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Abstract. We define and study a structure called transversal edge-
partition related to triangulations without non empty triangles, which
is equivalent to the regular edge labeling discovered by Kant and He.
We study other properties of this structure and show that it gives rise
to a new straight-line drawing algorithm for triangulations without non
empty triangles, and more generally for 4-connected plane graphs with at
least 4 border vertices. Taking uniformly at random such a triangulation
with 4 border vertices and n vertices, the size of the grid is almost surely
n

2
·
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1 − 5

27

)
× n

2
·
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1 − 5

27

)
up to fluctuations of order

√
n, and the half-

perimeter is bounded by n − 1. The best previously known algorithms
for straight-line drawing of such triangulations only guaranteed a grid
of size (⌈n/2⌉ − 1)× ⌊n/2⌋. The reduction-factor of 5

27
can be explained

thanks to a new bijection between ternary trees and triangulations of
the 4-gon without non empty triangles.

1 Introduction

A plane graph is a connected graph embedded in the plane so that edges do not
cross each other. In many drawing algorithms of plane graphs [4, 13, 2, 8], the
method consists in endowing the graph with a particular structure, from which
it is possible to gives coordinates to vertices in a natural way. For example,
triangulations, i.e., plane graphs with only faces of degree 3, are characterized by
the fact that their inner edges can essentially be partitioned into three spanning
trees, called Schnyder Woods, with specific incidence relations [13]. Using these
spanning trees it is possible to associate coordinates to each vertex by counting
faces on each side of particular paths passing by the vertex. Placing vertices in
this way and linking adjacent vertices by segments yields a straight-line drawing
algorithm, which can be refined to produce a drawing on a regular grid of size
(n − 2) × (n − 2), see [14].

A plane graph with an outer face of degree k and inner faces of degree 3 is
called a triangulation of the k-gon. If the interior of any 3-cycle of edges is a face,
the triangulation is said irreducible. Observe that it implies k > 3, unless the
graph is reduced to a unique triangle. There exist more compact straight-line
drawing algorithms for irreducible triangulations [7, 9], the size of the grid being
guaranteed to be (⌈n/2⌉ − 1) × ⌊n/2⌋ in the worst case.



In this paper we concentrate on irreducible triangulations of the 4-gon, which
carry a good level of generallity. Indeed many graphs, including 4-connected
plane graphs with at least 4 border vertices, can be triangulated (after adding 4
vertices in the outer face) into an irreducible triangulation of the 4-gon, see [1].
By investigating a bijection with ternary trees, we have observed that each ir-
reducible triangulation of the 4-gon can be endowed with a structure, called
transversal edge-partition, which can be summarized as follows. Calling Sb, Nr,
Nb, Sr (like south-blue, north-red, north-blue, south-red) the 4 border vertices
of T in clockwise order, the inner edges of T can be oriented and partitioned into
two sets: red edges that “flow” from Sr to Nr, and blue edges that “flow” from
Sb to Nb. For those familiar with bipolar orientations [5], i.e. acyclic orientations
with two poles, the structure can also be seen as a transversal couple of bipolar
orientations, see Section 2.3. As we learned after completing a first draft of this
paper, Kant and He used an equivalent structure in [8] and derived nice algo-
rithms of rectangular-dual drawing and of visibility representation. We explore
the properties of this structure and show in particular in Theorem 1 that it is
of the lattice type.

We derive from the transversal structure a straight-line drawing algorithm
of an irreducible triangulation T of the 4-gon. Like drawing algorithms using
Schnyder Woods [13, 2], it is based on face counting operations. The first step
is to endow T with a particular transversal edge-partition, said minimal, which
is obtained by application of an iterative algorithm described in Section 2.4.
Then the transversal structure is used to associate to each vertex v a path
Pr of red edges and a path Pb of blue edges, both passing by v. The abscissa
(resp. ordinate) of v is obtained by counting faces on each side of Pr (resp. Pb).
Our algorithm outputs a straight line embedding on a regular grid of width W
and height H with W + H ≤ n − 1 if the triangulation has n vertices. This
algorithm can be compared to [7] and [9], which produces straight-line drawing
on a grid of size (⌈n/2⌉−1)×⌊n/2⌋. However, algorithms of [7] and [9] rely on a
particular order of treatment of vertices called canonical ordering, and a step of
coordinate-shifting makes them difficult to implement and to carry out by hand.
As opposed to that, our algorithm can readily be performed on a piece of paper,
because coordinates of vertices can be computed independently with simple face-
counting operations. Finally, our algorithm has the nice feature that it respects
the structure of transversal edge-partition. Indeed, Theorem 2 ensures that red
edges are geometrically oriented from Sr to Nr and blue edges are geometrically
oriented from Sb to Nb.

A compact version of the algorithm even ensures that, for a random tri-
angulation with n vertices, the size of the grid is asymptotically almost surely
n
2 (1−5/27)× n

2 (1−5/27) up to small fluctuations, of order
√

n. Compared to [7]
and [9], we do not improve on the size of the grid in the worst case, but improve
asymptotically by a reduction-factor 5/27 on the width and the height of the
grid for an object of large size (see Figure 4.2 for an example with n = 200). The
reduction factor 5

27 that is obtained for the size of the grid output by the com-
pact straight-line drawing algorithm can be explained thanks to a new bijection
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Fig. 1. The structure of transversal edge-partition: local condition (a) and a complete
example (b). In parallel, the structure of transversal couple of bipolar orientations:
local condition (c) and a complete example (d).

between ternary trees and irreducible triangulations of the 4-gon. This bijec-
tion is described in Section 4 and relies on “closure operations”, as introduced
by G. Schaeffer [11], see also [10] for a bijection with unconstrained triangula-
tions. This bijection has, truth to tell, brought about our discovery of transver-
sal edge-partitions. Indeed, it turns out to “transport” a so-called transversal
edge-bicoloration of a ternary tree into the minimal transversal edge-partition
of its associated triangulation, in the same way that bijection of [10] transports
the structure of Schnyder woods. In addition, the bijection gives a combinatorial
way to enumerate rooted 4-connected triangulations, which were already counted
in [15] using algebraic methods.

2 Definition of transversal structures

2.1 Transversal edge-partition

Let T be an irreducible triangulation of the 4-gon. Edges and vertices of T are
said inner or outer whether they belong to the outer face or not. A transversal
edge-partition of T is a partition of the inner edges of T into two sets, say in
blue and in red edge, such that the following conditions are satisfied.

– C1 (Inner vertices): In clockwise order around each inner vertex, its incident
edges form: a non empty interval of red edges, a non empty interval of blue
edges, a non empty interval of red edges, and a non empty interval of blue
edges, see Figure 1a.

