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Abstract

Conservative Count-Min, a stronger version of the popular Count-Min sketch [Cormode,
Muthukrishnan 2005], is an online-maintained hashing-based sketch summarizing element fre-
quency information of a stream. Although several works attempted to analyze the error of
conservative Count-Min, its behavior remains poorly understood. In [Fusy, Kucherov 2022], we
demonstrated that under the uniform distribution of input elements, the error of conservative
Count-Min follows two distinct regimes depending on its load factor.

In this work, we present a series of results providing new insights into the behavior of
conservative Count-Min. Our contribution is twofold. On one hand, we provide a detailed
experimental analysis of Count-Min sketch in different regimes and under several representative
probability distributions of input elements. On the other hand, we demonstrate improvements
that can be made by assigning a variable number of hash functions to different elements. This
includes, in particular, reduced space of the data structure while still supporting a small error.

1 Introduction

In most general terms, Count-Min sketch is a data structure for representing an associative array
of numbers indexed by elements (keys) drawn from a large universe, where the array is provided
through a stream of (key,value) updates so that the current value associated to a key is the sum of
all previous updates of this key. Perhaps the most common setting for applying Count-Min, that
we focus on in this paper, is the counting setting where all update values are +1. In this case, the
value of a key is its count telling how many times this key has appeared in the stream. In other
words, Count-Min can be seen as representing a multiset, that is a mapping of a subset of keys to
non-negative integers. With this latter interpretation in mind, each update will be called insertion.
The main supported query of Count-Min is retrieving the count of a given key, and the returned
estimate may not be exact, but can only overestimate the true count.

The counting version of Count-Min is applied to different practical problems related to data
stream mining and data summarization. One example is tracking frequent items (heavy hitters) in
streams [27, 10, 14]. It occurs in network traffic monitoring [21], optimization of cache usage [20].
It also occurs in non-streaming big data applications, e.g. in bioinformatics [29, 3, 33].

Count-Min relies on hash functions but, unlike classic hash tables, does not store elements but
only count information (hence the term sketch). It was proposed in [15], however a very similar data
structure was proposed earlier in [12] under the name Spectral Bloom filter. The latter, in turn, is
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closely related to Counting Bloom filters [23]. In this work, we adopt the definition of [12] but still
call it Count-Min to be consistent with the name commonly adopted in the literature. A survey on
Count-Min can be found e.g. in [13].

In this paper, we study a stronger version of Count-Min called conservative. This modification of
Count-Min was introduced in [21] under the name conservative update, see [13]. It was also discussed
in [12] under the name minimal increase. Conservative Count-Min provides strictly tighter count
estimates using the same memory and thus strictly outperforms the original version. The price to
pay is the impossibility to deal with deletions (negative updates), whereas the original Count-Min
can handle deletions as well, provided that the cumulative counts remain non-negative (condition
known as strict turnstile model [27]).

Analysis of error of conservative Count-Min is a difficult problem having direct consequences on
practical applications. Below in Section 2.2 we survey known related results in more details. In our
previous work [24], we approached this problem through the relationship with random hypergraphs.
We proved, in particular, that if the elements represented in the data structure are uniformly
distributed in the input, the error follows two different regimes depending on the peelability property
of the underlying hash hypergraph. While properties of random hypergraphs have been known to be
crucially related to some data structures (see Section 2.3), this had not been known for Count-Min.

Starting out from these results, in this paper we extend and strengthen this analysis in several
ways, providing experimental demonstrations in support of our claims. Our first goal is to provide a
fine analysis of the “anatomy” of conservative Count-Min, describing its behavior in different regimes.
Our main novel contribution is the demonstration that assigning different number of hash functions
to different elements can significantly improve the error, and, as a consequence, lead to memory
saving. Another major extension concerns the probability distribution of input elements: here
we study non-uniform distributions as well, in particular step distribution and Zipf’s distribution,
and analyze the behavior of Count-Min for these distributions. This analysis is important not
only because non-uniform distributions commonly occur in practice, but also because this provides
important insights for the major application of Count-Min: detection of most frequent elements
(sometimes called heavy hitters problem [27, 10, 14]). In particular, we consider the “small memory
regime” (supercritical, in our terminology) when the number of distinct represented elements is
considerably larger than the size of the data structure, and analyse conditions under which most
frequent elements are evaluated with negligible error. This has direct applications to the frequent
elements problem.

To conclude the introduction, we note that the experimental character of our analysis does not
restrict the generality of our results that hold for a wide range of parameters. This follows from
the general nature of tested hypotheses, as well as from theoretical justifications based on previous
works.

2 Background and related work

2.1 Conservative Count-Min: definitions

A Count-Min sketch is a counter array A of size n together with a set of hash functions mapping
elements (keys) of a given universe U to [1..n]. In this work, each element e ∈ U can in general
be assigned a different number ke of hash functions. Hash functions are assumed fully random,
therefore we assume w.l.o.g. that an element e is assigned hash functions h1, . . . , hke .
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At initialization, counters A[i] are set to 0. When processing an insertion of an input element
e, basic Count-Min increments by 1 each counter A[hi(e)], 1 ≤ i ≤ ke. The conservative version of
Count-Min increments by 1 only the smallest of all A[hi(e)]. That is, A[hi(e)] is incremented by 1
if and only if A[hi(e)] = min1≤j≤ke{A[hj(e)]} and is left unchanged otherwise.

In both versions, the estimate of the number of occurrences of a queried element e is computed
by c(e) = min1≤i≤ke{A[hi(e)]}. It is easily seen that for any input sequence of elements, the estimate
computed by original Count-Min is greater than or equal to the one computed by the conservative
version. This follows from the observation that on the same input, an entry of counter array A
under conservative update can never get larger than the same entry under Count-Min.

