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Abstract. We define some Schnyder-type combinatorial structures on
a class of planar triangulations of the pentagon which are closely related
to 5-connected triangulations. The combinatorial structures have three
incarnations defined in terms of orientations, corner-labelings, and woods
respectively. The wood incarnation consists in 5 spanning trees crossing
each other in an orderly fashion. Similarly as for Schnyder woods on tri-
angulations, it induces, for each vertex, a partition of the inner triangles
into face-connected regions (5 regions here). We show that the induced
barycentric vertex-placement, where each vertex is at the barycenter of
the 5 outer vertices with weights given by the number of faces in each
region, yields a planar straight-line drawing.

Keywords: Schnyder structures, barycentric drawing, 5-connected tri-
angulations

1 Introduction

In 1989, Walter Schnyder showed that planar triangulations can be endowed
with remarkable combinatorial structures, which now go by the name of Schny-
der woods [24]. A Schnyder wood of a planar triangulation is a partition of its
inner edges into three trees, crossing each other in an orderly manner; see Fig-
ure 1(a) for an example. In [25], Schnyder used his structures to define an elegant
algorithm to draw planar triangulations with straight edges [25].

In this article we study an analogue of Schnyder woods for triangulations of
the pentagon, which we call 5c-woods, and we show that such structures exist
if and only if cycles of length less than 5 have no vertex in their interior (a
property closely related to 5-connectedness). We then use these structures to
define a graph-drawing algorithm in the spirit of Schnyder’s algorithm.

A disadvantage of our algorithm compared to Schnyder’s original algorithm
(and to algorithms such as [6,7,8,11,15,18,21] using an underlying combinatorial
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Fig. 1. (a) A Schnyder wood (with the local condition at inner vertices), (b) the
corresponding corner labeling, (c) the corresponding 3-orientation.

structure or shelling order to define a vertex-placement) is that it does not yield
a grid-drawing algorithm, that is, a vertex placement where the coordinates are
integers bounded by a linear function of the number of vertices of the graph. Nev-
ertheless, we stress some nice features of our algorithm: it can be implemented
in linear time, it respects rotational symmetries, and the worst-case vertex reso-
lution (minimal distance between vertices) is better than in Schnyder’s drawing.
On the examples we have tested, our algorithm seems to output aesthetically
pleasant drawings; see Figure 7 for an example.

Our article is organized as follows. All the combinatorial results are presented
in Section 2. We start by defining the 5c-structures for triangulations of the pen-
tagon (see Figure 2 for an example, which parallels Figure 1). We give three dif-
ferent incarnations of these structures (5c-woods, 5c-labelings, 5c-orientations),
we explain the equivalence between them, state the exact condition for their
existence, and point to the appendix for detailed proofs and the description of
a linear-time construction algorithm. The drawing algorithm is then presented
in Section 3. Together with the proof of planarity of the drawing, this section
includes a discussion of the drawing properties mentioned above, and some open
questions.

Let us mention that the 5c-structures presented here are closely related to
the quasi-Schnyder structures which we introduced in [3]. The quasi-Schnyder
structures are a far-reaching generalization of Schnyder woods (encompassing
regular edge labelings [17], and Schnyder decompositions considered in [1]), and
in the case of triangulations of the pentagon, these structures can be identified
with the 5c-structures which are the focus of the present article. Focusing on tri-
angulations of the pentagon allows us to provide a simplified presentation, both
in terms of definitions and proofs, and also to define an additional incarnation
in terms of woods. Let us add that the quasi-Schnyder structures for triangula-
tions of the square coincide (after simplifications) with regular edge labelings [17]
(a.k.a. transversal structures [15]), and the quasi-Schnyder structures for trian-
gulations coincide (after simplifications) with the classical Schnyder woods [24].
Another combinatorial structure which bears some resemblance to 5c-structures
are the five color forests introduced in [13] that are related to pentagon contact



representations. As we will explain in Remark 1, one can easily construct a five
color forest from a 5c-structure (but the opposite is not true).
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Fig. 2. The three incarnations of 5c-structures. (a) A 5c-wood W = (W1, . . . ,W5). (b)
The 5c-labeling L = Θ−1(W). (c) The 5c-orientation O = Φ(L).