– C2 (Border vertices): Writing a1, a2, a3, a4 for the border vertices of T in
clockwise order, all inner edges incident to a1 and to a3 are of one color and
all inner edges incident to a2 and to a4 are of the other color.

Figure 1b gives an example of transversal edge-partition, where we use dark
red for red edges and light blue for blue edges (the same convention will be
used for all figures).



2.2 Lattice structure

As it is the case with Schnyder Woods and bipolar orientations, the set of
transversal edge-partitions of a fixed irreducible triangulation of the 4-gon has
a lattice structure. In addition, the “flip” operation has a nice geometric inter-
pretation. To describe it, we have to introduce some terminology. Given T an
irreducible triangulation of the 4-gon endowed with a transversal edge-partition
X , we define an alternating 4-cycle as a 4-cycle C of inner edges (e1, e2, e3, e4) of
T which are color-alternating (i.e. two adjacent edges of C have different colors).
Given a border vertex v of C, we call left-edge (resp. right-edge) of v the edge
of C starting from v and having the exterior of C on its left (resp. on its right).
It can easily be proven that two cases can occur for C: either all edges interior
to C and incident to a border vertex v of C have the color of the left-edge of v,
then C is called a left alternating 4-cycle; or all edges interior to C and incident
to a border vertex v of C have the color of the right-edge of v, then C is called a
right alternating 4-cycle.

Theorem 1. Let T be an irreducible triangulation of the 4-gon. Then the set
E of transversal edge-partitions of T is non empty and has a lattice structure.
Given X ∈ E, the flip operation consists in finding a right alternating 4-cycle
C of X and then switching the colors of all edges interior to C, making C a left
alternating 4-cycle. The (unique) transversal edge-partition of T without right
alternating 4-cycle is said minimal.

Proof. The non emptiness of E will be proven constructively in Section 2.4
by providing an algorithm computing the minimal transversal edge-partition
of T .Concerning the lattice structure of E , see Section A.

2.3 Transversal couple of bipolar orientations

Given a plane graph G and two vertices S (like South) and N (like North) of G
incident to the outer face of G, a bipolar orientation of G with poles S and N
is an acyclic orientation of the edges of G such that, for each vertex v different
from S and N , there exists an oriented path from S to N passing by v, see [5]
for a detailed decription.

Let T be an irreducible triangulation of the 4-gon. Call Nr, Nb, Sr and Sb

the 4 border vertices of T in clockwise order around the outer face of T . A
transversal couple of bipolar orientations is an orientation and a partition of the
inner edges of T into red and blue edges such that the following two conditions
are satisfied (see Figure 1d for an example):

– C1’ (Inner vertices): In clockwise order around each inner vertex of T , its
incident edges form: a non empty interval of outgoing red edges, a non empty
interval of outgoing blue edges, a non empty interval of ingoing red edges,
and a non empty interval of ingoing blue edges, see Figure 1c.

– C2’ (Border vertices): All inner edges incident to Nb, Nr, Sb and Sr are
respectively ingoing blue, ingoing red, outgoing blue, and outgoing red.



This structure is also defined in [8] under the name of regular edge labeling.
The following proposition explains the name of transversal couple of bipolar
orientations and is also stated in [8]:

Proposition 1. Let T be an irreducible triangulation of the 4-gon. Given a
transversal couple of bipolar orientations of T , the (oriented) red edges induce
a bipolar orientation of the plane graph obtained from T by removing Sb, Nb,
and all non red edges. Similarly, the blue edges induce a bipolar orientation of
T deprived from Sr, Nr and all non blue edges.

Proof. Ommited, see Section B.

Proposition 2. To each transversal couple of bipolar orientations of T corre-
sponds a transversal edge-partition of T , obtained by removing the orientation of
the edges (Compare Figure 1d and Figure 1b). This correspondence is a bijection.

Proof. Ommited, see Section A.

Proposition 2 allows us to manipulate equivalently transversal edge-partitions or
transversal couples of bipolar orientations. The first point of view is more con-
venient to describe the lattice structure, the second one will be more convenient
to describe the drawing algorithm in Section 3.

2.4 Algorithm computing the minimal transversal edge-partition

Let us now describe a simple iterative algorithm to compute transversal edge-
partitions. Two different algorithms computing such transversal structures were
already presented in [8]. However we need to compute the minimal transversal
edge-partition, to be used later in the straight-line drawing algorithm. During
the execution, we also orient the edges, so that we compute in fact the underlying
transversal couple of bipolar orientations. The algorithm consists in maintaining
and iteratively shrinking a cycle C of edges of T such that, in particular (we do
not detail all invariants here):

– The cycle C contains the two edges (Sr, Sb) and (Sr, Nb).
– No edge interior to C connects two vertices of C\{Sr}
– All inner edges of T outside of C are colored and oriented such that Inner-

vertex Condition C1’ is satisfied for each inner vertex of T outside of C.

We initialize the cycle C with vertices Sr, Sb, Nb and all interior neighbours
of Nr, color in red all inner edges incident to Nr and orient them toward Nr, see
Figure 2b. Observe also that vertices of C different from Sr can be ordered from
left to right with Sb as leftmost and Nb as rightmost vertex. For two vertices v
and v′ of C\{Sr} with v on the left of v′, we write [v, v′] for the path on C going
from v to v′ without passing by Sr.

To explain how to update (shrink) C at each step, we need a few definitions.
An internal path of C is a path P of edges interior to C and connecting two vertices
v and v′ of C. We write CP for the cycle constituted by the concatenation of P
and [v, v′]. The path P is said eligible if the following conditions are satisfied:
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Fig. 2. An example of execution of the algorithm computing the minimal transversal
couple of bipolar orientations. Vertices of the rightmost eligible path are surrounded.

– The paths P and [v, v′] both contain at least one vertex different from v and
v′.

– Each edge interior to CP connects a vertex of P\{v, v′} to a vertex of
[v, v′]\{v, v′}. In particular, the interior of CP contains no vertex.

– The cycle C′ obtained from C by replacing [v, v′] by P has no interior edge
connecting two vertices of C\{Sr}.

Now we can simply explain the update operation: find an eligible internal
path P of C and write v and v′ for its extremities with v on the left of v′ (so that
v and v′ are called respectively left and right extremity of P). Then, color each
internal edge of CP in red and orient it toward [v, v′]\{v, v′}. Color all edges of
[v, v′] in blue and orient them from v to v′. Finally update C by replacing in C
the path [v, v′] by the path P .

