
TAMARI INTERVALS AND BLOSSOMING TREES

WENJIE FANG∗, ÉRIC FUSY∗ AND PHILIPPE NADEAU†

Abstract. We introduce a simple bijection between Tamari intervals and the

blossoming trees (Poulalhon and Schaeffer, 2006) encoding planar triangula-

tions, using a new meandering representation of such trees. Its specializations
to the families of synchronized, Kreweras, new/modern, and infinitely modern

intervals give a combinatorial proof of the counting formula for each family.

Compared to (Bernardi and Bonichon, 2009), our bijection behaves well with
the duality of Tamari intervals, enabling also the counting of self-dual intervals.

1. Introduction

The Tamari lattice Tamn is a well-known poset on Catalan objects of size
n, that plays an important role in several domains, such as representation the-
ory [BMFPR11, BPR12] and polyhedral combinatorics and Hopf algebra [BCP23,
LR98]. Motivated in part by such links, the enumeration of intervals in the Tamari
lattice was first considered by Chapoton [Cha06] who discovered the beautiful for-
mula

(1) In =
2

n(n+ 1)

(
4n+ 1

n− 1

)
for the number of intervals in Tamn. The subject has attracted much attention
since then, with strikingly simple counting formulas found for several other fami-
lies [BMCPR13, BMFPR11, FPR17].

As for combinatorial proofs, Bernardi and Bonichon [BB09] gave a bijection
between Tamari intervals and planar (simple) triangulations via Schnyder woods.
Then, a bijection by Poulalhon and Schaeffer [PS06] encodes the same triangu-
lations by a class of blossoming trees, which yields (1). The bijection in [BB09]
can be specialized to some subfamilies of Tamari intervals, such as Kreweras inter-
vals [BB09] and synchronized Tamari intervals [FH23]. Another strategy, for in-
stance in [Fan18, Fan21a, FPR17, PR12], is to construct bijections between Tamari
intervals and planar maps inspired by their recursive decompositions. With a sim-
ilar approach, bijections between Tamari intervals and planar maps via certain
branching polyominoes called fighting fish [DGRS17] have been recently devel-
oped [DH22].

In this article, we present a more direct bijection denoted Φ between Tamari
intervals and the blossoming trees from [PS06]. Our construction proceeds via
certain arc-diagrams called meandering trees. In Section 2 we show that Tamari

∗LIGM, CNRS, Univ. Gustave Eiffel, ESIEE Paris, F-77454 Marne-la-Vallée, France. Email

address: {eric.fusy,wenjie.fang}@univ-eiffel.fr
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intervals are in bijection with meandering trees, by applying simple local opera-
tions on a suitable planar representation of the pair of binary trees that form the
interval. We also discuss the link between meandering trees and a tree-encoding of
the interval-posets introduced by Châtel and Pons [CP15]. In Section 3 we consider
the blossoming trees from [PS06] (in a bicolored version), and show that they are
in bijection with meandering trees. A meandering tree directly yields a bicolored
blossoming tree, by taking the unfolded version of the tree. Conversely, a bicolored
blossoming tree can be turned into a meandering tree by a certain closure-mapping,
which is a variation of the closure-mapping in [PS06] that yields a rooted simple
planar triangulation.

In Section 4 we use our bijection to track several parameters on Tamari intervals,
such as the number of entries in each of the 3 canopy-types, which yields a simple
derivation of the associated trivarate generating function [FH23] and of a recent
bivariate counting formula for Tamari intervals [BCP23]. Due to its simplicity, our
bijection is well-suited for specializations to known subfamilies of Tamari intervals,
by characterizing the blossoming trees in each case (Section 4.3). In addition to
synchronized intervals, whose specialization is much simpler than that in [FH23],
and Kreweras intervals, already given in [BB09], our bijection also specializes to
new/modern intervals [Cha06, Rog18] and infinitely modern intervals [Rog18]. It
allows us to recover the known counting formulas for these families (see Table 1)
in a uniform way, as done in Section 5. Compared to [BB09], our bijection has
also the advantage that it transfers the duality involution on Tamari intervals in a
simple way, which amounts to a color-switch in blossoming trees (Lemma 4.5). Self-
dual intervals thus correspond to blossoming trees with a half-turn symmetry. By
counting these trees, we obtain simple counting formulas for each family we consider
(see Table 1). These formulas are new to our knowledge, except for Kreweras
intervals.

The following statement summarizes our main results.

Theorem 1.1. The bijection Φ between intervals in Tamn and bicolored blossoming
trees of size n sends self-dual intervals to blossoming trees with a half-turn sym-
metry. Its specializations to synchronized, Kreweras, modern/new, and infinitely
modern intervals yield combinatorial proofs of counting formulas for intervals and
self-dual intervals in each case, see Table 1.

Finally, we conclude in Section 6 with remarks and observations related to our
new bijection. In particular, we note that, besides color switch, another natural
involution on blossoming trees is to apply a reflection. This yields a new involution
on Tamari intervals with interesting properties, see Section 6.3.

2. Tamari intervals and their meandering representation

2.1. Tamari lattice and intervals. We first recall the definition of the Tamari
lattice, formulated here on binary trees, which are either a single leaf, denoted by
ε, or a binary node with two sub-trees TL, TR, denoted by (TL, TR). The size of a
binary tree T is the number of its binary nodes. We denote by Tn the set of binary
trees of size n. For u a node in T , we denote by Tu the sub-tree of T rooted at u.

Definition 2.1. For T, T ′ two elements in Tn, write T ≺ T ′ if there is a node u in T
such that Tu has the form ((TA, TB), TC)), and T ′ is obtained from T by replacing
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Tu by (TA, (TB , TC)), the replacement operation being called right rotation. The
Tamari lattice Tamn = (Tn,≤) is defined as the transitive closure of this relation.

A Tamari interval of size n is a pair (T, T ′) such that T ≤ T ′ in Tamn. The set
of Tamari intervals of size n is denoted In.

It is not immediately clear that the partially ordered set Tamn is actually a
lattice, see [HT72] for a proof.

T
canonical drawing smooth drawing

Figure 1. A binary tree T with its canonical drawing and smooth
drawing.

2.2. Some representations and encodings of binary trees. Throughout the
article we will use the notation [a . . b] := {a, a + 1, . . . , b} and [n] := [1 . . n]. For
T ∈ Tn, the canonical drawing of T is the crossing-free drawing of T where its n+1
leaves from left to right are placed at the points of abscissas 0, . . . , n on the x-axis,
its nodes are in the upper half-plane, and its edges from a node to the left (resp.
right) child are segments of slope +1 (resp. −1). For every node v of T , the wedge
of v is the concatenation of the segment of slope +1 from v to the leftmost leaf in the
subtree Tv rooted at v and of the segment of slope −1 from v to the rightmost leaf
in Tv. The smooth drawing of T is obtained by replacing every node and associated
wedge by a semi-circle (in the upper half-plane) connecting the two incident leaves,
see Figure 1. By construction we have the following characterization:

Lemma 2.2. Smooth drawings of binary trees of size n are planar arc-diagrams
on integer-points of abscissa from 0 to n on the horizontal line, with all arcs in the
upper half-plane, characterized by the following properties:

• For t ∈ [n], the unit-segment [t− 1, t] is below an arc. We denote by at the
unique arc covering [t− 1, t] and visible from it (i.e., the deepest one);
• Let x` be the abscissa of the left end of at. If x` < t − 1, then there is an

arc from the point at x` to the point at t− 1;
• Let xr be the abscissa of the right end of at. Similarly, if t < xr then there

is an arc from the point at t to the point at xr.

Remark 2.3. The mapping from [t− 1, t] to at in Lemma 2.2 clearly gives a 1-to-1
correspondence between the n unit-segments and the n arcs.

Remark 2.4. A smooth drawing of a binary tree also corresponds to an alternating
layout of a plane tree with n edges, where alternating means that all neighbours of
a vertex are on the same side, either all to the left or all to the right.
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1 1 2 0 3 1 0 0 0

diagram-drawing

degree-vector

Figure 2. Construction of the diagram-drawing (with the degree-
vector indicated below) from the smooth drawing.

Definition 2.5. A diagram-drawing of size n is a non-crossing arc-diagram with
2n + 1 points at abscissas 0, 1/2, 1, . . . , n − 1/2, n on the x-axis, with the n + 1
integral points colored black, and the others white, such that all arcs are in the
upper half-plane and have a black point as left end and a white point as right end,
with each white point incident to a single arc.

For T ∈ Tn, the diagram-drawing T̂ of T is the diagram-drawing obtained from
the smooth drawing of T by converting each arc at, as defined in Lemma 2.2, into
an arc from the white point at t − 1/2 to the black point at the left end of at,
see Figure 2.

Proposition 2.6. The mapping T → T̂ is a bijection from Tn to diagram-drawings
of size n.

Proof. The mapping to recover the smooth drawing of T from its diagram-drawing
T̂ is as follows: for each white point w of T̂ , define the right-attachment point of
w as the rightmost black point b that can be reached from w by traveling in the
upper half-plane without crossing an arc, i.e., b is the black point at x = n if there
is no arc above w, and if w is covered by an arc b′ → w′ then b is the black point
to the left of w′. Then, for each arc b → w in T̂ , the corresponding arc in the
smooth drawing of T connects b to the right-attachment point of w. It is easy to
check that, starting from any diagram-drawing, this mapping yields a valid smooth
drawing (satisfying the conditions of Lemma 2.2), and that it is the inverse of the

mapping T → T̂ . �

Definition 2.7. A degree-vector of size n is a vector (d0, . . . , dn) ∈ Nn+1 satisfying∑n
j=0 dj = n, and

∑i
j=0 dj > i for each i ∈ [0 . . n− 1]. Equivalently, the sequence

of steps (di − 1)0≤i≤n gives a  Lukasiewicz walk.

For T ∈ Tn, the degree-vector of T , denoted by d↗(T ), is the vector (d0, . . . , dn)
such that di is the number of arcs incident to the black point at x = i in the
diagram-drawing of T , for each i ∈ [0 . . n]. Equivalently, by the definition of
smooth drawing of binary trees, d↗(T )i is the right-degree of the black vertex at
x = i in the smooth drawing of T , and is the number of nodes on the maximal left
branch of T ending at the leaf at x = i (thus 0 for a right leaf); see Figure 2, right.
This correspondence is a classical bijection between degree-vectors of size n and Tn.

Finally, we recall the bracket-vector and dual bracket-vector1 encoding of a bi-
nary tree T ∈ Tn. We label nodes of T from 1 to n by infix order, with vi the

1Bracket-vectors, and similarly dual bracket-vectors, are specified by inequality constraints
which we do not reproduce here, see [HT72].
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T

ab

a in V(T )

b in V′(T )V(T ) :

V′(T ) :

7 6 40 1 0 0 0

0 0 10 0 0 2 3

Figure 3. A binary tree T , its bracket-vector V(T ) and dual
bracket-vector V′(T ).

node of label i. Let ai (resp. bi) be the size of the right (resp. left) subtree of vi.
The bracket-vector of T is defined as V(T ) = (a1, . . . , an), and the dual bracket-
vector of T as V′(T ) = (b1, . . . , bn). See Figure 3 for an illustration. The bracket-
vector encoding is convenient to characterize Tamari intervals. For T, T ′ ∈ Tn, it is
known [HT72] that (T, T ′) ∈ In if and only if V(T )i ≤ V(T ′)i for all i, if and only
if V′(T )i ≥ V′(T ′)i for all i.

