Baxter permutations and meanders

Éric Fusy (LIX, École Polytechnique)

Journées Viennot, 28-29 juin 2012, Labri

Meanders on two lines

- A 2-line meander

Meanders on two lines

- A 2-line meander
encoded by a permutation

Meanders on two lines

- A 2-line meander

encoded by a permutation

- Monotone 2-line meander:
can be obtained from two monotone lines (one in x, the other in y)

Meanders on two lines

- A 2-line meander

encoded by a permutation

- Monotone 2-line meander:
can be obtained from two monotone lines (one in x, the other in y)

associated permutation

Meanders on two lines

- A 2-line meander

encoded by a permutation

- Monotone 2-line meander: can be obtained from two monotone lines (one in x, the other in y)

associated permutation

Which permutations can be obtained this way?

Meanders on two lines

- A 2-line meander

encoded by a permutation

- Monotone 2-line meander:
can be obtained from two monotone lines (one in x, the other in y)

associated permutation

Which permutations can be obtained this way?

Meanders on two lines

- A 2-line meander

encoded by a permutation

- Monotone 2-line meander:
can be obtained from two monotone lines (one in x, the other in y)

associated permutation

Which permutations can be obtained this way ? Maps odd numbers to odd numbers, even numbers to even numbers

Permutations for monotone 2-line meanders [Baxter'64, Boyce'67\&'81]

Permutations for monotone 2-line meanders [Baxter'64, Boyce'67\&'81]

white points are either:

rising
descending

Permutations for monotone 2-line meanders [Baxter'64, Boyce'67\&'81]

white points are either:

rising

descending

Permutations for monotone 2 -line meanders

 [Baxter'64, Boyce'67\&'81]
white points are either:

Permutations for monotone 2-line meanders [Baxter'64, Boyce'67\&'81]

white points are either:

Permutations for monotone 2-line meanders [Baxter'64, Boyce'67\&'81]

white points are either:

rising

descending

Permutations mapping even to even, odd to odd, and satisfying condition shown on the right are called complete Baxter permutations

[Baxter'64, Boyce'67\&'81]

$$
\begin{aligned}
& \text { white points are either: } \\
& \text { rising } \\
& \text { descending }
\end{aligned}
$$

Permutations mapping even to even, odd to odd, and satisfying condition shown on the right are called complete Baxter permutations

Theorem ([Boyce'81] reformulated bijectively):

Monotone 2 -line meanders with $2 n-1$ crossings are in bijection with complete Baxter permutations on $2 n-1$ elements

Inverse construction

From a complete Baxter permutation to a monotone 2-line meander white points are either:

Inverse construction

From a complete Baxter permutation to a monotone 2-line meander white points are either:

1) Draw the blue curve

Inverse construction

From a complete Baxter permutation to a monotone 2-line meander white points are either:

1) Draw the blue curve

Inverse construction

From a complete Baxter permutation to a monotone 2-line meander white points are either:

1) Draw the blue curve
2) Draw the red curve

Inverse construction

From a complete Baxter permutation to a monotone 2-line meander white points are either:

1) Draw the blue curve
2) Draw the red curve

Inverse construction

From a complete Baxter permutation to a monotone 2-line meander white points are either:

1) Draw the blue curve
2) Draw the red curve

The two curves meet only at the permutation points (because of the empty area-property at white points)

Complete and reduced Baxter permutations

Complete and reduced Baxter permutations

- complete one can be recovered from reduced one

Complete and reduced Baxter permutations

- complete one can be recovered from reduced one

Complete and reduced Baxter permutations

case of a descent

complete

reduced

- complete one can be recovered from reduced one

Complete and reduced Baxter permutations

case of a descent

complete

reduced

- complete one can be recovered from reduced one

Complete and reduced Baxter permutations

- complete one can be recovered from reduced one

Complete and reduced Baxter permutations

- complete one can be recovered from reduced one

Complete and reduced Baxter permutations

- complete one can be recovered from reduced one

Complete and reduced Baxter permutations

- complete one can be recovered from reduced one
- reduced one is characterized by forbidden patterns $2-41-3$ and $3-14-2$