It can easily be shown that the absence of non empty triangle on T ensures
that the algorithm terminates, i.e. that at each step the cycle C has an eligible
internal path and can be updated (shrinked). After the last update operation, C
is empty. Using all invariants of color and orientation of edges satisfied by C, it
can be shown that the obtained orientation and coloration of inner edges of T
is a transversal couple of bipolar orientations. Figure 2 illustrates the complete
execution of the algorithm on an example.

This algorithm can easily be adapted to give an algorithm, called Com-
puteMinimal(T), which computes the transversal couple of bipolar orienta-
tions associated (by removing orientation of edges) to the minimal transversal
edge-partition of T , as defined in Theorem 1. Observe that, at each step of the
algorithm, eligible paths of C can be (partially) ordered from left to right, by say-
ing that P1 ≥ P2 if the left extremity and the right extremity of P1 are (weakly)



on the left respectively of the left extremity and of the right extremity of P2.
Although this order is only partial, it can easily be shown that it admits a unique
minimum, called rightmost eligible path of C. Algorithm ComputeMinimal(T)
consists in choosing the rightmost eligible path at each step of the iterative al-
gorithm described above, see also Figure 2, where the execution respects this
choice.

Proposition 3. Given an irreducible triangulation T of the 4-gon, Algorithm
ComputeMinimal(T) outputs the transversal couple of bipolar orientations of
T associated to the minimal transversal edge-partition of T (by removing edge
orientations). In addition, ComputeMinimal(T) can be implemented to run in
linear time.

Proof. Ommited.

3 Application to straight-line drawing

We recall that a straight line drawing of a plane graph G consists in placing all
points of G on a regular grid of size [0, W ] × [0, H ], so that for two edges e and
e′ of G, the two segments on the grid corresponding to e and e′ can only meet
at their endpoint (which happens if e and e′ share an extremity). The integers
W and H are called the width and the height of the grid.

The structure of transversal edge-partition can be used to derive a simple
algorithm, called TransversalDraw, to perform straight line drawing of an
irreducible triangulation T of the 4-gon. First we have to give a few definitions.
The plane graph obtained from T by removing all blue (resp. red) edges is called
the red-map (resp. blue-map) of T and is denoted by Tr (resp. Tb). We write fr

and fb for the number of inner faces of Tr and Tb. Given an inner vertex v of T ,
we define the leftmost outgoing red path of v as the oriented path starting from
v and such that each edge of the path is the leftmost outgoing red edge at its
origin. As the orientation of red edges is bipolar, this path has no cycle and ends
at Nr. We also define the rightmost ingoing red path of v as the path starting
from v and such that each edge of the path is the rightmost ingoing red edge
at its extremity. This path is also acyclic and ends at Sr. We call separating
red path of v the concatenation of these two paths and denote it by Pr(v). The
path Pr(v) goes from Sr to Nr passing by v, and separates inner faces of Tr into
two sets: those on the left of Pr(v) and those on the right of Pr(v). Similarly,
we define the leftmost outgoing blue path, the rightmost ingoing blue path, and
write Pb(v) for their concatenation, called separating blue path of v.

Now we can describe Algorithm TransversalDraw, which runs as follows
(see Figure 3 for a complete execution):

– Perform ComputeMinimal(T) to endow T with its minimal transversal
couple of bipolar orientations.

– For each inner vertex v of T , place v on the grid in the following way:
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Fig. 3. The execution of Algorithm TransversalDraw (a-to-e) and of Algorithm
CompactTransversalDraw (a-to-f) on an example.

• The abscissa of v is the number of inner faces of Tr on the left of Pr(v),
see Figure 3c.

• The ordinate of v is the number of inner faces of Tb on the right of Pb(v),
see Figure 3d.

– Place the border vertices Sr, Sb, Nb, Nr respectively at coordinates (0, 0),
(0, fb), (fr, 0) and (fr, fb).

A further step can be added to Algorithm TransversalDraw to have an
algorithm, called CompactTransversalDraw, giving a more compact draw-
ing. The further step consists in deleting the unused abscissas and ordinates of
the drawing computed by TransversalDraw. An example is given on Fig-
ure 3d, obtained from Figure 3c after having deleted the unused abscissa 3 and
the unused ordinate 5.

Theorem 2. Given an irreducible triangulation T of the 4-gon with n vertices,
Algorithm TransversalDraw and Algorithm CompactTransversalDraw
can be implemented to run in linear time and compute a straight line drawing of
T such that:

– All red edges are oriented from bottom to top and weakly oriented from left
to right.

– All blue edges are oriented from left to right and weakly oriented from top to
bottom.



– The width W and height H of the grid of the drawing given by Transver-
salDraw(T) verify W + H = n − 1.

– Let T be taken uniformly at random among irreducible triangulations of the
4-gon with n vertices. The width Wc and the height Hc of the grid of the
drawing given by CompactTransversalDraw(T) are asymptotically al-
most surely equal to n

2 (1 − 5/27), up to fluctuations ǫWc
and ǫHc

of order√
n.

Proof. Ommited. Proof of the the third point relies on the fact that W = fr and
H = fb and then on Euler relation.

In fact the transversal structure used to give coordinates to vertices need not to
be the minimal one. Using any other transversal couple of bipolar orientations,
the three first points of Theorem 2 remain true. However the analysis of the
reduction-factor 5

27 with CompactTransversalDraw(T) crucially requires
that the transversal structure is the minimal one, see Section 4.2 and Section C.

Corollary 1. Each 4-connected plane graph G with n vertices and at least 4
vertices on the outer face can be embedded on a grid W ×H with W +H ≤ n−1.

Proof. It relies on the fact that an irreducible triangulation T of the 4-gon with
n + 4 vertices can be associated to G: triangulate G, then draw a quadrangle
outside of G and finally link outer vertices of G to vertices of the quadrangle
by new edges, so as to produce a triangulation of the 4-gon (see Figure 4c-d
for a similar operation). This triangulation is easily proven to be irreducible by
4-connectivity of G.

4 Bijection with ternary trees and applications

We present a bijection which associates to a ternary tree A an irreducible trian-
gulation T of the 4-gon. In addition, A can be naturally endowed with a structure
of transversal edge-bicoloration, which is transported by the bijection into the
minimal transversal edge-partition of T . In fact, this bijection was the starting
point of our discovery of the structure of transversal edge-partition.

4.1 Description of the bijection

A ternary tree A is a tree embedded in the plane with nodes of degree 4, called
inner nodes and nodes of degree 1, called leaves. Edges of A connecting two
inner nodes are called inner edges and edges incident to a leaf are called stems
(these are “pending” edges). A ternary tree can be rooted by marking one of
its leaves, and such rooted ternary trees correspond to the classical definition of
ternary trees (i.e. all nodes have either 0 or 3 children).