Remark 2.8. The dual bracket-vector is closely related to the diagram-drawing: for
T ∈ Tn and for t ∈ [n], the unique arc in T̂ incident to the white point at x = t−1/2
is connected to the black point at x = t− 1− bt.

,

T T ′

Figure 4. A pair (T, T ′) of binary trees of same size, its canonical
drawing, and its smooth drawing.

2.3. From pairs of binary trees to meandering diagrams/trees. The mirror
of a binary tree T , denoted by mir(T ), is the mirror image of T exchanging left
and right. The mirror canonical drawing (resp. mirror smooth drawing) of T is the
canonical drawing (resp. smooth drawing) of mir(T ) rotated by a half-turn, which
preserves the left-to-right order of leaves of T . Equivalently, the mirror canonical
(resp. smooth) drawing is the image of the canonical (resp. smooth) drawing of T
by the mirror exchanging up and down.

Let Xn := Tn × Tn. For X = (T, T ′) ∈ Xn, the canonical drawing (resp. smooth
drawing) of X is the superimposition of the canonical (resp. smooth) drawing of T ′

with the mirror canonical (resp. smooth) drawing of T , see Figure 4. In this case,
the upper diagram-drawing of X is the diagram-drawing of T ′, while the lower
diagram-drawing of X is the diagram-drawing of mir(T ) rotated by a half-turn.



6 WENJIE FANG, ÉRIC FUSY, AND PHILIPPE NADEAU

. . . . . .. . . . . . . . . . . .. . . . . .

Figure 5. The operation of φ on the smooth drawing of a pair
(T, T ′) ∈ Xn, performed at each segment between consecutive black
points on the horizontal axis. The smaller blue arc and red arc in
the left figure may be reduced to a point.

The diagram-drawing of X is the superimposition of the upper and lower diagram-
drawing of X. As a convention, in each of the 3 representations of X, the arcs are
blue (resp. red) in the upper (resp. lower) part. Let φ be the mapping that sends
X ∈ Xn to its diagram-drawing, see Figure 5 and Figure 6.

Definition 2.9. A meandering diagram M of size n is a non-crossing arc-diagram
with 2n + 1 points, at 0, 1

2 , 1, . . . , n −
1
2 , n on the x-axis, colored black for integral

points and white for half-integral ones, with all upper (resp. lower) arcs having a
black (resp. white) left end and a white (resp. black) right end.

The underlying graph of M is the graph with black points as vertices, and edges
indexed by white points, relating the black endpoints of its incident upper and lower
arcs. A meandering tree is a meandering diagram whose underlying graph is a tree.
Let MDn (resp. MT n) be the set of meandering diagrams (resp. meandering
trees) of size n.

Proposition 2.10. For n ≥ 1, the mapping φ is a bijection between Xn andMDn.
It specializes to a bijection between In and MT n.

The proof is given next in Section 2.4.

Remark 2.11. By Remark 2.8, the mapping φ also has a simple formulation in
terms of bracket-vector and dual bracket-vector. For X = (T, T ′) ∈ Xn, with
V(T ) = (a1, . . . , an), and V′(T ′) = (b1, . . . , bn), φ(X) is given by its lower arcs
(t− 1

2 , t+ at) and upper arcs (t− 1
2 , t− bt − 1) for all t ∈ [n].

2.4. Proof of Proposition 2.10. The inverse ψ of the mapping φ relies on the
equivalence between the representations of Catalan structures discussed in Sec-
tion 2.2. For M ∈ MDn, we consider the diagram-drawing made by the upper
half-plane part, from which we compute (via right-attachment points) the corre-
sponding smooth drawing, and turn it into the canonical drawing of a binary tree
T ′ ∈ Tn. We do the same for the half-turn of the lower diagram-drawing, yielding a
binary tree of size n, whose mirror is denoted T . Then ψ is the mapping associating
(T, T ′) to M .

It remains to show the specialization statement in Proposition 2.10. Our proof
relies on a forbidden pattern characterization of Tamari intervals and of meandering
trees, and on the fact that the forbidden patterns are in correspondence via φ.
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T

T ′

T

T ′

Figure 6. The top (resp. bottom) row shows a pair X = (T, T ′) ∈
Xn that is (resp. is not) in In, and the corresponding meandering
diagram φ(X) that is (resp. is not) a meandering tree.

For (T, T ′) ∈ Xn, in its canonical drawing, a flawed pair is a pair v, v′ of nodes
respectively in T and T ′ such that, for x` and xr (resp. x′` and x′r) the abscissas of
the leftmost and the rightmost leaf in Tv (resp. T ′v′), we have x′` < x` ≤ x′r < xr.
In the smooth drawing of (T, T ′), a flawed pair is a pair made of a lower arc a and
an upper arc a′ such that, for x` and xr (resp. x′` and x′r) the abscissas of the
left and the right end of the lower (resp. upper) arc, we have x′` < x` ≤ x′r < xr.
Obviously a flawed pair in the canonical drawing gives a flawed pair in the smooth
drawing and vice versa.

Lemma 2.12. A pair (T, T ′) ∈ Xn is in In if and only if it has no flawed pair in
its canonical (equivalently, smooth) drawing.

Proof. Recall the specification of bracket-vectors illustrated in Figure 3. If (T, T ′) /∈
In, then there exists i ∈ [n] such that the ith entry is larger in V(T ) than in V(T ′).
Let v be the right child of the ith node of T , and let v′ be the ith node of T ′. Then
clearly v, v′ form a flawed pair.

Conversely, if (T, T ′) ∈ Xn has a flawed pair v, v′, and with the notation for
flawed pairs, the x`th entry is at least xr − x` in V(T ), and at most xr′ − x` in
V(T ′), hence is smaller in V(T ′) than in V(T ), so that (T, T ′) /∈ In. �

For a meandering diagram M ∈ MDn, a flawed pair is a pair made of a lower
arc (x`, xr) and an upper arc (x′`, x

′
r) such that x′` < x` < x′r < xr.

Lemma 2.13. A meandering diagram M is a meandering tree if and only if it has
no flawed pair.

Proof. Assume M has a flawed pair, with (x`, xr) and (x′`, x
′
r) its two arcs. We

observe that x` and x′r correspond to white points, and xr, x
′
` black ones. Consider
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the horizontal segment S = [x`, x
′
r] on the x-axis that we call the central segment

of the flawed pair. We pick S to have minimal length x′r − x` over all flawed pairs.
As both ends of S are white points, it must contains at least one black point. Let
G be the underlying graph of M , with VS the set of vertices corresponding to black
points in S. We are going to show that vertices in VS are only connected in G to
other vertices in VS . Let b be a black point in S, and consider an arc starting from
some white point w and ending at b. If it is an upper arc, that is b < w, then
w < x′r since (b, w) cannot cross (x′`, x

′
r) and the last inequality is strict due to

the uniqueness of upper arc starting from a white point. Symmetrically, the same
analysis holds when it is a lower arc. Thus, all black points in S are linked to white
points strictly inside S. Now let w be a white point strictly inside S such that
its associated upper arc leaves S and reaches a black point b < xl. Then (x`, xr)
and (b, w) form a flawed pair with central segment of length w − x` < x′r − x`,
contradicting the minimality of S. The same analysis works symmetrically if a
lower arc starts from w. Since vertices in VS can only reach vertices in VS , G is
disconnected, so that M is not a meandering tree.

Now assume that M has no flawed pair. Let G be the underlying graph of M .
Assume for contradiction that G is not a tree. Since G has excess −1, it has a
cycle σ, corresponding to a cycle σ̂ in M . Let b (resp. b′) be the leftmost (resp.
rightmost) point on σ̂; note that b and b′ are black. Let (b, w) be the higher upper
arc entering b in σ̂. As M is crossing-free, all upper arcs below (b, w) stay in the
segment S = [b, w]. For lower arcs starting from points in S, only those starting
from white points may go to the right of S. As M has no flawed pair, every such
lower arc ends inside S, except the lower arc incident to w. We thus conclude that
any path in σ̂ from b to b′ must pass by this lower arc, which contradicts the fact
that σ̂ is a cycle. �

. . . . . . . . .

x′
` x` x′

r xr< ≤ <

a′

a

. . . . . . . . .

x′
`

x`− 1
2

xr< << x′
r+

1
2

Figure 7. The 1-to-1 correspondence between maximal flawed
pairs of X ∈ Xn (in its smooth drawing) and flawed pairs of φ(X).

Lemma 2.14. Let X = (T, T ′) ∈ Xn. Then X has a flawed pair in its smooth
drawing if and only if φ(X) has a flawed pair.

Proof. In the smooth drawing of X, a flawed pair a, a′ is called maximal if a′ is
the outermost upper arc with its right end at x′r, and a is the outermost lower arc
with its left end at x`. Note that if X has a flawed pair then it has a maximal
one. Given Lemma 2.2, in a maximal flawed pair, a′ is not the outermost arc with
the left end at x′`, and similarly a is not the outermost arc with the right end at
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1

2 3

4 8

5 6

7

P

1 2 3 4 85 6 7

GP

Figure 8. An interval-poset P and the associated graph GP (al-
ways a tree). The interval-poset is the one associated to the Tamari
interval in the top row of Figure 6 by the Châtel-Pons bijection.

1 2 3 4 85 6 7

apply . . . . . . . . . . . .

Figure 9. Given an interval-poset P associated to a Tamari in-
terval I by the Châtel-Pons bijection, applying the shown local
operation at each edge of GP yields φ(I).

xr. Then, as illustrated in Figure 7, the maximal flawed pairs of X are in 1-to-1
correspondence with the flawed pairs of φ(X), where the correspondence preserves
x′` and xr, increases x′r by 1/2, and decreases x` by 1/2.

�

The three above lemmas then ensure that the mapping φ specializes into a bi-
jection between In and MT n.

2.5. Connection with previous work. To conclude the section, we discuss the
connections of our construction with previous work on Tamari intervals.

2.5.1. Relation with interval-posets. An interval-poset P of size n is a poset ([n], )
such that, for any t ∈ [n], the set Intt := {s ∈ [n] | s t} is an interval
[at . . bt]. Interval-posets were introduced by Châtel and Pons [CP15], who gave a
size-preserving bijection to Tamari intervals.

An interval-poset P of size n can be encoded by a graph GP with n+ 1 vertices
carrying distinct labels in [0 . . n] and n edges carrying distinct labels in [n]. For
each t ∈ [n] the edge et of label t connects the vertices of labels at − 1 and bt. The
graph GP can be represented with the vertices aligned on the x-axis, and edges as
upper arcs, with a dashed link from the arc of et to the unit-segment [t − 1, t] on
the x-axis, see Figure 8. The graph GP is implicitly considered in [Rog18], where
it is shown to be a non-crossing tree if and only if P is the interval-poset of a so-
called exceptional Tamari interval, i.e., identifying to a Kreweras interval under a
standard bijection from binary trees to non-crossing partitions (cf. Section 4.3.4).