In this work, we study the conservative version of Count-Min. Let H denote a selection of hash
functions H = {h1, h2, . . .}. Consider an input sequence I of N insertions and let E be the set
of distinct elements appearing in I. The relative error of an element e is defined by errH,I(e) =
(c(e) − occ(e))/occ(e), where occ(e) is the number of occurrences of e in the input. The combined
error is an average error over all elements in I weighted by the number of occurrences, i.e.

errH,I =
1

N

∑
e∈E

occ(e) · err(e) =
1

N

∑
e∈E

(c(e)− occ(e)).

We assume that I is an i.i.d. random sequence drawn from a probability distribution on a set of
elements E ⊆ U . A key parameter is the size of E relative to the size n of A. By analogy to hash
tables, λ = |E|/n is called the load factor, or simply the load.

2.2 Analysis of conservative Count-Min: prior works

Motivated by applications to traffic monitoring, [8] was probably the first work devoted to the
analysis of conservative Count-Min in the counting setting. Their model assumed that all

(
n
k

)
counter combinations are equally likely, where k hash functions are applied to each element. This
implies the regime when |E| � n. The focus of [8] was on the analysis of the growth rate of counters,
i.e. the average number of counter increments per insertion, using a technique based on Markov
chains and differential equations. Another approach proposed in [20] simulates a conservative Count-
Min sketch by a hierarchy of ordinary Bloom filters. Obtained error bounds are not explicit but are
expressed via a recursive relation based on false positive rates of corresponding Bloom filters.

Recent works [5, 4] propose an analytical approach for computing error bounds depending on
element probabilities assumed independent but not necessarily uniform, in particular leading to
improved precision bounds for detecting heavy hitters. However the efficiency of this technique is
more limited when all element probabilities are small. In particular, if the input distribution is
uniform, their approach does not bring out any improvement over the general bounds known for
original Count-Min.

In our recent work [24], we proposed an analysis of conservative Count-Min based on its relation-
ship with random hypergraphs. We summarize the main results of this work below in Section 2.4.

2.3 Hash hypergraph

Many hashing-based data structures are naturally associated with hash hypergraphs so that hyper-
graph properties are directly related to the proper functioning of the data structure. This is the
case with Cuckoo hashing [31] and Cuckoo filters [22], Minimal Perfect Hash Functions and Static
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Functions [28], Invertible Bloom Lookup Tables [25], and some others. [34] provides an extended
study of relationships between hash hypergraphs and some of those data structures.

A Count-Min sketch is associated with a hash hypergraph H = (V,E) where V = {1..n} and E =
{{h1(e), ...hke(e)}} over all distinct input elements e. We use notation Hn,m for hypergraphs with
n vertices and m edges, and Hkn,m for k-uniform such hypergraphs, where all edges have cardinality
k. In the latter case, since our hash functions are assumed fully random, a hash hypergraph is a
k-uniform Erdős-Rényi random hypergraph.

As inserted elements are assumed to be drawn from a random distribution, it is convenient to look
at the functioning of a Count-Min sketch as a stochastic process on the associated hash hypergraph
[24]. Each vertex holds a counter initially set to zero, and therefore each edge is associated with a
set of counters held by the corresponding vertices. Inserting an element consists in incrementing the
minimal counters of the corresponding edge, and retrieving the estimate of an element returns the
minimum value among the counters of the corresponding edge. From now on in our presentation,
we will interchangeably speak of distinct elements and edges of the associated hash hypergraph, as
well as of counters and vertices. Thus, we will call the vertex value the value of the corresponding
counter, and the edge value the estimate of the corresponding element. Also, we will speak about
the load of a hypergraph understood as the density |E|/|V |.

2.4 Hypergraph peelability and phase transition of error

A hypergraph H = (V,E) is called peelable if iterating the following step starting from H results
in the empty graph: if the graph has a vertex of degree 1 or 0, delete this vertex together with the
incident edge (if any). Like many other properties of random hypergraphs, peelability undergoes a
phase transition. Consider the Erdős-Rényi k-uniform hypergraph model where graphs are drawn
from Hkn,m uniformly at random. It is shown in [30] that a phase transition occurs at a (computable)
peelability threshold λk: a random graph from Hkn,λn is with high probability (w.h.p.) peelable if
λ < λk, and w.h.p. non-peelable if λ > λk. The first values are λ2 = 0.5, λ3 ≈ 0.818, λ4 ≈ 0.772,
etc., λ3 being the largest. Note that the case k = 2 makes an exception to peelability: for λ < λ2,
a negligible fraction of vertices remain after peeling.

Peelability is known to be directly relevant to certain constructions of Minimal Perfect Hash
Functions [28] as well as to the proper functioning of Invertible Bloom filters [25]. In [24], we proved
that it is relevant to Count-Min as well.

Theorem 1 ([24]). Consider a conservative Count-Min where each element is hashed using k ran-
dom hash functions. Assume that the input I of length N is drawn from a uniform distribution on
a set E ⊆ U of elements and let λ = |E|/n, where n is the number of counters. If λ < λk, then for
a randomly chosen element e, the error (c(e)− occ(e))/occ(e) is o(1) w.h.p. when both n and N/n
grow.

In the complementary regime λ > λk, we showed in [24], under some additional assumptions,
that errH,I is Θ(1). Thus, the peelability threshold for random hash hypergraphs corresponds to
phase transition in the error produced by conservative Count-Min for uniform distribution of input.
We call regimes λ < λk and λ > λk subcritical and supercritical, respectively.
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2.5 Variable number of hash functions: mixed hypergraphs

The best peelability threshold λ3 ≈ 0.818 can be improved in at least two different ways. One way
is to use a carefully defined class of hash functions which replace uniform sampling of k-edges by a
specific non-uniform sampling. Thus, [18] showed that the peelability threshold can be increased to
≈ 0.918 for k = 3 and up to ≈ 0.999 for larger k’s if a special class of hypergraphs is used.

