Assume there is a red loop (say, clockwise):




Local conditions for monotone 2-line meanders

M\ /AT

Rt Rt Al RERRE > Conditions

AR "1 1 - two (bipartite) matchings missing a (black) point

________________

NI T (one matching above, one below the blue line)

IR A O VA N . . .
- white points are either \ or

\ /

rising descending

Proof of <
Assume there is a red loop (say, clockwise):

m then the leftmost and the
< righmost point on the loop
are of different colors




Local conditions for monotone 2-line meanders

M\ /AT

Rt Rt Al RERRE > Conditions

AR "1 1 - two (bipartite) matchings missing a (black) point

________________

NI T (one matching above, one below the blue line)

IR A O VA N . . .
- white points are either \ or

\ /

rising descending

Proof of <
Assume there is a red loop (say, clockwise):

m then the leftmost and the
< ~ righmost point on the loop
are of different colors

Impossible




Local conditions for monotone 2-line meanders

M\ /AT

Rt Rt Al RERRE > Conditions

AR "1 1 - two (bipartite) matchings missing a (black) point

________________

X NN (one matching above, one below the blue line)
s . . .
- white points are either \ or [

rising descending

Proof of <
Assume there is a red loop (say, clockwise):

m then the leftmost and the
< ~ righmost point on the loop
are of different colors

Impossible

= we have a 2-line meander
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Local conditions for monotone 2-line meanders

Conditions
- two (bipartite) matchings missing a (black) point
(one matching above, one below the blue line)

- white nodes are either \ or [

Proof of <: construct permutation step by step
Important observation:

i e e

3 2:411 4 ¥6 already labelled alreadyvlabelled

o 3



Local conditions for monotone 2-line meanders

Conditions
- two (bipartite) matchings missing a (black) point
(one matching above, one below the blue line)

- white nodes are either \ or [

Proof of <: construct permutation step by step
Similarly:
321\ Y6 o o
] OF e

D
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Encoding a monotone 2-line meander

each path has
length n — 1

close to encoding in [Viennot’81,Dulucq-Guibert’98]

exactly coincides with encoding in [Felsner-F-Noy-Orden’11]
(uses “equatorial line” in separating decompositions of quadrangulations)
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Enumeration using the LGV lemma

- >Bl

each path has
length n — 1

Let a; ; = # (upright lattice paths from A; to B,) = (x(Bj?;:;(Ai))

By the Lindstroem-Gessel-Viennot Lemma (used in [Viennot’81])
the number b,, , of such nonintersecting triples of paths is

() ) (i)
bn =Det(aiy) = | (;21) (") (i) |= se2mz CTH CED (05
=) G2 ()

by, r 1s alsothe number of reduced Baxter permutations of size n with 7 rises
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Alternating (reduced) Baxter,J%]ermutations

[Cori-Dulucg-Viennot’86], [Dulucq-Guibert
2) Case nodd, n =2k + 1
T=2319486 75

A A M 4 M 4
N 7 Y 7 N 7

) 4
A%

alternation < middle word is 010101 ...1
middle path is

There are Cat,Catpiq alternating
(reduced) Baxter permutations of size n
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T=576 83 41?2 \9 Q_J Q
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alternation of 7: middle word is 010101...0
middle path Is
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Doubly alternating (reduced) Baxter permutations

[Guibert-Linusson’00] change of convention—_
2) Case n odd, n =2k +1 C-\ C-\ CQ
7=132540786 {\\\QO Q/
' - ?g;[word
AR a e a e
not in

alternation of m: middle word is 010101 ...1
alternation of m—!: black points are < or >-

There are Caty doubly alternating

— . .
(reduced) Baxter permutations of size n

mirror
of each '
other