It can be shown that, for any interval-poset P , the graph GP is a tree; one
can argue by deletion of a min-element in P , and induction. Let I = (T, T ′) be
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the Tamari interval associated to P by the bijection in [CP15], with the nodes of
T and of T ′ labeled by left-to-right infix order. Let t ∈ [n], with vt and v′t the
corresponding nodes in T and T ′. It follows from Remark 55 in [CPP19], stated as
Proposition 2.1 in [Rog18], that at is the label of the leftmost node in the subtree of
T ′ rooted at v′t, and bt is the label of the rightmost node in the subtree of T rooted
at vt. Hence, the meandering tree φ(I) is just obtained from GP by applying at
each edge the local operation shown in Figure 9.

We actually discovered the bijection φ via the tree-encoding of interval-posets,
our presentation in Section 2.3 is the shortcut version that operates directly on a
pair of binary trees.

2.5.2. Relation to cubic coordinates for Tamari intervals. The characterization of
Tamari intervals given by Lemma 2.12 can be related to their encoding introduced
in [Com23]. For T ∈ Tn, note that the last entry of V(T ) and the first entry of V′(T )
are always 0. Moreover, for (T, T ′) ∈ In, with V(T ) = (a1, . . . , an) and V′(T ′) =
(b1, . . . , bn), the absence of flawed pair ensures that, for i ∈ [n − 1], the entries ai
and bi+1 can not both be positive. Accordingly, the vector (c1, . . . , cn−1) ∈ Zn−1

defined by ci = −ai if ai > 0, and ci = bi+1 otherwise, encodes the Tamari interval
(T, T ′).

This is actually the “cubic coordinates” vector of [Com23], where its character-
ization is obtained from the study of interval-posets. This vector is specified by
inequalities that are the combination of three kinds of inequalities: those for V(T ),
those for V′(T ′), and mixed inequalities corresponding to the absence of (maxi-
mal) flawed pairs. This characterization can also be obtained with a simple direct
analysis on V(T ) and V′(T ′) without using interval-posets nor Lemma 2.12.

3. Blossoming trees and their meandering representation

We consider the following trees, which are in bijection with simple triangula-
tions [PS06].

Definition 3.1. A blossoming tree B is an unrooted plane tree such that each node
(vertex of degree at least 2) has exactly two neighbors that are leaves. We only
consider such trees with at least two nodes. Edges incident to leaves are called buds,
each bud being represented as an outgoing arrow. Edges not incident to leaves are
called plain edges. The size n ≥ 1 of B is its number of plain edges, which is also
the number of nodes minus 1.

A blossoming tree is bicolored if the half-edges of its plain edges are colored red
or blue without monochromatic plain edge, and at each node the two buds separate
the half-edges into a group of blue half-edges and a group of red half-edges (one of
the groups may be empty). We denote by Bn the set of bicolored blossoming trees
of size n.

Remark 3.2. The bicoloration is unique up to the color of a starting half-edge.
Hence, a blossoming tree, as an unrooted tree, yields at most two bicolored blos-
soming trees, and it yields just one if and only if it is stable by the half-turn
symmetry.

Definition 3.3. For M ∈ MT n, we obtain a bicolored blossoming tree B ∈ Bn
by adding a “left” and a “right” bud at each black point along the x-axis, while



TAMARI INTERVALS AND BLOSSOMING TREES 11

Figure 10. A meandering tree M , and the corresponding bicol-
ored blossoming tree B = γ(M).

keeping the colors of arcs, which are turned into half-edges of plain edges in B,
see Figure 10. Let γ be the mapping sending M to B.

Inverse mapping of γ. To prove that γ is a bijection, we now describe its
inverse mapping δ. For this, we need to define the closure of a blossoming tree.
It is constructed in a different way from [PS06], where it yields a rooted simple
triangulation, cf. Remark 3.7. A planar map is the embedding of a connected
graph in the plane such that edges only intersect at vertices. The embedding cuts
the plane into faces, and the one extending to infinity is the outer face.

For simplicity, in the following, we will use the shorthand “cw” (resp. “ccw”)
for “clockwise” and “counterclockwise”.

Given a bicolored blossoming tree B, its closure, denoted by B, is constructed
as follows. For each plain edge e, we insert an edge-vertex ve in its middle, and
we attach new open half-edges called legs to ve on each side of e. The ccw-contour
on the current tree yields a cyclic parenthesis word, whose opening (resp. closing)
parentheses are given by buds (resp. legs). We then match buds and legs in a
planar way, see Figure 11(b). Since B has 2n + 2 buds and 2n legs, two buds are
left unmatched. The object we obtain, which is a planar map with two dangling
buds on the outer face, is the closure B of B. These two buds are attached to
distinct vertices as is easily checked: these are called extremal vertices.

The edges of the closure B of a blossoming tree B come in three types:

• Dangling buds: the two buds left unmatched;
• Tree-edges: edges resulting from the subdivision of plain edges of B;
• Closure-edges: edges resulting from matching buds and legs.

Every non-extremal vertex of B is incident to exactly two closure-edges, while the
two extremal vertices are incident to a unique closure-edge. We also note that
extremal vertices in B are not necessarily leaves in B.

Lemma 3.4. For B ∈ Bn, let B be the closure of B, and π the subgraph of B
formed by the closure-edges. Then we have

• π is a Hamiltonian path from one extremal vertex to the other;
• π splits half-edges of B by color;
• For any tree-edge e = {u, v} of B, with u a tree-vertex and v an edge-vertex,

let πe be the unique subpath of π from u to v, and σe = πe ∪ {e}, which is
a cycle. Then the interior of σe is on the right of e traversed from u to v.

Proof. For the first statement, we proceed by induction on n. The base case n = 1
is easily checked. et n ≥ 2, and assume the first statement holds for size n− 1. Let
B ∈ Bn and B its closure. There are thus n edge-vertices and n+ 1 tree-vertices in
B. We then observe that, if a bud in B is not directly succeeded by another bud of
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(a) (b)

(c) (d)

Figure 11. (a) A bicolored blossoming tree B; (b) the matching
of buds with legs; (c) the closure B of B, where the meandric path
(the concatenation of the closure-edges) is shown bolder; (d) the
meandering tree M = δ(B) obtained by stretching the meandric
path, so as to have the blue (resp. red) arcs in the upper (resp.
lower) half-plane.

the same vertex in the ccw-direction, then it is matched with the next leg from the
next adjacent edge-vertex, with contour distance 1. We say that they form a short
pair, and clearly among the two buds of a tree-vertex, at least one is in a short
pair. There are thus at least n+ 1 short pairs, while there are only n edge-vertices
in B, meaning that there is some edge-vertex ve of B, corresponding to some edge
e = {u, u′} in B, whose both legs are in short pairs with two buds b, b′, with b on u
and b′ on u′. Such an edge e is called a short edge of B. Let B′ ∈ Bn−1 be the tree
obtained from B by contracting e in B into a new vertex u0 and removing b, b′; we

call B′ the e-contraction of B. By the induction hypothesis, the closure-edges of B
′

form a Hamiltonian path π′. It is clear that expanding the occurrence of u0 in π′

into the path from u to ve to u′ via the short pairs of b and b′ gives a Hamiltonian
path in B.

The second statement comes from the fact that, by construction, the two half-
edges of an edge in B, which are of different colors, are on different sides of π, and
half-edges of a vertex in B are split by its buds, through which π goes, into two
groups of each color.

For the third statement, we again proceed by induction on n. The base case
n = 1 is clear. Let n ≥ 2, and assume the third statement holds for size n− 1. Let
B ∈ Bn, and let e be a tree-edge of B, with the above notation in the statement. If
u and v are consecutive along π, then σe is a bi-gon, and thus e has the interior of
σe on its right, since the matchings are performed in ccw order around B. If not, let
e′ be a short edge of B, and let B′ be the e′-contraction of B. Let σ′e be the cycle of
B′ resulting from σe after contraction. Since u and v are not consecutive along π,
the tree-edge e does not belong to e′, hence it does not collapse when contracting
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e′, and so it is on σ′e. By induction it has the interior of σ′e on its right. Thus e
must have the interior of σe on its right in B. �

The Hamiltonian path π of B in Lemma 3.4 is called the meandric path of
B. From the first statement of Lemma 3.4, for B ∈ Bn, we may stretch the
meandric path of B into the horizontal segment {0 ≤ x ≤ n, y = 0} with 2n + 1
equally-spaced vertices, along with tree-edges as semi-circular arcs. By the second
statement of Lemma 3.4, this can be done in a unique way with the blue (resp.
red) half-edges of B turned into the arcs above (resp. below) the segment. Let M
be the arc-diagram thus obtained. Then the third statement of Lemma 3.4 ensures
that M ∈MT n. We define δ as the mapping that sends B to M .

In order to prove that δ is the inverse of γ we will need the following.

Lemma 3.5. Let M ∈ MT n, and S be any segment of length 1/2 connecting two
adjacent points on the horizontal line. Let then σS be the unique embedded cycle
formed by S and a concatenation of arcs of M . Then S traversed from its black
end to its white end has the interior of σS on its left.

Proof. Let G be the underlying graph of M . Note that the stated existence and
uniqueness of σS just follows from the fact that G is a tree. Let bS be the black
end and wS the white end of S. Assume bS is the left end of S. Let a = (b′S , wS) be
the upper arc incident to wS . Let P•(S) be the set of black points between b′S and
bS (including these two points) and let P◦(S) be the set of white points between
b′S and bS on the horizontal axis. For w ∈ P◦(S) the upper arc incident to w is
below a. By planarity it has to end at a point in P•(S). And the lower arc incident
to w can not end on the right of wS , otherwise with a it would form a flawed pair,
which is not possible by Lemma 2.13.

Let VS and ES be respectively the sets of vertices and edges of G corresponding
to the points in P•(S) and P◦(S). Since all edges in ES connect two vertices in VS ,
and since |ES | = |VS |−1, we conclude that (VS , ES) form an induced subtree of G.
Hence, the path of G between the vertices for b′S and bS passes only by vertices in
VS and edges in ES , hence in M the corresponding sequence of arcs passes only by
points in S, below the arc a. Since σS is formed by S, a and this sequence of arcs,
we conclude that S traversed from black end to white end has the interior of σS on
its left. The proof is similar if bS is the right end of S. �

Proposition 3.6. For n ≥ 1, the mapping γ is a bijection from Bn to MT n, with
δ its inverse.

Proof. We have already seen that γ is a mapping from MT n to Bn and δ is a
mapping from Bn to MT n. For B ∈ Bn, we clearly have γ(δ(B)) = B. For
M ∈ MT n, let B = γ(M), with B drawn in the plane as in Figure 10 right.
Then Lemma 3.5 ensures that, in the matching of buds with legs to perform the
closure of B, the matched pairs correspond to consecutive points on the horizontal
axis. Thus, the meandric path of B is made by the segments between consecutive
points on the horizontal axis, and thus M is actually the stretched closure of B,
i.e., M = δ(B). �

Remark 3.7. As illustrated in Figure 12, the Poulalhon–Schaeffer closure bijection
proceeds differently, by attaching two buds and a leg at each leaf of the blossoming
tree. The two ways to perform the closure are related, for instance the unmatched
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Figure 12. The Poulalhon-Schaeffer closure bijection in the dual
setting. At each leaf of the blossoming treeB are attached two buds
and a leg, with the leg just before the two buds in counterclockwise
order around B; and as in our case two legs are attached at the
middle of every plain edge, one on each side. Then the buds are
planarly matched with legs in counterclockwise order around B.
The output is the dual of a simple planar triangulation, with a
marked edge formed by joining the two unmatched buds.

buds are carried by the same nodes. The presentation in Figure 12 is actually
the dual formulation of the Poulalhon–Schaeffer bijection, as described by Gilles
Schaeffer (personal communication).