Another somewhat surprising idea, that we apply in this paper, is to apply a different number of
hash functions to differents elements, that is to consider non-uniform hypergraphs. Following [17],
[32] showed that non-uniform hypergraphs may have a larger peelability threshold than uniform ones.
More precisely, [32] showed that mixed hypergraphs with two types of edges of different cardinalities,
each constituting a constant fraction of all edges, may have a larger peelability threshold: for
example, hypergraphs with a fraction of ≈ 0.887 of edges of cardinality 3 and the remaining edges of
cardinality 21 have the peelability threshold ≈ 0.920, larger than the best threshold 0.818 achieved
by uniform hypergraphs. We adopt the notation of [32] for mixed hypergraphs: by writing k =
(k1, k2) we express that the hypergraph contains edges of cardinality k1 and k2, and k = (k1, k2;α)
specifies in addition that the fraction of k1-edges is α.

The idea of using different number of hash functions for different elements has also appeared
in data structures design. [9] proposed weighted Bloom filters which apply a different number of
hash functions depending on the frequency with which elements are queried and on probabilities for
elements to belong to the set. The idea is to assign more hash functions to elements with higher
query frequency and to those with smaller occurrence probability. It is shown that this leads to a
reduced false positive probability, where the latter is defined to be weighted by query frequencies.
This idea was further refined in [35], and then further in [7], under the name Daisy Bloom filter.

3 Results

3.1 Uniform distribution

We start with the case where input elements are uniformly distributed, i.e. edges of the associated
hash hypergraph have equal probabilities to be processed for updates.

3.1.1 Subcritical regime

Theorem 1 in conjunction with the results of Section 2.5 leads to the assumption that using a
different number of hash functions for different elements one could “extend” the regime of o(1) error
of Count-Min sketch, which can be made into a rigorous statement (for simplicity we only give it
with two different edge cardinalities).

Theorem 2 (Extends Theorem 1 to mixed cardinalities). Consider a conservative Count-Min with
n counters. Assume that the input of length N is drawn from a uniform distribution on E ⊆ U and
let λ < λk. Assume further that elements of E are hashed according to a mixed hypergraph model
k = (k1, k2;α). Let ck be the peelability ratio associated to k. Then, when λ < ck, the error rate of
a randomly chosen key is o(1) w.h.p., as both n and N/n grow.

Proof. The crucial point is that the analysis of [24] first establishes a deterministic result (Lemma 5
in the extended version) which can be stated as follows: the error rate of a peelable edge e in an
arbitrary fixed hypergraph is o(1), and the rate of convergence to 0 is bounded in terms of the
number Me of edges whose peeling has to precede the peeling of e. This ensures that, for any
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model of random hypergraphs, if a random edge e in the hypergraph is peelable w.h.p. and if Me

is O(1) w.h.p., then the error rate of e is o(1). Then, the analysis performed in [17] ensures that
the model of random hypergraphs with mixed cardinalities has this property below the peelability
threshold.

Figure 1 shows the average relative error as a function of the load factor for three types of
hypergraphs: 2-uniform, 3-uniform and mixed hypergraph where a 0.885 fraction of edges are of
cardinality 3 and the remaining ones are of cardinality 14. 2-uniform and 3-uniform hypergraphs
illustrate phase transitions at load factors approaching respectively 0.5 and ≈ 0.818, peelability
thresholds for 2-uniform and 3-uniform hypergraphs respectively. It is clearly seen that the phase
transition for the mixed hypergraphs occurs at a larger value approaching ≈ 0.898 which is the
peelability threshold for this class of hypergraphs [32].

Figure 1: errH,I for small λ = m/n, for uniform distribution and different types of hypergraphs:
2-uniform, 3-uniform and (3,14)-mixed with a fraction of 0.885 of 3-edges (parameters borrowed
from [32]). Data obtained for n = 1000. The input size in each experiment is 5, 000 times the
number of edges. Each average is taken over 10 random hypergraphs.

While this result follows by combining results of [32] and [24], it has not been observed earlier
and has an important practical consequence: using a varying number of hash functions in Count-
Min sketch allows one to increase the load factor while keeping negligibly small error. In particular,
for the same input, this leads to space saving compared to the uniform case.

Note that parameters k = (3, 14; 0.885) are borrowed from [32] in order to make sure that the
phase transition corresponds to the peelability threshold obtained in [32]. In practice, “simpler”
parameters can be chosen, for example we found that k = (2, 5; 0.5) produces essentially the same
curve as k = (3, 14; 0.885).

3.1.2 Supercritical regime

When the load factor becomes large (supercritical regime), the situation changes drastically. When
the load factor just surpasses the threshold, some edges are still evaluated with small or zero error,
whereas for the other edges, the error becomes large. This “intermediate regime” has been illustrated
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in [24]. Interestingly, edge values are distributed in this regime in a very peculiar way, concentrating
around several values (see Figure 3 in [24] for illustration). These values must be explained by some
graph structural patterns which remain to be elucidated.

When the load factor goes even larger, the multi-level pattern of edge values disappears and
all edge values become concentrated around the same value. We call this phenomenon saturation.
For example, for k = 3 saturation occurs at around λ = 6 (data not shown). Under this regime,
the hash hypergraph is dense enough so that its specific topology is likely to be irrelevant and the
largest counter level “percolates” into all vertex counters. In other words, all counters grow at the
same rate, without any of them “lagging behind” because of particular graph structural patterns
(such as edges containing leaf vertices).

Bianchi et al. [8] did their analysis under the assumption that each of
(
n
k

)
edges is equally likely

to be processed at each step. This emulates the situation where the load factor is very large and
the hypergraph is saturated. The focus of [8] is on the growth rate which is the expected number
of counter increments when processing an edge. Obviously, this number varies between 1 and k,
and [8] establishes that larger values of k imply larger growth rates. Note that the growth rate
determines the slope of the linear dependence of errH,I on λ.

