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Meanders on two lines
• A 2-line meander encoded by a permutation

• Monotone 2-line meander:
can be obtained from two monotone lines (one in x, the other in y)

associated
permutation

Which permutations can be obtained this way ?
Maps odd numbers to odd numbers, even numbers to even numbers

1 234 567 8 9
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Permutations for monotone 2-line meanders
[Baxter’64, Boyce’67&’81]

``

r r

``

white points are either:

Permutations mapping even to even, odd to odd, and satisfying condition

Theorem ([Boyce’81] reformulated bijectively):
Monotone 2-line meanders with 2n− 1 crossings are in bijection with
complete Baxter permutations on 2n− 1 elements

rising descending

or

shown on the right are called complete Baxter permutations
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Inverse construction
From a complete Baxter permutation to a monotone 2-line meander

white points are either:

1) Draw the blue curve

2) Draw the red curve

The two curves meet only at the permutation points
(because of the empty area-property at white points)

or



Complete and reduced Baxter permutations

complete reduced



Complete and reduced Baxter permutations

complete reduced

• complete one can be recovered from reduced one



Complete and reduced Baxter permutations

complete reduced

• complete one can be recovered from reduced one

case of a descent



Complete and reduced Baxter permutations

complete reduced

• complete one can be recovered from reduced one

case of a descent



Complete and reduced Baxter permutations

complete reduced

• complete one can be recovered from reduced one

case of a descent



Complete and reduced Baxter permutations

complete reduced

• complete one can be recovered from reduced one

case of a rise



Complete and reduced Baxter permutations

complete reduced

• complete one can be recovered from reduced one

case of a rise



Complete and reduced Baxter permutations

complete reduced

• complete one can be recovered from reduced one

case of a rise



Complete and reduced Baxter permutations

complete reduced

• complete one can be recovered from reduced one
• reduced one is characterized by forbidden patterns

2− 41− 3 and 3− 14− 2



Complete and reduced Baxter permutations

complete reduced

• complete one can be recovered from reduced one
• reduced one is characterized by forbidden patterns

2− 41− 3 and 3− 14− 2
• permutation on white points (called anti-Baxter)
is characterized by forbidden patterns

2− 14− 3 and 3− 41− 2
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Counting results
• Baxter permutations

[Chung et al’78] [Mallows’79]

- Number of reduced Baxter permutations with n elements

bn =

n−1∑
r=0

2

n(n+ 1)2

(
n+ 1

r

)(
n+ 1

r + 1

)(
n+ 1

r + 2

)

- Bijective proof: [Viennot’81], [Dulucq-Guibert’98]

• Subfamilies
- alternating [Cori-Dulucq-Viennot’86], [Dulucq-Guibert’98]

- doubly alternating [Guibert-Linusson’00]

• anti-Baxter permutations

CatkCatk if n = 2k CatkCatk+1 if n = 2k + 1

Catk where k = bn/2c

an =

b(n+1)/2c∑
i=0

(−1)i
(
n+ 1− i

i

)
bn+1−i[Asinowski et al’10]

5 7 6 2 1 4 3 ⇔
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Local conditions for monotone 2-line meanders

Conditions
- two (bipartite) matchings missing a (black) point

(one matching above, one below the blue line)

⇔

- white points are either or

Proof of ⇐
Assume there is a red loop (say, clockwise):

then the leftmost and the
righmost point on the loop
are of different colors

impossible

⇒ we have a 2-line meander

rising descending
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Proof of ⇐: construct permutation step by step

123 4

important observation:
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⇔

- white nodes are either or

Proof of ⇐: construct permutation step by step

123 4

important observation:

i i+1︸︷︷︸
already labelled
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Conditions
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⇔

- white nodes are either or

Proof of ⇐: construct permutation step by step

123 4

important observation:

i i+1︸︷︷︸
already labelled

56

ii+1 ︸︷︷︸
already labelled
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Local conditions for monotone 2-line meanders

Conditions

(one matching above, one below the blue line)

⇔

- white nodes are either or

Proof of ⇐: construct permutation step by step

123 4

important observation:

i i+1︸︷︷︸
already labelled

56

ii+1 ︸︷︷︸
already labelled

789 10 111213

Similarly:

or

- two (bipartite) matchings missing a (black) point
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Encoding a monotone 2-line meander

⇓

⇓

0 1 1 0 1 1

1 0 1 1 1 0

0 1 1 1 0 1 ⇒
0

1

# rises

each path has
length n− 1

close to encoding in [Viennot’81,Dulucq-Guibert’98]
exactly coincides with encoding in [Felsner-F-Noy-Orden’11]
(uses “equatorial line” in separating decompositions of quadrangulations)
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(
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)
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bn,r is also the number of reduced Baxter permutations of sizen with r rises
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Alternating (reduced) Baxter permutations

alternation ⇔ middle word is 010101 . . . 1

2) Case n odd, n = 2k + 1

middle path is

⇒

[Cori-Dulucq-Viennot’86], [Dulucq-Guibert’98]

There are CatkCatk+1 alternating
(reduced) Baxter permutations of size n

k

π= 12 3 49 8 6 7 5

k
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Doubly alternating (reduced) Baxter permutations
[Guibert-Linusson’00]
1) Case n even, n = 2k

1 2438675π =

alternation of π: middle word is 010101 . . . 0

alternation of π−1: black points are or

⇒ There are Catk doubly alternating
(reduced) Baxter permutations of size nmirror

of each
other

middle path is

k



Doubly alternating (reduced) Baxter permutations
[Guibert-Linusson’00]
2) Case n odd, n = 2k + 1

1 2 43 8 675π=

alternation of π: middle word is 010101 . . . 1
alternation of π−1: black points are or

⇒ There are Catk doubly alternating
(reduced) Baxter permutations of size nmirror

of each
other

9

not in
top-word

change of convention

not in
bottom-word

k