Complete and reduced Baxter permutations

complete

reduced

- complete one can be recovered from reduced one
- reduced one is characterized by forbidden patterns

$$
2-41-3 \text { and } 3-14-2
$$

- permutation on white points (called anti-Baxter) is characterized by forbidden patterns

$$
2-14-3 \text { and } 3-41-2
$$

- Baxter permutations
- Number of reduced Baxter permutations with n elements

$$
b_{n}=\sum_{r=0}^{n-1} \frac{2}{n(n+1)^{2}}\binom{n+1}{r}\binom{n+1}{r+1}\binom{n+1}{r+2}
$$

[Chung et al'78] [Mallows'79]

- Baxter permutations
- Number of reduced Baxter permutations with n elements

$$
b_{n}=\sum_{r=0}^{n-1} \frac{2}{n(n+1)^{2}}\binom{n+1}{r}\binom{n+1}{r+1}\binom{n+1}{r+2}
$$

[Chung et al'78] [Mallows'79]

- Bijective proof: [Viennot'81], [Dulucq-Guibert'98]

$$
5762143
$$

- Number of reduced Baxter permutations with n elements

$$
b_{n}=\sum_{r=0}^{n-1} \frac{2}{n(n+1)^{2}}\binom{n+1}{r}\binom{n+1}{r+1}\binom{n+1}{r+2}
$$

[Chung et al'78] [Mallows'79]

- Bijective proof: [Viennot'81], [Dulucq-Guibert'98]

$$
5762143
$$

- Subfamilies
- alternating [Cori-Dulucq-Viennot'86], [Dulucq-Guibert'98]
$\mathrm{Cat}_{k} \mathrm{Cat}_{k}$ if $n=2 k \quad \operatorname{Cat}_{k} \mathrm{Cat}_{k+1}$ if $n=2 k+1$
- doubly alternating [Guibert-Linusson'00]

Cat $_{k}$ where $k=\lfloor n / 2\rfloor$

- Number of reduced Baxter permutations with n elements

$$
b_{n}=\sum_{r=0}^{n-1} \frac{2}{n(n+1)^{2}}\binom{n+1}{r}\binom{n+1}{r+1}\binom{n+1}{r+2}
$$

[Chung et al'78] [Mallows'79]

- Bijective proof: [Viennot'81], [Dulucq-Guibert'98]

$$
5762143
$$

- Subfamilies

- alternating [Cori-Dulucq-Viennot'86], [Dulucq-Guibert'98] $\mathrm{Cat}_{k} \mathrm{Cat}_{k}$ if $n=2 k \quad \mathrm{Cat}_{k} \mathrm{Cat}_{k+1}$ if $n=2 k+1$
- doubly alternating [Guibert-Linusson'00]
Cat_{k} where $k=\lfloor n / 2\rfloor$
- anti-Baxter permutations $\lfloor(n+1) / 2\rfloor$
[Asinowski et al'10] $\quad a_{n}=\sum_{i=0}(-1)^{i}\binom{n+1-i}{i} b_{n+1-i}$

Local conditions for monotone 2-line meanders

Conditions

- two (bipartite) matchings missing a (black) point (one matching above, one below the blue line)
- white points are either

Proof of \Leftarrow

Conditions

- two (bipartite) matchings missing a (black) point (one matching above, one below the blue line)
- white points are either

rising

Assume there is a red loop (say, clockwise):

Proof of \Leftarrow

Conditions

- two (bipartite) matchings missing a (black) point (one matching above, one below the blue line)
- white points are either

rising

Assume there is a red loop (say, clockwise):

then the leftmost and the righmost point on the loop are of different colors

Proof of \Leftarrow

Conditions

- two (bipartite) matchings missing a (black) point (one matching above, one below the blue line)
- white points are either

rising

Assume there is a red loop (say, clockwise):

then the leftmost and the righmost point on the loop are of different colors

Proof of \Leftarrow

Conditions

- two (bipartite) matchings missing a (black) point (one matching above, one below the blue line)
- white points are either

rising

descending

Assume there is a red loop (say, clockwise):

then the leftmost and the righmost point on the loop are of different colors
\Rightarrow we have a 2-line meander

Conditions

- two (bipartite) matchings missing a (black) point (one matching above, one below the blue line)
- white nodes are either
 or