The case k = 1 has not been considered by [8]. In this case, the growth rate is trivially 1, as each
insertion increments exactly one counter. Furthermore, errH,I can be easily inferred in this case, as
the error of a given key is defined by the number of keys hashed to the same counter. The number
of such keys is approximated by the Poisson distribution with parameter m

n = λ, with expected
value λ. Since keys are uniformly distributed, errH,I = λ is a good estimator of the average relative
error.

However, it is non-trivial to see how this compares to the error for k = 2 in the case of moderate
load factors. Figure 2 clarifies the situation. It shows that k = 1 produces larger estimates for load
factors until a certain point before going below the estimate for k = 2. This “intermediate regime”
roughly corresponds to the n lnn coupon collector bound, i.e. to the regime where a significant
number of counters remain zero. In this case, even if the total sum of counters is smaller for k = 1
than for k = 2, it is more evenly distributed for the latter case, similar to the well-known power of
choice phenomenon in resource allocation [2]. Since empty counters are irrelevant for the average
relative error, this results in a smaller error for k = 2 compared to k = 1. Note that for k = 1 we
observe that the error curve fits with the diagonal line. This can be explained by the fact that, for
any given key x, the number of other keys falling in the same counter as x (which determines the
error in the estimate for x) is classically approximated by a Poisson random variable of parameter
λ = m/n, of expected value λ.

Note that the configuration k = 1 does not benefit from the advantage of the conservative update
strategy over the regular Count-Min and has a limited interest from the practical viewpoint. It is
however interesting to observe that k = 2 still outperforms k = 1 for limited λ.

3.1.3 Mixed hypergraphs

We have just seen that for sufficiently large loads, the configuration k = 1 results in the smallest
error. Our next question is whether using a varying number of hash functions (mixed hypergraphs)
can make the error even smaller, by analogy to the subcritical regime where it extends the range of
load values supporting o(1) error. At first glance, this question is not relevant, as the configuration
k = 1 has obviously the smallest possible sum of counters, since every insertion increments at least
one counter and therefore k = 1 seems to yield smallest possible estimates.
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Figure 2: errH,I as a function of λ = m/n, for uniform distribution and supercritical regime.

This argument, however, applies to the regime when the hypergraph is saturated (all counters
are hit), and λ is large enough so that counters are concentrated. Note that as mentioned earlier,
counter values approximately follow a Poisson(kλ) distribution, which is concentrated around kλ
when λ gets large. Perhaps surprisingly, it turns out that the error produced by k = 1 can be
made smaller for a large interval of λ by using a varying number of hash functions, before λ reaches
the saturation point. Figure 3 illustrates this phenomenon. It compares the error produced by the
uniform case k = 1 and a mixed configuration with 80% of edges of cardinality 1 and 20% of edges
of cardinality 3. The latter produces a smaller error for values of λ up to about 50. Similar to
the previous section, this is explained by the power of choice effect: 3-edges “smooth out” counter
values making the combined error smaller, which in the not-yet-asymptotic regime λ < 50 has a
slightly more significant effect than the fact that the presence 3-edges makes the sum of counter
values larger (as some insertions increment more than one counter).

3.2 Step distribution

The analysis of the behavior of conservative Count-Min under uniform distribution of input elements
shows that in the supercritical regime, the error made by the sketch grows linearly with the load
factor. This implies a limited practical utility of the sketch in this regime. On the other hand, in
many practical situations, input elements are not occurring with the same frequency. This motivates
the application of Count-Min to non-uniform distributions and, in particular, to detection and
analysis of frequent elements in the input stream. One popular problem here is computation of
heavy hitters, where Count-Min sketch have been previously applied [15].

In this section, we focus on the simplest non-uniform distribution – step distribution – in order
to examine the behavior of Count-Min sketch in presence of elements with different frequencies.
Our model is as follows. We assume that input elements are classified into two groups that we call
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Figure 3: errH,I as a function of λ, for uniform distribution and supercritical regime. Uniform
configuration k = 1 (blue curve) vs. mixed configuration k = (1, 3; 0.8) (orange curve). For clarity,
the difference between the former and the latter is shown in the right plot.

hot and cold, where a hot element has a larger appearance probability than a cold one. Note that
we assume that we have a prior knowledge on whether a given element belongs to hot or cold ones.
This setting is similar to the one studied for Bloom filters augmented with prior membership and
query probabilities [7]. Note that our definition of errH,I assumes that the query probability of an
element and its appearance probability in the input are equal.

We assume that the load factors of hot and cold elements are λh and λc respectively. That is,
there are λhn hot and λcn cold edges in the hash hypergraph. G > 1, called gap factor, denotes
the ratio between probabilities of a hot and a cold element respectively. Let ph (resp. pc) denote
the probability for an input element to be hot (resp. cold). Then ph/pc = Gλh/λc, and since
ph + pc = 1, we have

ph =
Gλh

λc +Gλh
, pc =

λc
λc +Gλh

.

For example, if there are 10 times more distinct cold elements than hot ones (λh/λc = 0.1) but
each hot element is 10 times more frequent than a cold one (G = 10), than we have about the same
fraction of hot and cold elements in the input (ph = pc = 0.5).

In the rest of this section, we will be interested in the combined error of hot elements alone,
denoted errhotH,I . If Eh ⊆ E is the subset of hot elements, andNh is the total number of occurrences
of hot elements in the input, then errhotH,I is defined by

errhotH,I =
1

Nh

∑
e∈Eh

occ(e) · err(e) =
1

Nh

∑
e∈Eh

(c(e)− occ(e)).

3.2.1 “Interaction” of hot and cold elements

A partition of elements into hot and cold induces the partition of the underlying hash hypergraph
into two subgraphs that we call hot and cold subgraphs respectively. Since hot elements have larger
counts, one might speculate that counters associated with hot edges are larger than counts of cold
elements and therefore are not incremented by those. Then, errhotH,I is entirely defined by the
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hot subgraph, considered under the uniform distribution of elements. In particular, errhotH,I as a
function of λh should behave the same way as errH,I for the uniform distribution (see Section 3.1).