4. The main bijection, properties and specializations

Combining Proposition 2.10 and Proposition 3.6, we obtain the following.

Theorem 4.1. The mapping Φ := γ ◦ φ is a bijection from In to Bn. Its inverse
is Ψ := ψ ◦ δ.

We now give some properties and specializations of the bijection Φ.

4.1. Parameter-correspondence. Let X = (T, T ′) ∈ Xn, and consider its canon-
ical drawing. For k ∈ [0, n], the ↗-branch at k is the left branch of T ′ ending at
x = k, and the number of nodes on it is given by d↗(T ′)k. Similarly, we define
the ↙-branch at k to be the right branch of T ending at x = k, and we denote its
number of nodes by d↙(T )k, where d↙(T ) is given by d↙(T ) = d↗(mir(T )). We
may consider d↙ as the dual degree vector of T . or k ∈ [0 . . n], we say that the kth
diagonal has bi-length (i, j) if d↗(T ′)k = i and d↙(T )k = j; the bi-length vector of
X is the corresponding vector of pairs of integers, see the upper part of Figure 13.
On the other hand, for B a bicolored blossoming tree, a node of B is said to have
bi-degree (i, j) if it is incident to i blue half-edges and to j red half-edges. As
illustrated in Figure 13, we have the following correspondence.
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Figure 13. Correspondence between the bi-lengths of diagonals
of a Tamari interval and the bi-degrees of the nodes in the associ-
ated bicolored blossoming tree, via the bijection Φ.

Lemma 4.2. Let I = (T, T ′) ∈ In be a Tamari interval. Then, for i, j ≥ 0, the
number of diagonals of bi-length (i, j) in I corresponds to the number of nodes of
bi-degree (i, j) in Φ(I).

Proof. From Definition 2.5, we see that the number of arcs going to the right from a
black point at x = k in the diagram-drawing of T is d↗(T )k. By Definition 2.9, Def-
inition 3.3 and Theorem 4.1, this is also the number of blue half-edges incident to
the corresponding node in Φ(I). Similarly d↙(T )k is equal to the number of red
half-edges incident to the same node. �

We now present the needed notation for a useful corollary of Lemma 4.2. In a
binary tree, we say that a leaf is of canopy type (or simply type) 1 (resp. 0) if it is
the left child (resp. right child) of its parent. The canopy-vector of a binary tree
T ∈ Tn is the word can(T ) ∈ {0, 1}n+1 given by the types of the leaves from left to
right. We note that can(T ) can be obtained from the bracket-vector V(T ) of T as
the pattern of zero and non-zero entries. For (T, T ′) a Tamari interval, the absence
of flawed pair implies that the joint canopy type at every position i ∈ [0, n] is either[
1
1

]
,
[
0
0

]
or
[
1
0

]
.

Remark 4.3. We note that our definition of canopy is slightly different from that
from [PRV17], in which the first and the last leaves are ignored, as their types are
fixed.
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In a blossoming tree, we say that a node is of type
[
1
1

]
(resp.

[
0
0

]
) if it has only

blue (resp. red) incident half-edges, and is of type
[
1
0

]
otherwise. Nodes of the first

two types are called synchronized , and it is equivalent to their buds being side by
side.

Corollary 4.4. For I = (T, T ′) a Tamari interval, the number of canopy entries
of type

[
1
1

]
(resp.

[
0
0

]
,
[
1
0

]
) in I is equal to the number of nodes of type

[
1
1

]
(resp.[

0
0

]
,
[
1
0

]
) in Φ(I).

Proof. We apply Lemma 4.2, then observe that we obtain the type of a canopy
entry of I (resp. the type of a node in Φ(I)) by replacing non-zero values in the
corresponding bi-length (resp. bi-degree) by 1 for the first component, and by
replacing such values by 0 (and 0 by 1) for the second component. �

4.2. Commutation with duality of intervals. For I = (T, T ′) ∈ In, by abuse
of notation, we define its mirror mir(I) to be (mir(T ′),mir(T )). It is known that
mir(I) is a Tamari interval, also called the dual of I [PRV17]. On the other hand,
for B ∈ Bn, the dual of B, denoted by dual(B), is the tree obtained from B by
switching the colors of half-edges. We then have the following property.

Lemma 4.5. For I ∈ In and B = Φ(I), we have dual(B) = Φ(mir(I)).

Proof. We recall from Theorem 4.1 that Φ = γ ◦ φ. Note that the canonical (resp.
smooth) drawing of mir(I) is the half-turn of the canonical (resp. smooth) drawing
of I. From this observation we get the property that φ(mir(I)) is φ(I) rotated by
a half-turn. Indeed, the upper part of φ(mir(I)) is the diagram-drawing of mir(T ),
which is exactly the half-turn of the lower part of I; and a similar equivalence also
holds for the lower part of φ(mir(I)). Then the mapping γ is such that Φ(mir(I)) is
obtained from B = Φ(I) by exchanging red and blue, which is exactly dual(B). �

4.3. Specializations. In this section, we consider several special families of Tamari
intervals: synchronized, modern, modern-synchronized, infinitely modern, and Krew-
eras. We show that for each of these families the corresponding blossoming trees
have a simple characterization.

4.3.1. Synchronized intervals. A Tamari interval (T, T ′) is called synchronized if
can(T ) = can(T ′). These were defined in [PRV17] in connection to ν-Tamari-
lattices (generalized Tamari lattices therein), which are intervals of the Tamari
lattice formed by elements with a fixed canopy-vector ν. A synchronized interval
thus corresponds to some interval in some ν-Tamari lattice.

We say that a blossoming tree is synchronized if it has no node of type
[
1
0

]
. Thus,

at each node, the two incident buds are consecutive. We have the following as a
special case of Corollary 4.4.

Corollary 4.6. A Tamari interval I = (T, T ′) is synchronized if and only if Φ(I)
is synchronized.

Proof. This follows directly from 4.4 and the definition of synchronized Tamari
intervals and synchronized blossoming trees. �

Remark 4.7. We call Tamari intervals of the form I = (T, T ) trivial intervals,
and they are synchronized. As illustrated in Figure 14, in this case, the upper
representation of φ(I) (in the sense of Figure 9) coincides with the smooth drawing
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e

Figure 14. A binary tree T , the image of I = (T, T ) under φ (me-
andering representation, superimposed with the smooth drawing of
I), and the blossoming tree Φ(I), with e the edge corresponding
to the root of T .

T TriseT ′,
T ′,

Figure 15. The rise of a pair (T, T ′) ∈ Xn.

of T , as can be checked by induction following the binary decomposition of T .
Moreover, for the blossoming tree Φ(I), let e be its edge associated to the root-edge
of T . Then, for every vertex v ∈ Φ(I), letting ev be the incident edge at v ‘towards’
e, the two buds at v come just after ev in ccw-order around v, see Figure 14 right.

4.3.2. Modern intervals. The rise of a pair I = (T, T ′) ∈ Xn is defined as rise(I) =
((T, ε), (ε, T ′)), as illustrated in Figure 15. A Tamari interval (T, T ′) is modern if
its rise is also a Tamari interval.

In a blossoming tree, a plain edge e = (u, v) is non-modern if the edge following e
in cw-order around u and the edge following e in cw-order around v are both plain
edges. A blossoming tree is called modern if it has no non-modern edge. In other
words, a blossoming tree is modern if it avoids the “Z” pattern, where all three
lines are plain edges, and there are no buds inside the two acute corners.

Lemma 4.8. Let B be a bicolored blossoming tree, with M = δ(B) the correspond-
ing meandering tree. For e = (u, v) a plain edge of B, in M let bu and bv be the
black points for u and v respectively, and w the white point for e. Then, e in B is
followed by a bud in cw-order around u (resp. v) if and only if bu (resp. bv) is next
to w on the horizontal axis.

Proof. If the next edge after e in cw-order around u is a bud, then when doing the
closure of B, this bud is matched with the leg at e on the same side. Hence, bu
and w are consecutive on the meandric path, thus also on the horizontal axis in
M . Conversely, if bu and w are consecutive on the horizontal axis in Ĝ, then by
definition of γ (see also Figure 10), the bud at bu pointing toward w corresponds
to the next edge after e in cw-order around u in B. �
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. . . . . . . . . . . .

Figure 16. For I a Tamari interval, and for M = φ(I), the 1-gaps
of I correspond to the white points w of M whose incident arcs do
not link w to the two black vertices next to it on the axis.

Lemma 4.9. A Tamari interval I = (T, T ′) is modern if and only if Φ(I) is
modern.

Proof. One possible approach is via interval-posets, where a forbidden pattern for
modern intervals is obtained in [Rog18]. Here we argue via the characterization of
Tamari intervals of Lemma 2.12, that is, a pair X = (T, T ′) is a Tamari interval if
and only if the smooth drawing of X has no flawed pair.

We observe that the smooth drawing of (ε, T ′) is obtained from that of T ′ by
adding a point to the left and linking it to the rightmost point by an arc. Hence,
the smooth drawing of rise(I) is obtained from that of I by shifting the upper part
by one unit to the right and adding an arc linking the leftmost and the rightmost
points in both the upper and the lower part.

Now, I is modern if and only if rise(I) has no flawed pair in its smooth drawing.
As I is a Tamari interval, its smooth drawing has no flawed pair. Thus, the smooth
drawing of rise(I) has no flawed pair if and only if the smooth drawing of I has
no “1-separated pair”, i.e., a pair a, a′ of lower and upper arc such that the right
end of a′ is one unit to the left of the left end of a. In this case, the offending
unit segment is called a 1-gap of I. Indeed, such a pair becomes a flawed pair in
rise(I), with x′r = x`, and any other flawed pair in rise(I) would have to come from
a flawed pair in I.

Then, as shown in Figure 16, the 1-gaps of I correspond exactly to the edges e
of the underlying tree of M = φ(I) such that none of the two black extremities of
e is next to the white point of e. By Lemma 4.8, these are exactly the non-modern
edges of Φ(I). The absence of 1-gap in I, which is equivalent to I being modern, is
thus equivalent to Φ(I) being modern. �

Remark 4.10. It is shown in [Rog18] that rise is a bijection between modern intervals
in In and new intervals in In+1 introduced and counted by Chapoton in [Cha06].

4.3.3. Infinitely modern intervals. Following [Rog18], an interval I = (T, T ′) ∈ In
is called infinitely modern if risek(I) is a Tamari interval of size n+ k for all k ≥ 0.

In a blossoming tree, a simple path π = v0, . . . , vk is called non-modern if the
edge following (v0, v1) in cw-order around v0 and the edge following (vk−1, vk) in cw-
order around vk are both plain edges. A blossoming tree is called infinitely modern
if it has no non-modern path. In other words, a blossoming tree is infinitely modern
if it avoids the long “Z” pattern, where the diagonal is a path of plain edges, the
two horizontal lines are plain edges, and there are no buds inside the two acute
corners.
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. . . . . . . . . . . .

minimal
gap

Figure 17. Correspondence between minimal gaps of I and the
minimal non-modern paths of B = Φ(I).