We describe briefly the bijection (see [6, 10] for detailed descriptions of simi-
lar bijections), consisting of three main steps: local closure, partial closure and
complete closure. Perform a counterclockwise traversal of A (imagine an ant
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Fig. 4. The execution of the closure on an example.

walking around A with the infinite face on its right). If a stem s and then two
inner edges e1 and e2 are successively encountered during the traversal, merge
the extremity of s with the extremity of e2, so as to close a triangular face. This
operation is called local closure, see Figure 4b. Now we can restart a counter-
clockwise traversal around the new Figure F , which is identical to A, except
that it contains a triangular face and, more important, the stem s has become
an inner edge. Each time we find a succession (stem, edge, edge), we perform
a local closure, update the figure, and restart, until no local closure is possible.
This greedy execution of local closures is called the partial closure of A, see
Figure 4c. It can easily be shown that the figure F obtained by partial closure
of A does not depend of the order of execution of the local closures. Finally, the
last step, called complete closure (see Figure 4d), consists in drawing a 4-gon,
and then merging the extremity of each unmatched stem with a border vertex,
so as to create only triangular inner faces. It can be shown that the choice of an
outer 4-gon is the good one so that this last operation works without conflict.

Now we explain how the closure “transports” the structure of transversal
edge-partition. The edges of a ternary tree A can be bicolored in blue and red
edges so that two successive edges incident to an inner node of A have always
different color, see Figure 4a. This bicoloration, unique up to the choice of the
colors, is called the transversal edge-bicoloration of A. Observe that Inner Vertex
Condition C1 is satisfied on A and remains satisfied throughout the closure. The
following theorem states the bijection and describes more precisely the trans-
portation of the transversal structures:

Theorem 3. The closure is a bijection between the set of ternary trees with n
inner nodes and the set of irreducible triangulations of the 4-gon with n inner
vertices.

The closure transports the transversal edge-bicoloration of a ternary tree into
the minimal transversal edge-partition of its image.

Proof. Ommited. Injectivity can easily be proven by uniqueness of the transver-
sal edge-partition without right alternating 4-cycle. The inverse of the closure
consists in computing the minimal transversal edge-partition of T and using the



colors to disconnect certain edges at their extremity, so as to leave a ternary
tree.

An irreducible triangulation of the 4-gon is rooted by choosing one of its 4 border
edges and orienting this edge with the infinite face on its right. This well known
operation eliminates symmetries of the triangulation.

Corollary 2. The closure induces a 4-to-(2n+2) correspondence between the set
An of rooted ternary trees with n inner nodes and the set Tn of rooted irreducible
triangulations of the 4-gon with n inner vertices. In other words, An×{1, . . . , 4}
is in bijection with Tn × {1, . . . , 2n + 2}.

As an enumerative consequence, |Tn| = 4
2n+2 |An| = 4(3n)!

(2n+2)!n! .

Proof. The proof follows easily from the bijection stated in Theorem 3 and from
the fact that a ternary tree with n inner nodes has 2n + 2 leaves and an object
of Tn has 4 edges (the 4 border edges) to carry the root.

4.2 Applications

Fig. 5. A triangulation with 200 vertices embedded with Algorithms Transversal-
Draw and CompactTransversalDraw.

The closure-bijection has several applications. A first one is a linear time
algorithm to perform uniform random sampling of objects of Tn, using the fact
that rooted ternary trees with n inner nodes can readily be uniformly sam-
pled using parenthesis words. A thorough study of such sampling algorithms is
given in [12]. In addition, sampled objects of Tn are naturally endowed, through
the closure, with their minimal transversal edge-partition. Hence, we can easily
run face-counting algorithms TransversalDraw and CompactTransver-
salDraw on the sampled objects. Performing simulations on objects of large
size (n ≈ 50000), it was observed by the author that the size of the grid is al-
ways approximately n

2 × n
2 with TransversalDraw and n

2 (1 − α) × n
2 (1 − α)

with CompactTransversalDraw, where α ≈ 0.18. It turns out that the size



of the grid can be readily analyzed thanks to our closure-bijection (see Sec-
tion C), in the same way that bijection of [10] allowed to analyze parameters of
Schnyder woods in [3]. Indeed, the number of unused abscissas and ordinates of
TransversalDraw correspond to certain inner edges of the ternary tree, whose
number can be proven to be asymptotically almost surely 5n

27 up to fluctuations
of order

√
n.

A second application is counting rooted 4-connected triangulations with n
vertices, whose set is denoted by Cn. It is well known that a 4-connected triangu-
lation is a triangulation where each 3-cycle delimits a face. Hence, the operation
of removing the root edge of an object of Cn and carrying the root on the
counterclockwise-consecutive edge is an (injective) mapping from Cn to Tn−4.
However, given T ∈ Tn−4, the inverse edge-adding-operation can create a sepa-
rating 3-cycle if there exists an internal path of length 2 connecting the origin of
the root of T to the vertex diametrically opposed in the outer face of T . Objects
of Tn−4 having no such internal path are said undecomposable and their set is
denoted by Un−4. The above discussion ensures that they are in bijection with
Cn. A maximal decomposition of an object T of T along the above mentioned
interior paths of length 2 ensures that T is a sequence of objects of U . After a
few simple manipulations and using Corollary 2 (see Section B), we obtain the
following enumerative result for rooted 4-connected triangulations:

Proposition 4. The series C(z) counting rooted 4-connected triangulations by
their number of inner vertices has the following expression:

C(z) =
z(A(z) − A(z)2 + 1)

1 + z(A(z) − A(z)2 + 1)

where A(z) = z(1 + A(z))3 is the series counting rooted ternary trees by their
number of inner nodes
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A Proof of Proposition 2 and of the lattice structure of

transversal edge-partitions

A.1 Lattice structure of α-orientations

Let T be an irreducible triangulation of the 4-gon. We write E for the set of
transversal edge-partitions of T . To prove that E is a lattice, we rely on a well
known theorem on the lattice structure of so-called α-orientations. Given a plane
graph G = (V, E), and a function α : V → N, an α-orientation of G is an
orientation of the edges of G such that each vertex v of G has outdegree α(v).

Theorem 4. Given G = (V, E) a plane graph and α : V → N a function, the
set of α-orientations of G is either empty or it carries a lattice structure. The
flip operation consists in reversing the orientation of “minimal” oriented cycles.

Of course, for two different transversal edge-partitions X and X ′ of T , the
outdegree of a vertex v in X and X ′ are not always the same. Hence, Theorem 4
does not apply directly to prove the lattice structure of E . However we will see
that transversal edge-partitions of T are in bijection with α-orientations of a
plane graph Q(T ) associated to T .