This conjecture, however, is not true in general. One reason is that there is a positive probability
that all nodes of a cold edge are incident to hot edges as well. As a consequence, “hot counters”
(i.e. those incident to hot edges) gain an additional increment due to cold edges, and the latter
contribute to the overestimate of hot edge counts. Figure 4a illustrates this point. It shows, for
k = 3, errhotH,I as a function of λh in presence of cold elements with λc = 5, for the gap value
G = 20. For the purpose of comparison, the orange curve shows the error for the uniform distribution
(as in Figure 1), that is the error that hot elements would have if cold elements were not there. We
clearly observe the contribution of cold elements to the error, even in the load interval below the
peelability threshold.

(a) G = 20 (b) G = 50

(c) G = 5

Figure 4: errhotH,I for k = 3 depending on λh, in presence of cold elements with λc = 5 (blue
curves) and without any cold elements (orange curve).

Figure 4b illustrates that when the gap becomes larger (here, G = 50), the contribution of cold
elements diminishes and the curve approaches the one of the uniform distribution. A larger gap
leads to larger values of hot elements and, as a consequence, to a smaller relative impact of cold
ones.

Another reason for which the above conjecture may not hold is the following: even if the number
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of hot elements is very small but the gap factor is not large enough, the cold edges may cause the
counters to become large if λc is large enough, in particular in the saturation regime described in
Section 3.1.2. As a consequence, the “background level” of counters created by cold edges may be
larger than true counts of hot edges, causing their overestimates. As an example, consider again the
configuration of Figure 4 with k = 3 and λc = 5. Figure 2 shows that the cold elements taken alone
would have an error of about 6 on average (≈ 6.25, to be precise, data not shown) which means an
about 7× overestimate. Since the graph is saturated in this regime (see Section 3.1.2), this means
that most of the counters will be about 7 times larger than counts of cold edges. Now, if a hot
element is only 5 times more frequent than a cold one, those will be about 1.4× overestimated, i.e.
will have an error of about 0.4. Referring to Figure 4, this means that the blue curve “starts off” at
a positive error value in this case, instead of zero. This situation is illustrated in Figure 4c.

3.2.2 Mixed hypergraphs

The analysis above shows that in presence of a “background” formed by large number of cold
elements, the error of hot elements starts growing for much smaller load factors than without
cold elements, even if the latter are much less frequent than the former. Inspired by results of
Section 3.1.1, one may ask if the interval of negligible error can be extended by employing the idea
of variable number of hash functions. Note that here this idea applies more naturally by assigning
a different number of hash functions to hot and cold elements.

Figure 5: errhotH,I as a function of λh for k = 3, λc = 5 and G = 20 (blue curve, same as in
Figure 4a) vs. k = (2, 5) for hot and cold elements respectively (red curve)

Figure 5 illustrates that this is indeed possible by assigning a smaller number of hash functions
to hot elements and a larger number to cold ones. It is clearly seen that the interval supporting
close-to-zero errors is extended. This happens because when the hot subgraph is not too dense,
increasing the cardinality of cold edges leads to a higher probability that at least one of the vertices
of such an edge is not incident to a hot edge. As a consequence, this element does not affect the
error of hot edges. For the same reason, decreasing the cardinality of hot edges (here, from 3 to 2)
improves the error, as this increases the fraction of vertices non-incident to hot edges.
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3.2.3 Saturation in supercritical regime

In Section 3.1.2 we discussed the saturation regime occurring for large load values: when the load
grows sufficiently large, i.e. the hash hypergraph becomes sufficiently dense, all counters reach the
same level, erasing distinctions between edges. In this regime, assuming a fixed load (graph density)
and the uniform distribution of input, the edge value depends only on input size and not on the
graph structure (with high probability). It is in this context that Bianchi et al. [8] studied the
growth rate of edge values depending on input size.

It is an interesting, natural and practically important question whether this saturation phe-
nomenon holds for non-uniform distributions as well, as it is directly related to the capacity of
distinguishing elements of different frequency. A full and precise answer to this question is not
within the scope of this work. We believe that the answer is positive at least when the distribution
is piecewise uniform, when edges are partitioned into several classes and are equiprobable within
each class, provided that each class takes a linear fraction of all elements. Here we illustrate this
thesis with the step distribution.

(a) 2-uniform (b) 3-uniform (c) (2, 5)-mixed

Figure 6: Convergence of average estimates of hot and cold elements for 2-uniform (6a), 2-uniform
(6b) and (2,5)-mixed (6c) hypergraphs. x-axis shows the total load λ = λh + λc with λh = 0.1 · λ
and λc = 0.9 · λ and G = 10 in all cases. All experiences were run for n = 1000 and the input
stream of length 5, 000 times the number of edges (that is, 5 · 106 · λ). Each average is taken over
10 random hypergraphs.

Figure 6 illustrates the saturation phenomenon by showing average values of hot and cold edges
(G = 10) with three different configurations: 2-uniform, 3-uniform, and (2,5)-mixed. Note that the
x-axis shows here the total load λ = λh + λc, where λh = 0.1 · λ and λc = 0.9 · λ. That is, the
number of both hot and cold edges grows linearly when the total number of edges grows.

One can observe that in all configurations, values of hot and cold edges converge, which is
a demonstration of the saturation phenomenon. Interestingly, the “convergence speed” heavily
depends on the configuration: the convergence is “slower” for uniform configurations, whereas in the
mixed configuration, it occurs right after the small error regime for hot edges.