Lemma 4.11. A Tamari interval I = (T, T ′) is infinitely modern if and only if
Φ(I) is infinitely modern.

Proof. Again, one may argue either via interval-posets (where a forbidden pattern
for being associated to an infinitely modern interval is obtained in [Rog18]), or, as
done here, via the characterization of Tamari intervals of Lemma 2.12.

A separated pair of I is a pair (a, a′) of arcs in the smooth drawing of I, where
a is an upper arc and a′ a lower one, such that a′ is totally on the left of a. The
segment between a and a′ is called a gap of I. By repeating the argument in the
proof of Lemma 4.9 k times, a separated pair of I with a gap of length k yields
a flawed pair of risek(I). Thus, as I is a Tamari interval, I is infinitely modern if
and only if I has no separated pair. We say that a gap is minimal if it contains no
other gap.

On the other hand, for B a bicolored blossoming tree, a non-modern path π =
v0, . . . , vk is called minimal if, for i ∈ [k − 1], the next edge after (vi, vi+1) (resp.
after (vi, vi−1)) in cw-order around vi is a bud. Clearly, if B has a non-modern
path, then it has a minimal one, for instance a shortest one.

Then, as shown in Figure 17, and using Lemma 4.8, for k ≥ 1 the minimal gaps
of length k in I are in 1-to-1 correspondence with the minimal non-modern paths
of length k in Φ(I). The absence of separated pairs in I is thus equivalent to the
absence of non-modern paths in Φ(I). �

Remark 4.12. For k ≥ 1, a Tamari interval I is called k-modern if risei(I) is a
Tamari interval for all i ∈ [k]. The proof of Lemma 4.11 ensures that I is k-modern
if and only if Φ(I) has no non-modern path of length at most k.

4.3.4. Kreweras intervals. The Kreweras lattice of size n is the set NCn of non-
crossing partitions of size n endowed with the refinement order [Kre72]; the top
(resp. bottom) element being the partition with a single block (resp. with n blocks).
There is a standard bijection ι between Tn and NCn: for T ∈ Tn, with nodes labeled
by infix order, the associated non-crossing partition ι(T ) is the partition of the nodes
into right branches.

Remark 4.13. If we consider the non-crossing partition given by the partition of
the nodes of T into left branches, then we obtain the Kreweras complement π of
π = ι(T ), see Figure 18.

By a slight abuse of notation, the pairs (T, T ′) ∈ Xn that are mapped to Kreweras
intervals by the mapping ι are called Kreweras intervals.
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Figure 18. A binary tree T given by its canonical drawing, the
associated non-crossing partition π = ι(T ) in red, and its Kreweras
complement π in blue, which also corresponds to the partition of
the nodes into left branches.

v0
··· ··· ··· ··· ··· ··· vk······ ···

a↑

a↓ a↓

a↑

Figure 19. (Left) A non-Kreweras pair of arcs in a meandering
diagram. (Right) A minimal non-Kreweras path of a blossoming
tree, in the meandering representation.

In a meandering diagram M ∈ MDn, a non-Kreweras pair is a pair made of
a lower arc a↓ and an upper arc a↑ such that, for x` and xr (resp. x′` and x′r)
the abscissas of the left and the right end of the lower (resp. upper) arc, we have
x` < x′` < xr < x′r, see Figure 19 left.

Lemma 4.14. A pair X = (T, T ′) ∈ Xn is a Kreweras interval if and only if
M = φ(X) is a meandering tree without non-Kreweras pairs.

Proof. Let π = ι(T ) and π′ = ι(T ′). Let J(π, π′) be the superimposition of π and
π′, with the parts of π red and the parts of π′ blue, and the points alternatively
blue and red on the line, as in Figure 18 (which has π′ = π). It is easy to see that
J(π, π′) is non-crossing if and only if (π, π′) is an interval in the Kreweras lattice.
Indeed by construction of the Kreweras complement, π′ is the partition of the red
points according to the connected components of the upper half-plane cut by the
blue regions. Hence, the partition π on red points has to satisfy π ≤ π′ for J(π, π′)
to be non-crossing.

On the other hand, the upper representation of M is the arc-diagram M↑ ob-
tained by flipping the lower arcs of M upwards. Clearly M↑ is crossing-free if and
only if M has no flawed pairs nor non-Kreweras pairs. By Lemma 2.13 this is
equivalent to M being a meandering tree without non-Kreweras pairs.

Now, as illustrated in Figure 20, there is a simple link between J(π, π′) and
M↑. For each point p of π (resp. π′), let the attached point of p be the rightmost
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Figure 20. Left: for the pair X = (T, T ′) in the top row of Fig-
ure 6, with π = ι(T ) and π′ = ι(T ′), the drawing shows M = φ(X)
superimposed with π in the lower part, and with π′ in the upper
part. Right: the joint representation J(π, π′) above, and the up-
per representation M↑ below. The pair (π, π′) is not a Kreweras
interval, as ensured by the presence of a crossing in J(π, π′), which
is equivalent to the presence of a crossing in M↑.

Figure 21. Consider the Kreweras interval formed by the non-
crossing partitions π = {{1, 4}, {2}, {3}, {5, 7}, {6}} and π′ =
{{1, 4, 5, 7}, {2, 3}, {6}}. The left drawing shows π′ in the upper
part and π in the lower part, superimposed with the meandering
tree M associated to (π, π′). The right drawing shows the non-
crossing tree induced by M .

(resp. leftmost) point of the block to which p belongs. Then p yields an arc in M↑

connecting the white point just on the left (resp. right) of p to the black point just
on the right (resp. left) of its attached point. From this correspondence it is easily
checked that J(π, π′) is crossing-free if and only if M↑ is crossing-free. �

Remark 4.15. Lemma 4.14 ensures that Kreweras intervals form a subfamily of
Tamari intervals, which is well-known, see [BB09] and references therein. These
Tamari intervals are called exceptional in [Rog18]. Note that the meandering trees
M whose upper representation is crossing-free correspond to non-crossing trees for
the operation of Figure 9 performed from right to left. An example is shown in
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Figure 21. This recovers the fact that the interval-poset trees for exceptional Tamari
intervals are the non-crossing trees [Rog18].

In a blossoming tree, a simple path π = v0, . . . , vk with k ≥ 1 is called non-
Kreweras if the edge following (v0, v1) in ccw-order around v0 is a plain edge, and
the same holds for (vk−1, vk) with vk. A blossoming tree is called Kreweras if it
has no non-Kreweras path.

Lemma 4.16. A Tamari interval I = (T, T ′) is Kreweras if and only if Φ(I) is
Kreweras.

Proof. By Lemma 4.14 it suffices to show that M ∈MT n has a non-Kreweras pair
if and only if B = γ(M) has a non-Kreweras path.

Assume M has a non-Kreweras pair of arcs a↑, a↓. Let v and w be respectively
the left endpoint of a↑ and the right endpoint of a↓. Let V ′ be the set of vertices
of B corresponding to black points from v to w on the horizontal line (both ends
included), and let E′ be the set of plain edges of B whose white point is between v
and w on the horizontal line. Note that |E′| = |V ′| − 1. Moreover, by planarity, as
limited by a↑ and a↓, every edge in E′ must connect two vertices in V ′. Hence, as
B is a tree, the subgraph H = (V ′, E′) is a subtree of B, which implies that there
is a path π in H from v to w. In M , the path π stays between v and w, hence is
non-Kreweras due to the two edges containing a↑ and a↓.

Conversely, suppose that B has a non-Kreweras path. Then it has a non-
Kreweras path π = v0, . . . , vk that is minimal, i.e., for i ∈ [k − 1], the next edge
after (vi, vi+1) (resp. after (vi, vi−1)) in ccw-order around vi is a bud. The situation
in M is as shown in the right-part of Figure 19 (up to exchanging v0 and vk). Let
a↑ be the upper arc of the next edge after (v0, v1) in ccw-order around v0, and a↓
the lower arc of the next edge after (vk−1, vk) in ccw-order around vk. Then, by
planarity and the absence of flawed pair in M , we know that a↑ ends on the right
of vk, and similarly a↓ ends on the left of v0. Thus, a↑ and a↓ form a non-Kreweras
pair of arcs in M . �

∅

∅

∅

∅

Synchronized Modern Infinitely modern Kreweras

∅

∅

. . .

. . .

Figure 22. Forbidden patterns of blossoming trees for subfamilies
of Tamari intervals.

Remark 4.17. The forbidden patterns for the considered subfamilies are illustrated
in Figure 22. We note that a blossoming tree is Kreweras if and only if its reflection
is infinitely modern.

5. Counting results

5.1. Tamari intervals. From Theorem 4.1 we recover the counting formula for
Tamari intervals as follows.
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Proposition 5.1. For n ≥ 1, the number of Tamari intervals of size n is

2

n(n+ 1)

(
4n+ 1

n− 1

)
.

Proof. By Theorem 4.1, we have |In| = |Bn|. The formula for |Bn| was obtained
in [PS06] (in the form of counting balanced blossoming trees) using a contour en-
coding. For completeness, and in view of recovering a bivariate refinement due to
Bostan, Chyzak and Pilaud [BCP23], we give here a slightly different encoding.

Let En be the set of bicolored blossoming trees of size n with a marked edge. For
T ∈ En with e the marked edge, let v0, . . . , vn be the vertices of T ordered by first
visit in a ccw-tour around T , starting at the middle of e along its red half-edge.
Note that T can be viewed as a pair of rooted trees, each rooted at a node adjacent
to e. For a node vi, its children are split by the two incident buds into 3 groups: left,
middle and right. The respective sizes of these 3 groups are denoted by `i,mi, ri.

Let Sn be the set of sequences (a0, . . . , a3n+2) with all ai ∈ N such that
∑3n+2

i=0 ai =

n − 1, and Ŝn ⊂ Sn the set of such sequences satisfying
∑3i+2

j=0 aj ≥ i for all

0 ≤ i ≤ n−1. By considering the sequence (b0, . . . , bn) with bi = a3i +a3i+1 +a3i+2

and applying the cycle lemma (see [DZ90]) to it, we see that Ŝn is in 2-to-(n + 1)
correspondence with Sn. Let Vec(T ) = (`0,m0, r0, . . . , `n,mn, rn). It is clear that

Vec(T ) ∈ Ŝn, as
∑i

j=0(`j + mj + rj) is the number of children of already visited
nodes up to vi, which is at least i for the first rooted tree and at least i− 1 for the
second rooted tree, as the two roots are the only nodes not counted here. For any

sequence from Ŝn, we may construct the first rooted tree using the sequence up to

the first index i such that
∑i

j=0(`j +mj + rj) = i, and the second rooted tree with

the rest of the sequence. Therefore, the mapping Vec is a bijection from En to Ŝn.
We thus have

|Bn| =
1

n
|En| =

1

n
|Ŝn| =

2

n(n+ 1)
|Sn| =

2

n(n+ 1)

(
4n+ 1

n− 1

)
. �

5.2. Trivariate series according to canopy-parameters. From Corollary 4.4
we derive here formulas for the trivariate counting series of Tamari intervals ac-
cording to the 3 types of canopy entries.