A.2 Angular graph of T

c) d)b)a)
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Nr

Nb

Sb

Sr

Nr
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Fig. 6. Given an irreducible triangulation T of the 4-gon endowed with a transversal
edge-partition Z (Figure a), construction of Q(T ) and of the α0-orientation of Q(T )
image of Z by Ψ ◦ Φ.

We define an angle of T as a couple (v, f) composed of an inner face f of T
and a vertex v of T incident to f . The angular map Q(T ) of T is constructed as
follows: the vertices of Q(T ) are composed of two kinds of vertices: the vertices
of T , colored in black; and so-called face-vertices colored in white, a face-vertex
vf being placed in the center of each inner face f of T . Then, for each angle
(v, f) of T , we construct an edge of Q(T ) by connecting v to the white vertex
vf associated to f . Figure 6 illustrates the construction of Q(T ) from T (ignore
here the orientation of the edges of Q(T )).



A.3 Statement of the theorem

We denote by V the set of vertices of Q(T ) and write α0 : V → N for the
function such that:

– For each black vertex of Q(T ) corresponding to an inner vertex of Q(T ),
α0(v) = 4.

– For the two red poles Nr and Sr, α0(v) = 2.
– For the two blue poles Nb and Sb, α0(v) = 0.
– For each white vertex of T , α0(v) = 1.

We are going to show that transversal edge-partitions of T are in bijection
with α0-orientations of Q(T ). More precisely, we state the following theorem,
which also yields the bijection stated in Proposition 2:

Theorem 5. Given T an irreducible triangulation of the 4-gon, the set B of
transversal couples of bipolar orientations of T is in bijection with the set E of
transversal edge-partitions of T . The set E is itself in bijection with the set O of
α0-orientations of Q(T ). Hence Theorem 4 ensures that B and E have a lattice
structure.

To prove Theorem 5, we introduce two functions Φ and Ψ respectively from
B to E and from E to O.

Given Z ∈ B, Φ(Z) is obtained from Z by removing the orientations of edges.
It is straightforward that Φ(Z) ∈ E . In addition, Φ is clearly injective.

Now, given X ∈ E , we define Ψ(X) as the following orientation of edges of
Q(T ). First, color in blue the 4 border edges of T . Then, for each angle (v, f)
of T , let e be the edge of Q(T ) associated to (v, f) and write vf for the white
vertex of Q(T ) associated to f . We say that (v, f) is bicolored if it is delimited
by two edges of T having different colors. Two cases can arise: either (v, f) is
bicolored, in which case we orient e from v to vf ; or it is not bicolored, in which
case we orient e from vf to v. Observe that Inner-vertex Condition C1 satisfied
by X implies that all inner black vertices of Q(T ) have outdegree 4. In addition
Border-vertex Condition C2 and the fact that the 4 border edges of T have been
colored in blue imply that Nb and Sb have outdegree 0 and that Nr and Sr have
outdegree 2.

To prove that Ψ(X) is an α0-orientation, it remains to prove that all white
vertices have outdegree 1, which relies on the following lemma:

Lemma 1. Consider a transversal edge-partition X of an irreducible triangula-
tions T of the 4-gon and color all border edges of T in blue. Then each inner face
of T has two sides of one color and one side of the other color. Hence exactly one
of the three angles of the face is delimited by two edges having the same color.

Proof. Let Ab be the number of bicolored angles of T and let n be the number of
inner vertices of T . Inner-vertex Condition C1 implies that there are 4n bicolored
angle incident to an inner vertex of T . Border-vertex Condition C2 and the fact



that all border edges are colored in blue imply that 2 angles incident to Nr and
two angles incident to Sr are bicolored. Hence, we have Ab = 4n + 4.

Moreover Euler relation, together with the fact that T is outer-quadrangular
and has triangular inner faces, ensure that T has 2n + 2 inner faces. For each
inner face, two cases can arise: either its three sides have the same color or it has
two sides of one color and one side of the other color. In the first (resp. second)
case, the face has 0 (resp. 2) bicolored angles. Finally, the fact that Ab = 4n + 4
and the pigeonhole principle imply that all inner faces have a contribution of 2
in the number of bicolored angles, which concludes the proof.

Hence Ψ is a mapping from E to O and it is clear that Ψ is injective. To
prove Theorem 5, it remains to prove that Φ and Ψ are surjective, which comes
down to proving surjectivity of Ψ ◦ Φ. Thus, given O ∈ O, we have to find
B ∈ B such that Ψ ◦ Φ(B) = O. To do that, we could simply greedily traverse
the triangulation and propagate a coloration and orientation of its edges that is
locally (around each vertex) compatible with the given α-orientation O. However
we have no guarantee that the same edge can not receive two different colors
(thus in conflict) during such a greedy traversal. It turns out that no such conflict
can arise and we can get sure of that by traversing vertices of the triangulation
in a certain order, as explained in the next section.

A.4 Iterative algorithm to find the preimage of an α0-orientation

As in Section 2.4, the algorithm consists in maintaining and iteratively shrinking
a cycle C of edges of T such that the following invariants hold:

– The cycle C contains the edges (Sr, Sb) and (Sr, Nb).
– All edges of T outside of C are colored in such a way that:

• They satisfy the transformation Ψ ◦Φ, i.e. for two edges (e1, e2) outside of
C delimiting an angle (v, f) of T , the associated edge of Q(T ) is directed
toward v iff e1 and e2 have the same color.

• They satisfy Inner-vertex Condition C1’ for each inner vertex v of T
outside of C.

• For each inner vertex v of T on C, a partial version of C1’ holds: in the
clockwise order around v, edges incident to v and exterior to C form:
a (possibly empty) interval of ingoing blue edges, a non empty interval
of outgoing red edges, and a (possibly empty) interval of outgoing blue
edges.

– Each inner vertex of T on C has 2 of its 4 outgoing edges of Q(T ) inside of
C and the 2 other ones outside of C.

To explain how to update (shrink) C at each step, we have to give a few
definitions. First we recall that the vertices of C\{Sr} can be ordered from left
to right, with Sb as leftmost and Nb as rightmost vertex. Given v and v′ on C, we
also use the notation [v, v′] for the path going from v to v′ on C without passing
by Sr.

Given two vertices v and v′ on C, we define the internal path of the couple
{v, v′}, writen P{v,v′}, as the unique path satisfying the following conditions:



– P{v,v′} connects v to v′ using edges of T in the interior of C.