3.3 Zipf’s distribution

Power law distributions are omnipresent in practical applications. The simplest of those is Zipf’s
distribution which is often used as a test case for different algorithms including Count-Min sketches
[16, 8, 20, 11, 6]. We also mention a recent learning-based variant of CountMin [26] (learning
heavy hitters) and its study under a Zipfian distribution [1, 19]. Under Zipf’s distribution, element
probabilities in descending order are proportional to 1/iβ , where i is the rank of the key and β ≥ 0
is the skewness parameter. Note that for β = 0, Zipf’s distribution reduces to the uniform one.
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Zipf’s distribution is an important test case for our study as well, as it forces several (few) most
frequent elements to have very large counts and a large number of elements (heavy tail) to have
small counts whose values decrease only polynomially on the element rank and are therefore of the
same order of magnitude. Bianchi et al. [8, Fig. 1] observed that for Zipf’s distribution in the super-
critical regime, the estimates follow the “waterfall-type behavior”: the most frequent elements have
essentially exact estimates whereas the other elements have all about the same estimate regardless
of their frequency. Figure 7 illustrates this phenomenon for different skewness values.

(a) β = 0.7 (b) β = 0.5 (c) β = 0.3

Figure 7: Exact (blue) and estimated (orange) edge values for Zipf’s distribution as a function on
the element frequency rank, plotted in double log scale. All plots obtained for n = 1000, λ = 5,
k = 2, and the input size 50 · 106. Estimates are averaged over 10 hash function draws.

The waterfall-type behavior for Zipf’s distribution is well explained by the analysis we developed
in the previous sections. The “waterfall pool level” of values (called error floor in [8]) is the effect
of saturation formed by heavy tail elements. The few “exceptionally frequent” elements are too few
to affect the saturation level (their number is � n), they turn out to constitute “peaks” above the
level and are thus estimated without error. Naturally, smaller skewness values make the distribution
less steep and reduce the number of “exceptionally frequent” elements. For example, according to
Figure 7, for λ = 5 and k = 2, about 50 most frequent elements are evaluated without error for
β = 0.7, about 40 for β = 0.5 and only 5 for β = 0.3.

(a) k = 2 (b) k = (2, 5; 0.2)

Figure 8: Exact (blue) and estimated (orange) edge values for Zipf’s distribution as a function on
the element frequency rank, for n = 1000, λ = 2, and input size 20 · 106. Values for ranks 20 to 120
only are shown. Estimates are averaged over 50 hash function draws.

Following our results from previous sections, we studied whether using a varying number of hash
functions can extend the range of frequent elements estimated with small error. We found that for
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moderate loads λ, this is possible indeed. Figure 8 illustrates this for λ = 2. It shows a “zoom”
around the “break point” (see Figure 7) for k = 2 vs. k = (2, 5; 0.2). For clarity, plots are shown
in regular scale and for elements of rank 20 to 120 only. The Figure demonstrates that the case
k = (2, 5; 0.2) provides a sharper break (see also Figure 6). As a result, even if the saturation level
is higher for k = (2, 5; 0.2) than for k = 2, about 70 most frequent elements are evaluated with
small error with k = (2, 5; 0.2), vs. about 50 with k = 2.

4 Conclusions

In this paper, we presented a series of experimental results providing new insights into the behavior
of conservative Count-Min sketch. Some of them have direct applications to practical usage of this
data structure. Main results can be summarized as follows.

• For the uniform distribution of input elements, assigning a different number of hash functions
to different elements extends the subcritical regime (range of load factors λ) that supports
asymptotically vanishing relative error. This immediately implies space saving for Count-Min
configurations verifying this regime. For non-uniform distributions, varying number of hash
functions allows extending the regime of negligible error for most frequent elements,

• Under “sufficiently uniform distributions”, including uniform and step distributions, a Count-
Min sketch reaches a saturation regime when λ becomes sufficiently large. In this regime,
counters become concentrated around the same value and elements with different frequency
become indistinguishable,

• Frequent elements that can be estimated with small error can be seen as those which surpass
the saturation level formed by the majority of other elements. For example, in case of Zipf’s
distribution, those elements are a few “exceptionally frequent elements”, whereas the saturation
is insured by the heavy-tail elements. Applying a varying number of hash functions can
increase the number of those elements for moderate loads λ.

Many of those results lack a precise mathematical analysis. Perhaps the most relevant to prac-
tical usage of Count-Min is the question of estimating the “waterfall pool level” for different dis-
tributions, which is a fundamental information for heavy-hitter type of applications. Indeed, in a
“very supercritical” regime, estimates tend to converge to the same level, as it was illustrated in
Section 3.2.3 for the step distribution. On the other hand, a few elements with “abnormally high”
frequencies that exceed this level are those which are evaluated with small error. This is illustrated
with Zipf’s distribution (Section 3.3). Bianchi et al. [8] observed that in the case of non-uniform
distributions of input elements, the “waterfall pool level” is upper-bounded by the saturation level
of counter values when the input distribution is modeled by a uniform choice among all

(
n
k

)
possi-

ble edges. This latter is computed in [8] using a method based on Markov chains and differential
equations. We believe that this method can be extended to the case of mixed graphs as well and
leave it for future work. However, computing the “waterfall pool level” for non-uniform distributions
including Zipf’s distribution is an open problem.

14



References

[1] Anders Aamand, Piotr Indyk, and Ali Vakilian. (Learned) frequency estimation algorithms
under Zipfian distribution. CoRR, abs/1908.05198, 2019. URL: http://arxiv.org/abs/1908.
05198, arXiv:1908.05198.

[2] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced allocations. SIAM J.
Comput., 29(1):180–200, 1999. doi:10.1137/S0097539795288490.

[3] Sairam Behera, Sutanu Gayen, Jitender S Deogun, and NV Vinodchandran. KmerEstimate: A
streaming algorithm for estimating k-mer counts with optimal space usage. In Proceedings of
the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health
Informatics, pages 438–447, 2018.

[4] Younes Ben Mazziane, Sara Alouf, and Giovanni Neglia. A Formal Analysis of the Count-
Min Sketch with Conservative Updates. In IEEE INFOCOM WNA 2022 - The second
Workshop on Networking Algorithms (WNA), New York, United States, May 2022. doi:
10.1109/INFOCOMWKSHPS54753.2022.9798146.