Proposition 5.2. Let Ii,j,m be the number of Tamari intervals of size n = i+ j +

m− 1 with i, j,m the number of canopy-entries of type
[
1
1

]
,
[
0
0

]
,
[
1
0

]
respectively. Let

A ≡ A(x, y, z) and B ≡ B(x, y, z) be the trivariate series defined by

(2) A =
1

(1−B)2

(
y +

zA

1−A

)
, B =

1

(1−A)2

(
x+

zB

1−B

)
.

Then we have

(3)
∑
i,j,m

(i+ j +m− 1)Ii,j,mx
iyjzm = AB,

(4) F (x, y, z) ≡
∑
i,j,m

Ii,j,mx
iyjzm =

xA

1−A
+

yB

1−B
+

zAB

(1−A)(1−B)
−AB.

Proof. By Section 4.1, Ii,j,m is the number of bicolored blossoming trees having

i nodes of type
[
1
1

]
, j nodes of type

[
0
0

]
, and m nodes of type

[
1
0

]
. A planted

blossoming tree T is one of the two trees obtained after cutting a plain edge in a
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A t=
1

1−B

1
1−B

1
1−B

1
1−B

A
1−A

y z

Figure 23. Combinatorial decomposition of red-planted blossom-
ing trees, indicating the contributions to the counting series.

bicolored blossoming tree, with the dangling half-edge of the cut-out edge as the
root . It is red-planted (resp. blue-planted) if the root is red (resp. blue). Let
A ≡ A(x, y, z) and B ≡ B(x, y, z) be respectively the counting series of red-planted
and blue-planted blossoming trees, with x, y, z marking the number of nodes of types[
1
1

]
,
[
0
0

]
,
[
1
0

]
respectively, with the types defined similarly as in bicolored blossoming

trees.
We may decompose the two types of planted blossoming trees at the root, sepa-

rated by the two buds into three sequences of sub-trees, two with planted blossoming
trees planted at opposing color, one with those planted at the same color, whose
emptiness determines the type of the node. See Figure 23 for an illustration for A,
that for B is similar. Thus A and B satisfy (2).

The trivariate counting series of bicolored blossoming trees with a marked plain
edge, denoted by F−, is clearly equal to AB, which gives (3). For the second
formula, we note that the counting series of bicolored blossoming trees with a
marked node, denoted by F •, is

F • =
xA

1−A
+

yB

1−B
+

zAB

(1−A)(1−B)
,

where each term corresponds to the marked node being of type
[
1
1

]
,
[
0
0

]
,
[
1
0

]
respec-

tively. We have F = F • − F−, as there are one more nodes than plain edges, and
as bicolored blossoming trees have no symmetry. We thus get (4). �

Remark 5.3. The series R = A/(1−A) and G = B/(1−B) are specified by

R = (1 +R)(1 +G)2(y + zR), G = (1 +G)(1 +R)2(x+ zG),

and (4) becomes

F (x, y, z) = xR+ yG+ zRG− RG

(1 +R)(1 +G)
.

This is exactly the expression obtained in [FH23] via the Bernardi–Bonichon bijec-
tion composed with a bijection from minimal Schnyder woods to a certain subclass
of unrooted binary trees. The derivation in [FH23] is however less direct, as the
system obtained there involves a third series (B therein), which can be eliminated
by algebraic manipulations.

5.3. A formula by Bostan, Chyzak and Pilaud. In a recent work [BCP23],
Bostan, Chyzak and Pilaud are interested in the enumeration of Tamari intervals
with respect to certain statistics, motivated by geometric objects called diagonals of
the associahedra. One of their main results concerns the number Jk(n) of intervals
(T, T ′) ∈ In such that cani(T ) = cani(T

′) for k + 2 values of i. Their theorem
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was stated in terms of covering relations; it is clearly equivalent to the following
statement.

Proposition 5.4 ([BCP23, Theorem 1]). For any n ≥ 1, k ≥ 0, we have

(5) Jk(n) =
2

n(n+ 1)

(
3n

k

)(
n+ 1

k + 2

)
.

Proof. In the notation of Section 5.2, Jk(n) is given by
∑

i+j=k+2 Ii,j,n−1−k. By

setting x = y, we note that A(x, x, z) = B(x, x, z) by symmetry for the series A,B
in Proposition 5.2. Setting moreover x = xt and z = t in (3), we have∑

k,n

nJk(n)xk+2tn+1 = A2, where A =
t

(1−A)2

(
x+

A

1−A

)
.

We thus obtain (5) using the Lagrange inversion formula:

[xk+2tn+1]A2 = [xk+2]
2

n+ 1
[yn−1]

(
x

(1− y)2
+

y

(1− y)3

)n+1

=
2

n+ 1
[yk]

(
n+ 1

k + 2

)
1

(1− y)3n−1−k =
2

n+ 1

(
n+ 1

k + 2

)(
3n

k

)
.

One can also proceed bijectively by a simple adaptation of the proof of Propo-
sition 5.1. With the notation therein, nJk−2(n) is equal to the cardinality of the
subset En,k of En of blossoming trees where exactly k of the (n+ 1) nodes vi satisfy
mi = 0, meaning that the two buds at vi are consecutive. We call every entry of

the form a3k+1 in (a0, . . . , a3n+2) ∈ Sn a mid-entry . Let Sn,k (resp. Ŝn,k) be the

subset of Sn (resp. Ŝn) of sequences with exactly k mid-entries equal to 0. The

mapping Vec is a bijection from En,k to Ŝn,k, and the cyclic lemma ensures that

Ŝn,k is in 2-to-(n+ 1) correspondence with Sn,k. Hence,

Jk−2(n) =
1

n
|En,k| =

1

n
|Ŝn,k| =

2

n(n+ 1)
|Sn,k| =

2

n(n+ 1)

(
n+ 1

k

)(
3n

k − 2

)
,

the factor
(
n+1
k

)
accounting for the choice of positions of mid-entries equal to 0. �

We note that the original proof in [BCP23] is more involved and requires solving
a certain functional equation with the help of a computer.

5.4. Synchronized intervals. We recall that, in a synchronized blossoming tree,
there is no node of type

[
1
0

]
, thus for each node, its two buds are consecutive. It also

means that the half-edges adjacent to each node are monochromatic. We define the
reduction of a synchronized blossoming tree to be the tree obtained by merging the
two buds at each node into one, and coloring red (resp. blue) the nodes incident
to red half-edges (resp. blue half-edges) only. We thus obtain a so-called bicolored
1-blossoming tree, i.e., an unrooted plane tree with one bud per node, and whose
nodes are colored red or blue such that adjacent nodes have different colors. As
usual, the size of such a tree is its number of nodes minus 1. Corollary 4.6 then
ensures that synchronized Tamari intervals of size n are in bijection with bicolored
1-blossoming trees of size n, and Corollary 4.4 implies that the number of 1’s (resp.
0’s) in the common canopy word of the interval is the number of blue nodes (resp.
red nodes) in the corresponding bicolored 1-blossoming tree. We then recover the
following formulas for the enumeration of synchronized intervals.
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Proposition 5.5. For n ≥ 1, let Sn be the number of synchronized intervals of
size n. For i, j ≥ 1, let Si,j be the number of synchronized intervals with i (resp.

j) canopy entries of type
[
1
1

]
(resp.

[
0
0

]
). Then

Sn =
2

n(n+ 1)

(
3n

n− 1

)
, Si,j =

1

ij

(
2i+ j − 2

j − 1

)(
2j + i− 2

i− 1

)
.

Proof. The formula for Sn is the special case k = n − 1 in (5). For the bivariate
formula, by the above reduction, Si,j is the number of bicolored 1-blossoming tree
with i blue nodes and j red nodes.

A planted 1-blossoming tree T is one of the two trees obtained after cutting a
plain edge in a bicolored 1-blossoming tree, with the dangling half-edge of the cut-
out edge as the root . It is red-planted (resp. blue-planted) if the root is incident
to a red (resp. blue) node. Let A ≡ A(x, y) (resp. B ≡ B(x, y)) be the counting
series of red-planted (resp. blue-planted) bicolored 1-blossoming trees, with x, y
marking the numbers of blue and red nodes. As in Figure 23, a root-decomposition
of planted 1-blossoming trees yields the system

A =
y

(1−B)2
, B =

x

(1−A)2
,

which is consistent with (2) at z = 0. Hence, A = yF (A), with F (u) = 1
(1−x/(1−u)2)2 ,

so that the Lagrange inversion formula gives

[xiyj ]A =
1

j
[uj−1][xi]

(
1

1− x/(1− u)2

)2j

=
1

j
[uj−1]

(
2j + i− 1

i

)
1

(1− u)2i
=

1

j

(
2j + i− 1

i

)(
2i+ j − 2

j − 1

)
.

Every tree counted by Si,j has i blue nodes and j red nodes, thus has 2j + i− 1
corners at red nodes, among which i+ j − 1 are on the right of an edge, and j are
on the right of a bud. Adding a red dangling half-edge at such a corner, we get a
tree counted by [xiyj ]A. We thus have

(2j + i− 1)Si,j = [xiyj ]A(x, y),

which gives the formula for Si,j . A bijective derivation can be achieved by fol-
lowing the cyclic lemma approach from [Cho75] for objects counted by [xiyj ]A,
combined with an encoding by integer compositions as in the proofs of Proposi-
tion 5.1 and Proposition 5.4. �

Remark 5.6. The bicolored 1-blossoming trees are precisely those known [AP15,
Fus07] to bijectively encode rooted simple quadrangulations, or equivalently rooted
non-separable maps. This is consistent with [FPR17, FH23], which shows that
rooted non-separable maps with n + 1 edges (resp. with i + 1 vertices and j + 1
faces) are in bijection with synchronized intervals counted by Sn (resp. counted by
Si,j). It is also consistent with the fact that the above expression of Sn (resp. Si,j)
corresponds to the known formula [BT64, Sch98, Tut63] for the number of rooted
non-separable maps with n+ 1 edges (resp. with i+ 1 vertices and j + 1 faces).

5.5. Modern intervals. As mentioned in Remark 4.10, the rise operator gives a
bijection between modern intervals of size n and new intervals of size n + 1. An
explicit formula for the number of new intervals of size n + 1 has been obtained
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in [Cha06], which we recover here bijectively via the enumeration of modern blos-
soming trees.

Proposition 5.7. The number of modern intervals of size n (also the number of
new Tamari intervals of size n+ 1) is

3 · 2n−1

(n+ 1)(n+ 2)

(
2n

n

)
.

Proof. By Lemma 4.9, we have to show that the number of modern blossoming
trees of size n is given by the above formula. We define a modern planted tree
to be one of the two components obtained by cutting a modern blossoming tree
at the middle of a plain edge, rooted at the dangling half-edge. As we do not
account for the types of nodes in modern blossoming trees, we ignore colors in the
following. Let Am ≡ Am(z) be the series of modern planted trees with z marking
the number of nodes, and Bm ≡ Bm(z) the series of those with a bud immediately
after the root half-edge in cw-order. We recall from the definition that, in a modern
blossoming tree, every plain edge can not be followed by a plain edge in cw-order
at both ends. This gives some restriction on the root-decomposition of modern
planted trees. Indeed, for any sub-tree hanging from an edge that is not followed
by a bud, it is to be counted by Bm. A tree counted by Am can be split into three
(possibly empty) sequences of subtrees by the two buds of the root. Subtrees in
the first sequence all follows a plain edge at the root, thus accounted by Bm, and
also those in the second and the third one except the subtree leading the sequence,
which follows a bud and thus has no restriction, and can be any tree accounted by
Am. The decomposition for trees counted by Bm is similar, except that the third
sequence is empty. By standard symbolic method, with z accounting for the root,
we have

(6) Am =
z

1−Bm

(
1 +

Am

1−Bm

)2

, Bm =
z

1−Bm

(
1 +

Am

1−Bm

)
.