Proof of \Leftarrow : construct permutation step by step

Conditions

- two (bipartite) matchings missing a (black) point (one matching above, one below the blue line)
- white nodes are either
 or

Proof of \Leftarrow : construct permutation step by step

Conditions

- two (bipartite) matchings missing a (black) point (one matching above, one below the blue line)
- white nodes are either
 or

Proof of \Leftarrow : construct permutation step by step

Conditions

- two (bipartite) matchings missing a (black) point (one matching above, one below the blue line)
- white nodes are either
 or

Proof of \Leftarrow : construct permutation step by step

Conditions

- two (bipartite) matchings missing a (black) point (one matching above, one below the blue line)
- white nodes are either
 or

Proof of \Leftarrow : construct permutation step by step

Local conditions for monotone 2-line meanders

\Leftrightarrow

Conditions

- two (bipartite) matchings missing a (black) point (one matching above, one below the blue line)
- white nodes are either
 or

Proof of \Leftarrow : construct permutation step by step important observation:

By similar argument as to show there is no red loop

Local conditions for monotone 2-line meanders

\Leftrightarrow

Conditions

- two (bipartite) matchings missing a (black) point (one matching above, one below the blue line)
- white nodes are either
 or

Proof of \Leftarrow : construct permutation step by step
important observation:

By similar argument as to show there is no red loop

\Leftrightarrow

Conditions

- two (bipartite) matchings missing a (black) point (one matching above, one below the blue line)
- white nodes are either
 or

Proof of \Leftarrow : construct permutation step by step important observation:

\Leftrightarrow

Conditions

- two (bipartite) matchings missing a (black) point (one matching above, one below the blue line)
- white nodes are either
 or

Proof of \Leftarrow : construct permutation step by step important observation:

\Leftrightarrow

Conditions

- two (bipartite) matchings missing a (black) point (one matching above, one below the blue line)
- white nodes are either
 or

Proof of \Leftarrow : construct permutation step by step important observation:

\Leftrightarrow

Conditions

- two (bipartite) matchings missing a (black) point (one matching above, one below the blue line)
- white nodes are either
 or

Proof of \Leftarrow : construct permutation step by step important observation:

\Leftrightarrow

Conditions

- two (bipartite) matchings missing a (black) point (one matching above, one below the blue line)
- white nodes are either
 or

Proof of \Leftarrow : construct permutation step by step important observation:

\Leftrightarrow

Conditions

- two (bipartite) matchings missing a (black) point (one matching above, one below the blue line)
- white nodes are either
 or

Proof of \Leftarrow : construct permutation step by step important observation:

\Leftrightarrow

Conditions

- two (bipartite) matchings missing a (black) point (one matching above, one below the blue line)
- white nodes are either
 or

Proof of \Leftarrow : construct permutation step by step important observation:

\Leftrightarrow

Conditions

- two (bipartite) matchings missing a (black) point (one matching above, one below the blue line)
- white nodes are either
 or

Proof of \Leftarrow : construct permutation step by step important observation:

\Leftrightarrow

Conditions

- two (bipartite) matchings missing a (black) point (one matching above, one below the blue line)
- white nodes are either
 or

Proof of \Leftarrow : construct permutation step by step important observation:

\Leftrightarrow

Conditions

- two (bipartite) matchings missing a (black) point (one matching above, one below the blue line)
- white nodes are either
 or

Proof of \Leftarrow : construct permutation step by step
important observation:

Conditions

- two (bipartite) matchings missing a (black) point (one matching above, one below the blue line)
- white nodes are either

Proof of \Leftarrow : construct permutation step by step Similarly:

Encoding a monotone 2-line meander

$$
\begin{aligned}
& \cdots{ }_{0}
\end{aligned}
$$

Encoding a monotone 2-line meander

Encoding a monotone 2-line meander

Encoding a monotone 2-line meander

close to encoding in [Viennot'81,Dulucq-Guibert'98]

Encoding a monotone 2-line meander

close to encoding in [Viennot'81,Dulucq-Guibert'98] exactly coincides with encoding in [Felsner-F-Noy-Orden'11] (uses "equatorial line" in separating decompositions of quadrangulations)