– If we write CP{v,v′}
for the cycle made of the concatenation of P{v,v′} and

[v, v′], all edges of T interior to CP{v,v′}
connect a vertex of P{v,v′}\{v, v′}

to a vertex of [v, v′]\{v, v′}.

A couple {v, v′} with v on the left of v′ is said admissible if the following two
conditions hold: the edge ev of Q(T ) corresponding to the angle formed by the
first edge of P{v,v′} and the first edge of [v, v′] is directed toward v; and the edge
ev′ of Q(T ) corresponding to the angle formed by the last edge of P{v,v′} and
the last edge of [v, v′] is directed toward v′. Observe that the set of admissible
couples is non empty: indeed the couple (Sb, Nb) is always admissible because
these two vertices have only ingoing edges in Q(T ). An admissible couple {v, v′}
is said minimal if there exists no other admissible couple {v1, v

′
1} such that

[v1, v
′
1] is properly included in [v, v′]. Then, minimallity of {v, v′} implies the

following important remark: for each vertex in [v, v′]\{v, v′}, if we consider the
bunch of its incident edges of Q(T ) in the interior of C, then the leftmost and
the rightmost are outgoing and all other are ingoing.

Now we can explain the update operation shrinking the cycle C, see Figure 7:

b)a)

v v’ v v’

Fig. 7. The update step of the iterative algorithm finding the preimage of an α0-
orientation.

1. Choose a minimal admissible couple {v, v′} on C.

2. Color in blue all edges of [v, v′] and orient them from v to v′.

3. Color in red all edges of T interior to CP{v,v′}
and orient them from P{v,v′}

to [v, v′].

4. Replace [v, v′] by P{v,v′} in C, so as to update (shrink) C.

It can easily be proven (see Figure 7) that the invariants on C stated above are
still satisfied after these operations. As we have said, as long as C is not empty,
there exists an admissible couple on C (hence there is also a minimal one), so that
the algorithm terminates. At the end, C is empty. Then the invariants satisfied
by C exactly imply that the coloration and orientation of inner edges of T is
a transversal couple of bipolar orientation Z such that Ψ ◦ Φ(Z) = O, see also
Figure 8 for a complete execution of the algorithm. This concludes the proof of
Theorem 5.
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Fig. 8. The complete execution of the algorithm calculating the preimage of an α0-
orientation O by Ψ ◦ Φ. At each step, the vertices of the chosen internal path P{v,v′}

are surrounded.

B Other proofs

Proof of Proposition 1. First we prove that the orientation induced by the red
edges is acyclic. Suppose there is an oriented cycle C of red edges of T . Let k
and n be respectively the number of vertices on C and in the interior of C. Then
Inner-vertex Condition C1’ implies that the number Ab of bicolored angles in
the interior of C is 4n + 2k. Moreover Euler relation and the fact that all faces
in the interior of C are triangular imply that there are 2n + k − 2 faces interior
to C. Then Lemma 1 implies that Ab = 2(2n+ k− 2) = 4n+ 2k− 4, which gives
a contradiction.

Hence the orientation induced by the red edges is acyclic. In addition, Inner-
vertex Condition C1’ implies that inner vertices of T can not be extrema for the
underlying partial order. Finally, Border-vertex Condition C2’ ensures that Sr

and Nr are respectivelly the minimum and the maximum of the partial order
(on the vertices of T different from Sb and Nb) induced by the orientation of the
red edges. The same holds similarly for the orientation of the blue edges.

Partial proof of Theorem 2. Let e be a red edge of T and let v1 and v2 be its origin
and extremity. To show that e is oriented from bottom to top in the embedding
computed by CompactDraw(T), we have to show that the ordinate of v2 is
greater than the ordinate of v1, which comes down to proving that Pb(v1) is on
the right of Pb(v2). This last fact is trivial because Pb(v1) and Pb(v2) can not
cross (we do not provide a proof here but it is easy to check), and Inner-vertex



Condition C1’ ensures that v1 is on the right of v2 in the orientation induced by
the blue edges of T . Now we prove that e is weakly oriented from left to right.
We have here to prove that the abscissa of v1 is not greater than the abscissa
of v2, which comes down to proving that Pr(v1) is not on the right of Pr(v2).
This last fact follows from the two easy observations: the leftmost outgoing red
path of v1 is (weakly) on the left of the leftmost outgoing red path of v2; and
the rightmost ingoing red path of v2 is (weakly) on the right of the rightmost
ingoing red path of v1. Similary the blue edges are directed from left to right
and weakly directed from top to bottom.

Now the proof that the embedding is a straight line drawing (i.e. that two
edges can not cross) relies on an iterative algorithm very similar to the ones
presented in Section 2.4 and Section A.4. The idea consists in maintaining and
iteratively shrinking a cycle C of edges of T such that two edges outside of C can
not cross in the embedding. Using the property of orientations of red edges and
of blue edges stated above, it can easily be established that the cycle C can be
shrinked so that the the embedding of the edges outside of C remains planar.

Finally we show that the width W and height H of the grid of the drawing
computed by TransversalDraw(T) are such that W + H = n − 1 if T has n
vertices. We recall that we define Tr (resp. Tb) as T deprived from its blue (resp.
red) edges and we write respectively fr and fb for the number of inner faces of
Tr and Tb. By construction of TransversalDraw, W = fr and H = fb. Hence
we have to prove that fr + fb = n − 1. We write respectively er and eb for the
number of edges of Tr and Tb. Euler relation ensures that the total number e of
edges of T is 3n− 7. Hence, eb + er = e + 4 = 3n− 3. In addition Euler relation,
taken respectively in Tr and Tb, ensures that n+fr = er +1 and n+fb = eb +1.
Finally, fr + fb = er + eb − 2n + 2 = n − 1.

Proof of Proposition 4 First we provide an expression of the series T (z) =∑
n Tnzn counting irreducible triangulations of the 4-gon by their number of

inner vertices. Let A(z) =
∑

n Anzn be the series counting rooted ternary trees
by their number of inner nodes, so that we have A(z) = z(1 + A(z))3. We de-

fine respectively the sets An and Ân of ternary trees with n inner nodes and
having the following marks: an inner edge is marked and oriented for objects
of An; an inner edge is marked and oriented and a leaf is marked for objects
of Ân. Observe that a ternary tree with n inner nodes has n − 1 inner edges
and 2n + 2 leaves (this last fact can be proven recursively). Hence we have

An · 2(n − 1) = |Ân| = |An|(2n + 2), so that |An| = 2 n−1
2n+2An. In addition,

an object of A := ∪nAn can be seen as a couple of rooted ternary trees whose
root leaves have been merged into a marked (and oriented) inner edge. Hence
the series counting objects of A by their number of inner vertices is A(z)2. Fi-
nally, we know from Proposition 4 that Tn = 4

2n+2An. Hence, we also have

Tn = 2n+2
2n+2An − 2 n−1

2n+2An, from which we conclude that T (z) = A(z) − A(z)2.