We define Cm = Am

1−Bm
. From (6), we observe that Am = Bm(1 + Cm). Substi-

tuting Am by Bm(1 + Cm) in the definition of Cm yields

Cm =
Bm

1− 2Bm
.

From the second equation in (6), we then obtain

Bm =
z

1−Bm
(1 + Cm) =

z

1− 2Bm
.

Dividing the equation by 1− 2Bm, we get

Cm = z(1 + 2Cm)2.

Hence, Cm is also the generating series of complete binary trees with weight z on
internal nodes and weight 2 on internal edges. As complete binary trees are counted
by Catalan numbers, and there is exactly one less internal edge than internal nodes,
we have

(7) Cm(z) =
∑
n≥1

2n−1

n+ 1

(
2n

n

)
zn.

We now consider modern blossoming trees with one marked node. We may
split such a tree at the two buds of the marked node, obtaining two sequences
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no bud

root

Figure 24. A modern bicolored 1-blossoming tree. The result of
transferring the bud information into an orientation of the half-
edges yields a tree with one bidirected edge e and all other edges
unidirected toward the closest extremity of e.

(distinguished by colors) of planted modern blossoming trees, which are formed in
the same way as a sequence after a bud at the root in the arguments above to
obtain Equation (6). The number of modern blossoming trees of size n, which have
n+ 1 nodes each, is thus

1

n+ 1
[zn]

(
1 +

Am

1−Bm

)2

=
1

n+ 1
[zn]

(
2Cm + C2

m

)
=

1

n+ 1
[zn]

(
Cm +

Cm − z
4z

)
=

1

n+ 1

(
2n−1

n+ 1

(
2n

n

)
+

2n−2

n+ 2

(
2n+ 2

n+ 1

))
=

3 · 2n−1

(n+ 1)(n+ 2)

(
2n

n

)
.

�

Remark 5.8. The proof above relies on combining identities on generating functions
of families of planted trees. Based on similar arguments, one can derive an explicit
bijection between objects counted by Bm(z) and rooted plane trees with n edges,
each edge colored either black or white. We omit the details here, as the obtained
bijection is not very enlightening.

Remark 5.9. With some more work, it should also be possible to extend the de-
composition of modern planted trees to track the numbers of nodes of the three
possible canopy-types, and to compute the trivariate generating function Fm(x, y, z)
of modern intervals, with x, y, z marking respectively canopy-entries

[
1
1

]
,
[
0
0

]
,
[
1
0

]
. It

is known [Fan21b] that zFm(x, y, z) counts rooted bipartite maps by the numbers
of black vertices, white vertices and faces, thus zFm(x, y, z) is symmetric in x, y, z.
We have not been able to directly see this symmetry at the level of modern bicol-
ored blossoming trees. It would also be interesting to find a closure-bijection from
these trees to rooted bipartite maps.
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5.6. Modern-synchronized intervals. We show here that the intersection of the
families of modern and synchronized intervals yields a Catalan family. A bicolored
1-blossoming tree T of size n is called modern if it is also the reduction of a modern
synchronized blossoming tree.

Proposition 5.10. For n ≥ 1, the number of modern-synchronized Tamari inter-
vals of size n is the n-th Catalan number. For i, j ≥ 1, the number of modern-
synchronized Tamari intervals with i canopy-entries

[
1
1

]
and j canopy-entries

[
0
0

]
is

given by the Narayana number

1

i+ j − 1

(
i+ j − 1

i

)(
i+ j − 1

j

)
.

Proof. By Corollary 4.6 and Lemma 4.9, we count instead bicolored 1-blossoming
trees. For each bud b in such a tree T , let v be its incident node, and h the half-
edge that follows b in cw-order around v. We give to h an orientation away from v.
See Figure 24 for an example. By the absence of non-modern edges, each edge has
at least one oriented half-edge, and when there are two, they are in head-to-head
direction. In the first case, we endow the whole edge with the same orientation,
and in the second case, we say that the edge is bi-oriented.

Now, deleting the buds, we obtain an encoding of T as a vertex-bicolored un-
rooted plane tree with an orientation on its n edges. Since there are n+ 1 vertices,
thus n+1 buds and n+1 oriented half-edges, there must be a single bi-oriented edge
e. We also observe that every vertex has outdegree 1 on its half-edges. By a simple
induction on the distance towards e, all edges other than e are oriented toward e,
see Figure 24. We may then further encode such an oriented tree by rooting T at
the half-edge incident to the blue end of the bi-oriented edge, leading to a rooted
plane tree with its vertex coloring inherited from the 1-blossoming tree structure,
with the root-vertex blue. However, the color of the root vertex determines the
color of other vertices. Therefore, the final encoding is simply a rooted plane tree,
thus counted by Catalan numbers.

For the refined enumeration, using Corollary 4.4 and the definition of 1-blossoming
trees, by the same arguments above, it amounts to counting bicolored rooted plane
trees with i blue nodes and j red nodes. As the root is blue, this is given by the
Narayana number [Sul98]. �

Remark 5.11. The fact that rooted plane trees having i nodes at even depth and
j nodes at odd depth are counted by the Narayana number follows from the fact
that they are in bijection with rooted plane trees having i inner nodes and j leaves,
see [JS15, Sec.3] and [Deu98]. One can also associate to a binary tree T the rooted
plane tree whose alternating layout is the smooth drawing of T . This gives a
bijection from binary trees of size n to rooted plane trees with n edges, which maps
the two types of leaves (left and right) in binary trees to the two types of nodes
(even and odd) in rooted plane trees.

Remark 5.12. This result is also a consequence of [Fan21b]. Indeed, the rise oper-
ator applied to a modern interval increases the number of entries

[
1
0

]
by 1, while

preserving the numbers of entries of type
[
1
1

]
and

[
0
0

]
. Hence, by 4.10, the number

of modern-synchronized intervals with i canopy-entries
[
1
1

]
and j canopy-entries

[
0
0

]
is the number of new Tamari intervals with i canopy-entries of type

[
1
1

]
, j of type[

0
0

]
, and one of type

[
1
0

]
. It follows from [Fan21b] that it is also the number of
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Types
General
size n

Self-dual
size 2k

Self-dual
size 2k + 1

General
2

n(n+ 1)

(
4n+ 1

n− 1

)
1

3k + 1

(
4k

k

)
1

k + 1

(
4k + 2

k

)
Synchronized

2

n(n+ 1)

(
3n

n− 1

)
0

1

k + 1

(
3k + 1

k

)
Modern

/ new for size-1

3 · 2n−1

(n+ 1)(n+ 2)

(
2n

n

)
2k−1

k + 1

(
2k

k

)
2k

k + 1

(
2k

k

)
Modern and
synchronized

1

n+ 1

(
2n

n

)
0

1

k + 1

(
2k

k

)
Inf. modern
/ Kreweras

1

2n+ 1

(
3n

n

)
1

2k + 1

(
3k

k

)
1

k + 1

(
3k + 1

k

)
Table 1. Counting formulas for general and self-dual Tamari in-
tervals.

rooted bipartite planar maps with a unique face (i.e., rooted plane trees), with i
black vertices and j white vertices in the proper 2-coloring with the root-vertex
black.

Remark 5.13. The structure of the orientation of T obtained from the buds clearly
implies that, if a blossoming tree is modern and synchronized, then it is infinitely
modern. We also note that these blossoming trees are the mirror of the blossoming
trees for trivial intervals (Remark 4.7 and Figure 14).

5.7. Kreweras and infinitely modern intervals. Via the bijection between
Kreweras intervals of size n and non-crossing trees with n edges (Remark 4.15),
which are well-known to be in bijection to ternary trees with n nodes, we recover
the following known result [BB09, Kre72].

Proposition 5.14. The number of Kreweras intervals of size n is

1

2n+ 1

(
3n

n

)
.

Moreover, as noted in Remark 4.17, the blossoming trees for infinitely mod-
ern intervals are just the reflection of the blossoming trees for Kreweras intervals,
which induces a bijection between these two interval families. We thus recover the
following result from [Rog18].

Proposition 5.15. The number of infinitely modern Tamari intervals of size n is

1

2n+ 1

(
3n

n

)
.

5.8. Self-dual intervals. We use here Lemma 4.5 to bijectively obtain counting
formulas for self-dual intervals of size n in all families considered so far.

Proposition 5.16. The number of self-dual Tamari intervals of size n is given by
the formulas in Table 1 (depending on the parity of n) for each of the following
families: general, synchronized, modern, new, modern and synchronized, infinitely
modern, and Kreweras.
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Proof. By Lemma 4.5, the number of self-dual Tamari intervals of size n is the
number of trees in Bn that are invariant by switching colors of half-edges. They are
also the uncolored blossoming trees with a half-turn symmetry. Now we discuss the
case for each family. The parity of n matters, as it changes the quotient of related
trees by the half-turn symmetry. In general, the center of rotation is a node when
n is even; otherwise, it is an edge.

Self-dual general Tamari intervals. For n = 2k even, the center of rotation
of such a tree is a node u, and the quotient of the tree by the half-turn symmetry
gives a blossoming tree T of size k with a marked synchronized node u. By an
argument similar to that in the proof of Proposition 5.15, we can decompose T into
four parts: the sub-trees of u except its leftmost descending edge e = {u, v}, and
the three sequences of sub-trees of v separated by its two buds. We thus have a size-
preserving recursive bijection between blossoming trees rooted at a synchronized
node and rooted 4-ary trees. Hence, self-dual Tamari intervals of size n = 2k are
counted by 1

3k+1

(
4k
k

)
.

For n = 2k + 1 odd, the center of rotation is a plain edge, and the quotient of
the tree by the half-turn symmetry gives a planted blossoming tree with k nodes,
defined in the proof of 5.2. As seen in the proof of 5.2, when taking x = y = z = t,
the counting series A ≡ A(t) of these trees satisfies A = t/(1 − A)3, and we get

[tk+1]A = 1
k+1

(
4k+2

k

)
using Lagrange inversion or the cyclic lemma.

Self-dual synchronized intervals. In this case, we note that there is no self-
dual blossoming tree of even size, as the center of rotation would be a node that
is necessarily not synchronized. For n = 2k + 1 odd, the center of rotation is
a plain edge, and the quotient tree is a planted blossoming tree with k nodes
that are all synchronized, i.e., the two incident buds of each node are consecutive.
They thus split the subtrees of the root into two sequences. The counting series
A ≡ A(t) of these trees satisfies A = t/(1− A)2, and the standard techniques give

[tk+1]A = 1
k+1

(
3k+1

k

)
.

Self-dual modern/new intervals. We use the series Am, Bm, Cm defined in
the proof of Proposition 5.7. For n = 2k even, the quotient trees are modern
blossoming trees rooted at a synchronized node, with the buds at the top. For
a root decomposition, as the blossoming tree involved is modern, we see that all
subtrees except the rightmost one must be those counted by the series Bm, that
is, those with a bud next to the root in cw-order. With symbolic method, by the
definition of Cm and Equation (7), the number of self-dual modern intervals is

[zk]Am
1

1−Bm
= [zk]Cm =

2k−1

k + 1

(
2k

k

)
.