Enumeration using the LGV lemma

each path has
length $n-1$

Enumeration using the LGV lemma

each path has length $n-1$

Let $a_{i, j}=\#$ (upright lattice paths from A_{i} to $\left.B_{j}\right)=\binom{n-1}{x\left(B_{j}\right)-x\left(A_{i}\right)}$ By the Lindstroem-Gessel-Viennot Lemma (used in [Viennot'81]) the number $b_{n, r}$ of such nonintersecting triples of paths is

$$
b_{n, r}=\operatorname{Det}\left(a_{i, j}\right)=\left|\begin{array}{ccc}
\binom{n-1}{r} & \binom{n-1}{r+1} & \binom{n-1}{r+2} \\
\binom{n-1}{r-1} & \binom{n-1}{r} & \binom{n-1}{r+1} \\
\binom{n-1}{r-2} & \binom{n-1}{r-1} & \binom{n-1}{r}
\end{array}\right|=\frac{2}{n(n+1)^{2}}\binom{n+1}{r}\binom{n+1}{r+1}\binom{n+1}{r+2}
$$

Enumeration using the LGV lemma

each path has length $n-1$

Let $a_{i, j}=\#$ (upright lattice paths from A_{i} to $\left.B_{j}\right)=\binom{n-1}{x\left(B_{j}\right)-x\left(A_{i}\right)}$ By the Lindstroem-Gessel-Viennot Lemma (used in [Viennot'81]) the number $b_{n, r}$ of such nonintersecting triples of paths is

$$
b_{n, r}=\operatorname{Det}\left(a_{i, j}\right)=\left|\begin{array}{ccc}
\binom{n-1}{r} & \binom{n-1}{r+1} & \binom{n-1}{r+2} \\
\binom{n-1}{r-1} & \binom{n-1}{r} & \binom{n-1}{r+1} \\
\binom{n-1}{r-2} & \binom{n-1}{r-1} & \binom{n-1}{r}
\end{array}\right|=\frac{2}{n(n+1)^{2}}\binom{n+1}{r}\binom{n+1}{r+1}\binom{n+1}{r+2}
$$

1) Case n even, $n=2 k$
$\pi=89710143526$

Alternating (reduced) Baxter permutations

 [Cori-Dulucq-Viennot'86], [Dulucq-Guibert'98]1) Case n even, $n=2 k$
$\pi=89710143526$

alternation \Leftrightarrow middle word is $010101 \ldots 0$

Alternating (reduced) Baxter permutations

 [Cori-Dulucq-Viennot'86], [Dulucq-Guibert'98]1) Case n even, $n=2 k$
$\pi=89710143526$

alternation \Leftrightarrow middle word is $010101 \ldots 0$ middle path is

Alternating (reduced) Baxter permutations

 [Cori-Dulucq-Viennot'86], [Dulucq-Guibert'98]1) Case n even, $n=2 k$
$\pi=89710143526$

alternation \Leftrightarrow middle word is $010101 \ldots 0$ middle path is

There are $\mathrm{Cat}_{k} \mathrm{Cat}_{k}$ alternating (reduced) Baxter permutations of size n

Alternating (reduced) Baxter permutations

 [Cori-Dulucq-Viennot'86], [Dulucq-Guibert'98]2) Case n odd, $n=2 k+1$
$\pi=231948675$

alternation \Leftrightarrow middle word is $010101 \ldots 1$ middle path is

There are $\mathrm{Cat}_{k} \mathrm{Cat}_{k+1}$ alternating (reduced) Baxter permutations of size n

Doubly alternating

 [Guibert-Linusson'00]1) Case n even, $n=2 k$

alternation of π : middle word is $010101 \ldots 0$ middle path is

alternation of π^{-1} : black points are or

Doubly alternating

 [Guibert-Linusson'00]1) Case n even, $n=2 k$
$\pi=57683412$

alternation of π : middle word is $010101 \ldots 0$ middle path is
 alternation of π^{-1} : black points are or

There are Cat_{k} doubly alternating (reduced) Baxter permutations of size n

not in
bottom-word
alternation of π : middle word is $010101 \ldots 1$ alternation of π^{-1} : black points are $\langle<$