Now, writing U(z) for the series counting undecomposable irreducible tri-
angulations of the 4-gon, we have easily from the discussion of Section 4.2:



T (z) + 1 = U(z)+1
1−z(U(z)+1) . Hence U(z) + 1 = T (z)+1

1+z(T (z)+1) = A(z)−A(z)2+1
1+z(A(z)−A(z)2+1) .

Finally, writing C(z) for the series counting rooted 4-connected triangulations
by their number of inner vertices, we also know from the discussion of Section 4.2
that C(z) = zU(z), which gives the expression for C(z) in terms of A(z) stated
in Proposition 4.

C Analysis of the reduction of the grid from

TransversalDraw to CompactTransversalDraw

This section gives a precise analysis of the probability distribution of the grid size
of TransversalDraw and CompactTransversal. It yields the following
theorem:

Theorem 6. Let T be taken uniformly at random among rooted irreducible tri-
angulations of the 4-gon with n vertices. Let W × H and Wc × Hc be the di-
mensions of the grid obtained respectively with TransversalDraw(T) and
CompactTransversal(T). Then W and H are asymptotically almost surely
equal to n

2 up to fluctuations of order
√

n; and Wc and Hc are asymptotically
almost surely equal to n

2 ·
(
1 − 5

27

)
up to fluctuations of order

√
n.

C.1 Characterization of unused abscissas as particular edges of T

We analyze the number of unused abscissas of TransversalDraw(T), i.e.,
the number of vertical lines of the grid that bear no vertex of T . Recall that the
width of the grid of TransversalDraw(T) is the number of inner faces of the
red-map Tr of T , where Tr is obtained by computing the minimal transversal
couple of bipolar orientations of T and then removing all blue edges. The abscissa
Abs(v) of a vertex v is obtained by associating to v an oriented path Pr(v) of
red edges called separating path of v, as defined in Section 3 and then counting
the number of inner faces of Tr on the left of Pr(v). In addition, we orient the 4
border edges of Tr from Sr to Nr. By construction of TransversalDraw(T),
abscissas 0 and fr are occupied respectively by Sr and Nr. Then, an abscissa i
with 1 ≤ i ≤ fr − 1 is not used if there exists no inner vertex v of T such that
Abs(v) = i. In what follows we show that each abscissa-candidate 1 ≤ i ≤ fr

can be associated to a unique inner face of Tr, for which we write Abs(f) = i.
Then we show that the existence of an inner vertex v of T with Abs(v) = i only
depends on the configuration of the edge at the bottom right corner of f .

First we give a few definitions. Let e = (v1, v2) be an inner edge of Tr,
oriented from v1 to v2. The sepatating path of e, denoted by Pr(e), is defined as
the concatenation of the leftmost outgoing red path of v2, of the edge e, and of
the rightmost ingoing red path of v1. Let f be an inner face of Tr. As the oriented
edges of Tr form a bipolar orientation form a bipolar orientation, it is well known
that there exist two vertices Sf and Nf of f , called south pole and north pole
of f , such that the contour of f consists of two “lateral” oriented paths P1 and
P2, the first one going from Sf to Nf with f on its right, the second one going



from Sf to Nf with f on its left. The separating path of f , denoted by Pr(f),
is defined as the concatenation of the leftmost outgoing red path of Nf , of the
path P2, and of the rightmost ingoing red path of v1. Observe that the first edge
ef of P2, called bottom right edge of f , verifies Pr(f) = Pr(ef ). The following
lemma states properties of paths that follow easily from their definition. It will
prove useful to show that separating paths do not cross each other.

Lemma 2. Let v and v′ be two different inner vertices of T . Let P left
r (v),

P left
r (v′), Pright

r (v) and Pright
r (v′) be respectively the leftmost outgoing red path

and rightmost ingoing red path of v and v′. Then P left
r (v) and P left

r (v′) do not
cross each other, they join at a vertex v′′ and then are equal between v′′ and Nr.
Similarly Pright

r (v) and Pright
r (v′) do not cross each other, join at a vertex v′′

annd then are equal between v′′ and Sr. Concerning the intersection I of P left
r (v)

and Pright
r (v′), either v′ is on P left

r (v), in which case I is empty (i.e. P left
r (v)

and Pright
r (v′) have no common vertex); or v′ is on P left

r (v), in which case I is
the part of P left

r (v) between v and v′.

Lemma 3. Let e and e′ be two different red edges of T . Then the separating
paths Pr(e) and Pr(e

′) do not cross each other. If Pr(e) = Pr(e
′), then e and e′

have the same face of Tr on their left.

Proof. A first observation, following from the presence of the transversal blue
edges, is that an edge e′ connecting two vertices of an oriented red path is on
the path. Hence only three cases can arise: either e′ and Pr(e) do not intersect,
or they intersect at a unique extermity of e′ or e′ is on Pr(e). Lemma 2 allows
us to carry out a examination of each of the three cases and to obtain the stated
result.

Recall that the separating path of a face f is the separating path of its bottom-
right edge ef . Thus, Lemma 3 ensures that, for two different inner faces of Tr,
the separating paths Pr(f) and Pr(f

′) do not cross each other and are different.
Hence the number of inner faces of Tr on the left of each of the two paths are
different, i.e., Abs(f) 6= Abs(f ′). There are fr inner faces in Tr and each inner
face f of Tr clearly verifies 1 ≤ Abs(f) ≤ fr. Hence the pigeonhole principle
yields:

Lemma 4. For each i with 1 ≤ i ≤ fr, there exists a unique inner face f of T
such that Abs(f) = i.

As a consequence, inner faces of Tr can be strictly ordered from left to right
according to their associated abscissa.

Lemma 5. Let e = (v1, v2) be an inner edge of the red-map Tr oriented from
v1 to v2. Let v be an inner vertex of T . Then Pr(v) and Pr(e) do not cross each
other. In addition, there exists a vertex v such that Pr(v) = Pr(e) if and only if
either e is the rightmost ingoing red edge at v2 or e is the leftmost outgoing red
edge at v1.