For n = 2k + 1 odd, the center of symmetry is an edge e. For e to not be a
non-modern edge, there must be a bud that follows e in cw-order at both ends,
meaning that the quotient trees are exactly those counted by Bm. The number of
self-dual modern intervals is thus

[zk]Bm =
2k

k + 1

(
2k

k

)
.

We observe that this is exactly twice the number for n = 2k.
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Regarding new intervals, as the rise operator preserves the property of being-
dual, the number of self-dual new intervals of size n equals the numbers of self-dual
modern intervals of size n− 1.

Self-dual modern and synchronized intervals. In this case, the encoding of
related blossoming tree by a rooted plane tree illustrated in Figure 24 commutes
with the half-turn rotation, i.e., self-dual blossoming trees correspond to plane trees
with a marked edge and invariant by a half-turn rotation. Such trees with 2k + 1
edges are clearly counted by the Catalan numbers Catk, as the quotient trees are
plane trees with k edges and an additional dangling half-edge as the root. The trees
with size n = 2k is clearly 0 by the case of synchronized intervals.

Self-dual Kreweras and infinitely modern intervals. Via the bijection with
non-crossing trees, self-dual Kreweras intervals correspond to non-crossing trees
that are fixed by left-right mirror, this is indeed equivalent to the fact that the
associated meandering tree is stable by half-turn. It is then an easy exercise to
count these non-crossing trees of size n. For n = 2k, such a tree is obtained
as a non-crossing tree τ of size k concatenated with its left-right mirror τ , the
right end of τ being merged with the left end of τ . Hence, the number of self-
dual Kreweras intervals of size 2k is equal to the number of non-crossing trees of
size k. For n = 2k + 1, a non-crossing tree of size n fixed by left-right mirror is
obtained as follows. Take a pair (τ1, τ2) of non-crossing trees whose sizes add up
to k, concatenate τ1 and τ2 into a non-crossing tree τ , with v the vertex resulting
from merging the right end of τ1 with the left end of τ2. Then concatenate τ
with its left-right mirror τ without merging the ends, and add an edge from v to
the corresponding vertex v in τ . From this construction, the number of self-dual
Kreweras intervals of size 2k+1 is [zk](1+R(z))2, with R(z) = z(1+R(z))3, which
gives the formula.

Finally, by Remark 4.17, the infinitely modern blossoming trees are the reflection
of the Kreweras blossoming trees. Note that a blossoming tree is fixed by a half-
turn if and only if its reflection is also fixed by a half-turn. Hence, the induced
bijection between Kreweras intervals and infinitely modern intervals preserves the
property of being self-dual, so that in each size the numbers of self-dual intervals
are the same in both families. �

Remark 5.17. In the context of non-crossing partitions, with the notation π for
the Kreweras complement of a partition, there is a natural duality, which maps an
interval (π, π′) to (π′, π). Via the bijection between NCn and Tn this duality is
consistent with the Tamari duality, as follows from the property illustrated in Fig-
ure 18. The formula in Table 1 for self-dual Kreweras intervals has been previously
obtained, see OEIS A047749.

6. Final remarks

6.1. Dyck walks. The Tamari lattice is often presented as a poset on Dyck walks.
This has certain advantages, for instance to formulate recursive decompositions [BMC23,
BMCPR13, BMFPR11, FPR17]. Duality on the other hand is not as obvious as
left-right symmetry of trees.

The bijection of intervals with meandering trees is easy to characterize on Dyck
walks, via the underlying correspondence to binary trees (a binary tree T = (T1, T2)

https://oeis.org/A047749
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is mapped to the Dyck walk D = D1↗D2↘, with D1, D2 the Dyck walks asso-
ciated inductively to T1, T2). Recall the contact-vector C(W ) = (c0, . . . , cn) and
descent-vector D(W ) = (d0, . . . , dn) attached to a Dyck walk W of length 2n. That
is, ci is the number of contacts after the ith up step of W for i > 0, while c0 is the
number of contacts of W . Thus ci = 0 if and only if the i-th up step is followed by
a down step (this happens in particular when i = n). On the other hand, di is the
number of down steps after the ith up step of W , with d0 = 0 by convention. For W
a Dyck walk associated to a binary tree T , it is easy to check that the degree-vector
of T is C(W ), while the degree vector of mir(T ) is D(W ) read from right to left.
This leads to the following, see Figure 25.

Proposition 6.1. In the Dyck walk formulation, a Tamari interval (W,W ′) cor-
responds to the meandering tree M ∈MT n such that C(W ′) is the degree-vector of
the upper diagram-drawing, while D(W ), read from right to left, is the degree-vector
of the lower diagram-drawing rotated by a half-turn.

0

0

1 2

0

1 2

1 11

1

2

0 3

1

0

0 0

C(W’)

D(W )

Figure 25. Formulated on Dyck walks, the interval correspond-
ing to the meandering tree in Figure 13.

The recursive decomposition of intervals is then easily translated in our model
(this can also be done starting with interval posets as in [CP15]). Given a mean-
dering tree, consider the upper arc (0, i + 1/2) with i maximal; let (i + 1/2, j) be
the corresponding lower arc. Deleting this arc, we get a meandering tree on [0, i],
a meandering tree on [i + 1, n] and a point j such that no lower arc encloses it.
Conversely, such data corresponds to a meandering tree of size n.

6.2. Limitations. We are currently unable to use our bijection to count m-Tamari
intervals, which are synchronized intervals with canopy of the form

1, 0m, 1, 0m, . . . , 1, 0m.

Indeed the order on canopy entries is lost in the bijection.
By Lemma 4.2 we can count Tamari intervals with respect to the unordered

bi-degree profile. From Proposition 6.1, when formulated on pairs of Dyck walks,
this gives enumeration with respect to the unordered joint profile of the descent-
vector for lower walk and level-vector for upper walk. This, however, does not lead
to counting labeled intervals from [BMCPR13], for which we would need to have
control on the ascent-vector of the upper walk, or equivalently on the descent-vector
of the upper walk via the involution in [Pon19].
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∅

∅

(a)

··· ······ ·········

(b)

··· ··· ··· ··· ··· ··· ···

(c)

Figure 26. (a) Forbidden pattern in blossoming trees that are
the reflection of modern blossoming trees. (b) The corresponding
configuration in the meandering representation of the blossoming
tree. (c) The corresponding configuration in the interval-poset tree.

6.3. A new involution on Tamari intervals. Previously known involutions on
Tamari intervals are the classical duality involution, and more recently the in-
volution in [Pon19]. The mirror of blossoming trees allows us to provide a new
involution.

More formally, we define the reflection of a blossoming tree B ∈ Bn, denoted by
refl(B), to be the mirror image of B, and define ρ = Ψ ◦ refl ◦ Φ, which is clearly
an involution on Tamari intervals.

Proposition 6.2. The involution ρ commutes with the duality involution mir. It
preserves the property of being synchronized, matches the infinitely modern intervals
with the Kreweras intervals, and matches the modern and synchonized intervals with
the trivial intervals.

Furthermore, it matches the modern intervals with the intervals whose interval-
poset tree has no triple of arcs as in Figure 9(c), or equivalently those whose
interval-poset has no triple x, y, z of elements such that Int(x) = Int(y) ∩ Int(z).

Proof. The first statement follows from the fact that the operations of reflection
and of color-switch on bicolored blossoming trees commute. Clearly the reflection
does not affect the property that the two buds at each node are grouped. It thus
preserves the property of being synchronized. From Remark 4.17 the infinitely
modern intervals are matched with the Kreweras intervals. From Remark 5.13 the
modern synchronized intervals are matched with the trivial intervals.

Finally, from Lemma 4.9, modern intervals are matched by ρ with intervals whose
blossoming trees have no plain edge followed by a plain edge at both ends in ccw-
order. In the meandering representation, due to the absence of flawed pairs, the
configuration for the three plain edges is as in Figure 26(b). Thus, the interval-
poset tree, obtained by performing the operation of Figure 9 from right to left, has
to avoid the pattern in Figure 26(c). �

6.4. Self-dual intervals and q-analogues. Regarding the counting formulas in Ta-
ble 1, it has been observed by Vic Reiner (personal communication) that the number
of self-dual intervals coincides with a simple q-analogue of the formula for all in-
tervals taken at q = −1. We have checked that the same holds for synchronized
intervals. It would be nice to have a natural explanation of this fact. This may
come from a combinatorial analysis of blossoming trees.

6.5. Implementation. An implementation of the bijection is available at the link
https://github.com/fwjmath/assorted-tamari/blob/master/blossoming.py

https://github.com/fwjmath/assorted-tamari/blob/master/blossoming.py
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Figure 27. Random bicolored blossoming trees in their meander-
ing representation, with 10, 100, 1000, 10000 nodes respectively.
In large size, they look similar to the smooth drawing of the cor-
responding Tamari interval.

which also includes a random generator for Tamari intervals. Some random samples
are shown in Figure 27.
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variables. Discrete Math., 13(3):215–224, 1975.

[Com23] Camille Combe. Geometric realizations of Tamari interval lattices via cubic coordi-

nates. Order, 2023, 2023.
[CP15] Grégory Châtel and Viviane Pons. Counting smaller elements in the Tamari and

m-Tamari lattices. J. Comb. Theory, Ser. A, 134:58–97, 2015.
[CPP19] Grégory Châtel, Vincent Pilaud, and Viviane Pons. The weak order on integer posets.

Algebr. Comb., 2(1):1–48, 2019.

[Deu98] Emeric Deutsch. A bijection on Dyck paths and its consequences. Discrete Math.,
179(1-3):253–256, jan 1998.

[DGRS17] Enrica Duchi, Veronica Guerrini, Simone Rinaldi, and Gilles Schaeffer. Fighting fish.

J. Phys. A, 50(2):024002, 2017.
[DH22] Enrica Duchi and Corentin Henriet. Bijections between fighting fish, planar maps,

and Tamari intervals. Sém. Lothar. Combin. B, 86, 2022. Extended version at

arXiv:2206.04375 and arXiv:2210.16635.
[DZ90] Nachum Dershowitz and Shmuel Zaks. The Cycle Lemma and Some Applications.

Eur. J. Comb., 11(1):35–40, jan 1990.

[Fan18] Wenjie Fang. Planar triangulations, bridgeless planar maps and Tamari intervals.
European Journal of Combinatorics, 70:75–91, 2018.

[Fan21a] Wenjie Fang. Bijective link between Chapoton’s new intervals and bipartite planar
maps. European Journal of Combinatorics, 97:103382, 2021.

[Fan21b] Wenjie Fang. Bijective link between Chapoton’s new intervals and bipartite planar

maps. Eur. J. Comb., 97:103382, 2021.

[FH23] Éric Fusy and Abel Humbert. Bijections for generalized Tamari intervals via orien-

tations. European Journal of Combinatorics, page 103826, 2023.
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[JS15] Svante Janon and Sigurdur Örn Stefánsson. Scaling limits of random planar maps

with a unique large face. Ann. Probab., 43(3):1045–1081, 2015.

[Kre72] Germain Kreweras. Sur les partitions non croisées d’un cycle. Discrete Math.,
1(4):333–350, 1972.
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