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Schnyder structures on simple triangulations
[Schnyder’89]
Any triangulation admits a labeling of corners by {1, 2,3} satisfying
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Schnyder structures on simple triangulations
[Schnyder’89]
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v A 4-triangulation admits a transversal
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structure iff it is irreducible
[ ] L ]

yields two bipolar orientations:
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Face-counting algorithm
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4-wood associated to transversal structure

yields 4 regions
for each vertex v
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4-wood associated to transversal structure

ylelds 4 regions right incoming red edges right incoming blue edges
for each vertex v
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barycentric pIacement

(place v at 5.v1 + 10 4 5503 + 2504)
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bc-labelings

Any bc-triangulation has a labeling of corners by {1,2,3,4,5} so that
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5c-woods

configuration at inner vertex

other 5-woods (less restrictive) associated
to pentagon-contact representations
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Properties and variations

e Linear time complexity

e Displays rotational symmetries

A: (2,6,4,2,1)
B: (1,2,6,4,2)
C: (2,1.2,6,4)
D: (4,2,1,2,6)
E: (6,4,2,1,2)
F: (3,3,3,3,3)

e Variations: weighted faces, vertex-counting

e Vertex resolution better than in the 3- or 4-connected drawings

L smallest distance between vertices

(drawing normalized to have outer k-gon inscribed in circle of radius 1)
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no separating triangle

0

orientation i1s ‘“‘co-accessible”
(3 co-accessibility spanning tree)

Schnyder orientation
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Strategy for proof of existence
new proof of existence for 4-connected (from 3-connected)

%‘cal rule

for orientation

similar proof of existence for 5-connected (from 4-connected)