[5] Younes Ben Mazziane, Sara Alouf, and Giovanni Neglia. Analyzing count min sketch with con-
servative updates. Computer Networks, 217:109315, 2022. URL: https://www.sciencedirect.
com/science/article/pii/S1389128622003607.

[6] Younes Ben Mazziane, Sara Alouf, and Giovanni Neglia. A formal analysis of the Count-Min
sketch with conservative updates, 2022. arXiv:2203.14549.

[7] Ioana O. Bercea, Jakob Bæk Tejs Houen, and Rasmus Pagh. Daisy Bloom filters. CoRR,
abs/2205.14894, 2022. arXiv:2205.14894.

[8] Giuseppe Bianchi, Ken Duffy, Douglas J. Leith, and Vsevolod Shneer. Modeling conservative
updates in multi-hash approximate count sketches. In 24th International Teletraffic Congress,
ITC 2012, Kraków, Poland, September 4-7, 2012, pages 1–8. IEEE, 2012. URL: https://
ieeexplore.ieee.org/document/6331813/.

[9] Jehoshua Bruck, Jie Gao, and Anxiao Jiang. Weighted Bloom filter. In Proceedings 2006
IEEE International Symposium on Information Theory, ISIT 2006, The Westin Seattle, Seattle,
Washington, USA, July 9-14, 2006, pages 2304–2308. IEEE, 2006. doi:10.1109/ISIT.2006.
261978.

[10] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data
streams. Theoretical Computer Science, 312(1):3–15, 2004.

[11] Peiqing Chen, Yuhan Wu, Tong Yang, Junchen Jiang, and Zaoxing Liu. Precise error estimation
for sketch-based flow measurement. In Proceedings of the 21st ACM Internet Measurement
Conference, IMC ’21, page 113–121, New York, NY, USA, 2021. Association for Computing
Machinery. doi:10.1145/3487552.3487856.

[12] Saar Cohen and Yossi Matias. Spectral Bloom filters. In Alon Y. Halevy, Zachary G. Ives,
and AnHai Doan, editors, Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data, San Diego, California, USA, June 9-12, 2003, pages 241–252. ACM,
2003. doi:10.1145/872757.872787.

15

http://arxiv.org/abs/1908.05198
http://arxiv.org/abs/1908.05198
http://arxiv.org/abs/1908.05198
https://doi.org/10.1137/S0097539795288490
https://doi.org/10.1109/INFOCOMWKSHPS54753.2022.9798146
https://doi.org/10.1109/INFOCOMWKSHPS54753.2022.9798146
https://www.sciencedirect.com/science/article/pii/S1389128622003607
https://www.sciencedirect.com/science/article/pii/S1389128622003607
http://arxiv.org/abs/2203.14549
http://arxiv.org/abs/2205.14894
https://ieeexplore.ieee.org/document/6331813/
https://ieeexplore.ieee.org/document/6331813/
https://doi.org/10.1109/ISIT.2006.261978
https://doi.org/10.1109/ISIT.2006.261978
https://doi.org/10.1145/3487552.3487856
https://doi.org/10.1145/872757.872787


[13] Graham Cormode. Count-Min sketch. In Ling Liu and M. Tamer Özsu, editors, Encyclopedia
of Database Systems, Second Edition. Springer, 2018. doi:10.1007/978-1-4614-8265-9_87.

[14] Graham Cormode and Marios Hadjieleftheriou. Finding frequent items in data streams. Pro-
ceedings of the VLDB Endowment, 1(2):1530–1541, 2008.

[15] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-min
sketch and its applications. Journal of Algorithms, 55(1):58–75, April 2005. doi:10.1016/j.
jalgor.2003.12.001.

[16] Graham Cormode and S. Muthukrishnan. Summarizing and mining skewed data streams.
In Hillol Kargupta, Jaideep Srivastava, Chandrika Kamath, and Arnold Goodman, edi-
tors, Proceedings of the 2005 SIAM International Conference on Data Mining, SDM 2005,
Newport Beach, CA, USA, April 21-23, 2005, pages 44–55. SIAM, 2005. doi:10.1137/1.
9781611972757.5.

[17] Martin Dietzfelbinger, Andreas Goerdt, Michael Mitzenmacher, Andrea Montanari, Rasmus
Pagh, and Michael Rink. Tight thresholds for cuckoo hashing via XORSAT. In Samson
Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide, and Paul G. Spi-
rakis, editors, Automata, Languages and Programming, 37th International Colloquium, ICALP
2010, Bordeaux, France, July 6-10, 2010, Proceedings, Part I, volume 6198 of Lecture Notes in
Computer Science, pages 213–225. Springer, 2010. doi:10.1007/978-3-642-14165-2_19.

[18] Martin Dietzfelbinger and Stefan Walzer. Dense peelable random uniform hypergraphs. In
Michael A. Bender, Ola Svensson, and Grzegorz Herman, editors, 27th Annual European Sym-
posium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany, volume
144 of LIPIcs, pages 38:1–38:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.ESA.2019.38.

[19] Elbert Du, Franklyn Wang, and Michael Mitzenmacher. Putting the "learning" into learning-
augmented algorithms for frequency estimation. In Marina Meila and Tong Zhang, editors,
Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pages
2860–2869. PMLR, 2021. URL: http://proceedings.mlr.press/v139/du21d.html.

[20] Gil Einziger and Roy Friedman. A formal analysis of conservative update based approximate
counting. In International Conference on Computing, Networking and Communications, ICNC
2015, Garden Grove, CA, USA, February 16-19, 2015, pages 255–259. IEEE Computer Society,
2015. doi:10.1109/ICCNC.2015.7069350.