Proof. The fact that Pr(v) and Pr(e) do not cross each other easily follows from
Lemma 2. The second statement of the lemma follows from a few observations.
If v is not on Pr(e) then clearly Pr(v) is not equal to Pr(e). If v is on Pr(e)
between v2 and Nr, then Pr(v) = Pr(e) iff all edges of Pr(e) between v1 and v
are the rightmost ingoing red edge at their end-vertex. If v is on Pr(e) between
Sr and v1, then Pr(v) = Pr(e) iff all edges of Pr(e) between Sr and v2 are the
leftmost outgoing red edge at their origin. It follows from these observations
that Pr(v2) = Pr(e) if e is the rightmost ingoing red edge at its end-vertex, that
Pr(v1) = Pr(e) if e is the leftmost outgoing red edge at its origin, and that no
vertex v satisfies Pr(v) = Pr(e) otherwise.

Definition An internal red edge of T is an inner edge that is neither the leftmost
outgoing red edge at its origin nor the rightmost ingoing red edge at its end-
vertex. An internal blue edge of T is defined similarly.

Proposition 5. The number of unused abscissas in TransversalDraw(T) is
equal to the number of internal red edges of T . Similarly, the number of unused
ordinates in TransversalDraw(T) is equal to the number of internal blue
edges of T .

Proof. Let i with 1 ≤ i ≤ fr be an abscissa candidate and let f be the unique
inner face of the red-map Tr with Abs(f) = i. Recall that the separating path
Pr(v) is equal to the separating path Pr(ef ) of the bottom-right edge ef of the
face f . Then Lemma 5 ensures that i is not the abscissa of any vertex v of
T iff ef is an internal red edge of T . Hence the number of unused abscissas of
TransversalDraw(T) is equal to the number of internal red edges of T which
are the bottom-right edge of an inner face of Tr. But observe that an edge e is
the bottom-right edge of an inner face of Tr iff e is not the leftmost outgoing red
edge at its origin. In particular, any internal red edge of T is the bottom-right
edge of an inner face of Tr.

C.2 Analysis of the number of internal edges of a random

irreducible triangulation

According to Proposition 5, the number of coordinates of the grid that can be
deleted to obtain a compact drawing of T is equal to the number of internal
edges of T . Internal edges of T correspond, through the closure-mapping, to
particular edges of the ternary tree A associated to T . We define an internal
edge of a ternary tree A as an inner edge e = (v1, v2) of A such that the edges
following e in counterclockwise order respectively around v1 and around v2 are
both inner edges (i.e., they are not incident to a leaf of A).

Lemma 6. Let T be an irreducible triangulation of the 4-gon and let A be the
ternary tree whose closure is T , A being endowed with its transversal edge-
bicoloration and T being endowed with its minimal transversal edge-partition.
Each internal red (resp. blue) edge of A corresponds, through the closure of A,
to an internal red (resp. blue) edge of T .



Proof. Ommited.

Let An be the set of rooted ternary trees with n inner nodes and Tn be
the set of rooted irreducible triangulations of the 4-gon with n inner vertices.
Proposition 5, Lemma 6 and the bijection between An × {1, 2, 3, 4} and Tn ×
{1, . . . , 2n+2} imply the following statement: The probability distribution of the
number of unused coordinates of a (uniformly) random object of Tn is equal to
the probability distribution of the number of internal edges of a (uniformly) ran-
dom object of An. The following proposition, where the reduction factor already
appears, is weaker than Theorem 6.

Proposition 6. Let T be taken uniformly at random in Tn. The mean number
of deleted coordinates of TransversalDraw(T) is asymptotically equivalent
to 5n

27 . As the half-perimeter of TransversalDraw(T) is equal to (n − 1),
the asymptotic of the mean of the half-perimeter of CompactTransversal-
Draw(T) is n ·

(
1 − 5

27

)
.

Proof. Let Tn be the number of rooted ternary trees with n inner nodes. The
generating function T (z) :=

∑
n Tnzn verifies T (z) = z(1+T (z))3. Let T̃n be the

number of rooted ternary trees with n inner nodes such that the right son of the
root node is not a leaf. The associated generating function T̃ (z) is clearly equal to
zT (z)(1+T (z))2. Let Tn be the number of ternary trees with n inner nodes and
rooted at an internal edge e. By definition of an internal edge, the two subtrees
hanging at each extremity have their right son different from a leaf. Hence the
generating T (z) :=

∑
n Tnzn verifies T (z) = T̃ (z)2 = z2T (z)2(1 + T (z))4. As

a ternary tree with n inner nodes has 2n + 2 leaves, the quantity 1
2Tn(2n + 2)

counts the number of rooted ternary trees with a marked internal edge. Hence
T n(n+1)

Tn
is the mean number of internal edges of a rooted ternary tree with

n inner nodes taken uniformly at random. Lagrange’s inversion formula yields

Tn = 2 (3n−3)!(5n−10)
(n−4)!(2n+2)!(n−2) and Tn = (3n)!

n!(2n+1)! . Finally, Stirling Formula yields

T n(n+1)
Tn

∼n→∞
5n
27 .

To carry out the precise analysis stated in Theorem 6, we have to take bicol-
oration of edges into account. A rooted ternary tree is bicolored by coloring the
edge connected to the root leaf in red and coloring all other edges in the unique
way such that the four colors of the edges around each node alternate.

Let Xr be the random variable corresponding to the number of unused abscis-
sas of TransversalDraw(T) where T is taken uniformly at random in Tn and
where the ordered choice of the two colors is chosen to be red-blue or blue-red
(color switch) with probability 1/2. Let Zr be the random variable corresponding
to the number of internal red edges of a tree A taken uniformly at random in An.
Then the bijection between An × {1, 2, 3, 4} and Tn × {1, . . . , 2n + 2}, together
with Proposition 5 and Lemma 6, imply that the distribution probability of X
is equal to the distribution probability of Zr.

The analysis of the distribution of Zr is then readilly carried out by intro-
ducing the generating function A(z, u) of bicolored rooted ternary trees where



z marks inner nodes and u marks internal red edges. Using a decomposition
grammar of ternary trees adapted to take internal red edges into account, it is
possible to obtain an algebraic expression for A(z, u). From this algebraic equa-
tion an analysis of the singularities of A(z, u) is feasible. Then, the well-known
quasi-power theorem ensures that Zr is almost surely equal to 5n

54 up to fluctu-
ations of order

√
n. Similarly, the number Zb of internal blue edges of a random

irreducible triangulation of the 4-gon can be proven to be asymptotically almost
surely equal to 5n

54 up to fluctuations of order
√

n. Finally, it can be shown, using
similar methods, that the variable Yr and Yb counting respectively inner faces of
the red-map and inner faces of the blue-map of a random irreducible triangula-
tion of the 4-gon both are almost surely equal to n

2 , up to fluctuations of order√
n. Theorem 6 follows easily from these distributions and from Proposition 5.