[21] Cristian Estan and George Varghese. New directions in traffic measurement and accounting. In
Matthew Mathis, Peter Steenkiste, Hari Balakrishnan, and Vern Paxson, editors, Proceedings
of the ACM SIGCOMM 2002 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, August 19-23, 2002, Pittsburgh, PA, USA, pages 323–
336. ACM, 2002. doi:10.1145/633025.633056.

[22] Bin Fan, Dave G. Andersen, Michael Kaminsky, and Michael D. Mitzenmacher. Cuckoo filter:
Practically better than Bloom. In Proceedings of the 10th ACM International on Conference

16

https://doi.org/10.1007/978-1-4614-8265-9_87
https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/10.1137/1.9781611972757.5
https://doi.org/10.1137/1.9781611972757.5
https://doi.org/10.1007/978-3-642-14165-2_19
https://doi.org/10.4230/LIPIcs.ESA.2019.38
http://proceedings.mlr.press/v139/du21d.html
https://doi.org/10.1109/ICCNC.2015.7069350
https://doi.org/10.1145/633025.633056


on Emerging Networking Experiments and Technologies, CoNEXT ’14, page 75–88, New York,
NY, USA, 2014. Association for Computing Machinery. doi:10.1145/2674005.2674994.

[23] Li Fan, Pei Cao, J. Almeida, and A.Z. Broder. Summary cache: a scalable wide-area web
cache sharing protocol. IEEE/ACM Transactions on Networking, 8(3):281–293, 2000. doi:
10.1109/90.851975.

[24] Éric Fusy and Gregory Kucherov. Phase transition in count approximation by Count-Min sketch
with conservative updates. In Marios Mavronicolas, editor, Proc. of the 13th International
Conference on Algorithms and Complexity (CIAC’23), Larnaca (Cyprus), June 13-16, 2023,
volume 13898 of Lecture Notes in Computer Science, pages 232 – 246. Springer, 2023. full
version in arxiv:2203.15496, 2022.

[25] Michael T Goodrich and Michael Mitzenmacher. Invertible Bloom lookup tables. In 2011 49th
Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages
792–799. IEEE, 2011.

[26] Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. Learning-based frequency estimation
algorithms. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL: https://openreview.net/
forum?id=r1lohoCqY7.

[27] Hongyan Liu, Yuan Lin, and Jiawei Han. Methods for mining frequent items in data streams:
an overview. Knowledge and information systems, 26(1):1–30, 2011.

[28] Bohdan S Majewski, Nicholas C Wormald, George Havas, and Zbigniew J Czech. A family of
perfect hashing methods. The Computer Journal, 39(6):547–554, 1996.

[29] Hamid Mohamadi, Hamza Khan, and Inanc Birol. ntCard: a streaming algorithm for cardi-
nality estimation in genomics data. Bioinformatics, 33(9):1324–1330, 2017.

[30] Michael Molloy. Cores in random hypergraphs and Boolean formulas. Random Structures &
Algorithms, 27(1):124–135, 2005.

[31] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of Algorithms, 51(2):122–
144, 2004.

[32] Michael Rink. Mixed hypergraphs for linear-time construction of denser hashing-based data
structures. In Peter van Emde Boas, Frans C. A. Groen, Giuseppe F. Italiano, Jerzy R.
Nawrocki, and Harald Sack, editors, SOFSEM 2013: Theory and Practice of Computer Sci-
ence, 39th International Conference on Current Trends in Theory and Practice of Com-
puter Science, Špindlerův Mlýn, Czech Republic, January 26-31, 2013. Proceedings, volume
7741 of Lecture Notes in Computer Science, pages 356–368. Springer, 2013. doi:10.1007/
978-3-642-35843-2_31.

[33] Yoshihiro Shibuya and Gregory Kucherov. Set-Min sketch: a probabilistic map for power-law
distributions with application to k-mer annotation. bioRxiv, page 2020.11.14.382713, November
2020. doi:10.1101/2020.11.14.382713.

17

https://doi.org/10.1145/2674005.2674994
https://doi.org/10.1109/90.851975
https://doi.org/10.1109/90.851975
https://openreview.net/forum?id=r1lohoCqY7
https://openreview.net/forum?id=r1lohoCqY7
https://doi.org/10.1007/978-3-642-35843-2_31
https://doi.org/10.1007/978-3-642-35843-2_31
https://doi.org/10.1101/2020.11.14.382713


[34] Stefan Walzer. Random hypergraphs for hashing-based data structures. PhD thesis, Technische
Universität Ilmenau, Germany, 2020. URL: https://www.db-thueringen.de/receive/dbt_
mods_00047127.

[35] Xiujun Wang, Yusheng Ji, Zhe Dang, Xiao Zheng, and Baohua Zhao. Improved weighted Bloom
filter and space lower bound analysis of algorithms for approximated membership querying.
In Matthias Renz, Cyrus Shahabi, Xiaofang Zhou, and Muhammad Aamir Cheema, editors,
Database Systems for Advanced Applications - 20th International Conference, DASFAA 2015,
Hanoi, Vietnam, April 20-23, 2015, Proceedings, Part II, volume 9050 of Lecture Notes in
Computer Science, pages 346–362. Springer, 2015. doi:10.1007/978-3-319-18123-3_21.

18

https://www.db-thueringen.de/receive/dbt_mods_00047127
https://www.db-thueringen.de/receive/dbt_mods_00047127
https://doi.org/10.1007/978-3-319-18123-3_21

	Introduction
	Background and related work
	Conservative Count-Min: definitions
	Analysis of conservative Count-Min: prior works
	Hash hypergraph
	Hypergraph peelability and phase transition of error
	Variable number of hash functions: mixed hypergraphs

	Results
	Uniform distribution
	Subcritical regime
	Supercritical regime
	Mixed hypergraphs

	Step distribution
	``Interaction'' of hot and cold elements
	Mixed hypergraphs
	Saturation in supercritical regime

	Zipf's distribution

	Conclusions