2 Schnyder structures for triangulations of the pentagon

2.1 Definitions about triangulations

A plane map is a connected planar graph G with a fixed planar embedding.
The faces of G are the connected components of R2\G. The outer face is the
unique unbounded face, the other faces are called inner. An arc of G is an edge
with a choice of direction. We use the notation {u, v} for an edge connecting the
vertices u and v, and (u, v) for an arc oriented from u to v. The two arcs on an
edge are called opposite. A corner is a sector delimited by two consecutive edges
around a vertex. Corners, vertices, edges and arcs are called outer when they
are incident to the outer face, and inner otherwise.

A triangulation of the pentagon, or 5-triangulation for short, is a plane map
such that the inner faces have degree 3 and the outer face contour is a simple cycle



of length 5. The outer vertices of a 5-triangulation are denoted by v1, v2, . . . , v5
in clockwise order around the outer face; see Figure 2. A 5c-triangulation is a
5-triangulation such that every cycle with at least one vertex in its interior has
length at least 5. Note that 5c-triangulations have no loops nor multiple edges.
In the terminology of [3], 5c-triangulations are the 5-triangulations which are
quasi 5-adapted. It is easy to check that a 5-triangulation G is a 5c-triangulation
if and only if the graph G′ obtained from G by adding the edges {vi, vi+2} for
all i ∈ {1, 2, . . . , 5} is 5-connected (in particular 5-connected 5-triangulations are
5c-triangulations). Let us mention lastly that deleting a vertex of degree 5 from
a 5-connected planar triangulation (such a vertex necessarily exists, by the Euler
relation) yields a 5c-triangulation; hence the algorithm presented in Section 3 for
5c-triangulations gives a way to draw 5-connected planar triangulations (upon
seeing the deleted vertex as a vertex at infinity).

The primal-dual completion of a plane map G is the map G+ obtained by
inserting a vertex ve in the middle of each edge e, inserting a vertex vf in each
inner face f , and then connecting vf to all edge-vertices corresponding to the
edges incident to f . An example is shown in Figure 2(c). The vertices of G+

corresponding to faces (resp. edges) of G are called dual vertices (resp. edge-
vertices), while the original vertices of G are called primal vertices.

2.2 Three incarnations of Schnyder structures on 5-triangulations

In this section we present three different incarnations of Schnyder-type structures
on 5-triangulations and define bijections between them. The incarnations are
called 5c-woods, 5c-labelings and 5c-orientations respectively. The conditions
defining these structures are indicated in Figure 3. We start by discussing 5c-
orientations, an example of which is presented in Figure 2(c).

Definition 2.1 Given a 5-triangulation G, a 5c-orientation of G is an orien-
tation of the inner edges of the primal-dual completion G+ of G satisfying the
following conditions:

(O0) The outer primal vertices have outdegree 0.
(O1) The inner primal vertices have outdegree 5, the dual vertices have outde-

gree 2, and the edge-vertices (including the outer ones) have outdegree 1.

The definition of 5c-orientations is illustrated in the top row of Figure 3.
Next, we define 5c-labelings, an example of which is presented in Figure 2(b).

A corner labeling of a 5-triangulation G is an assignment of a label in [1 : 5] :=
{1, 2, 3, 4, 5} to each inner corner of G. For two corners c and c′ with labels i and
i′ respectively, we call label jump from c to c′ the integer δ ∈ {0, 1, 2, 3, 4} such
that i+ δ ≡ i′ (mod 5).

Definition 2.2 Given a 5-triangulation G, a 5c-labeling of G is a corner label-
ing of G satisfying the following conditions:

(L0) For all i ∈ [1 : 5], every inner corner incident to vi has label i.
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Fig. 3. Definition of 5c-structures. Top row: Conditions defining 5c-orientations. Middle
row: Conditions defining 5c-labelings. Bottom row: Conditions defining 5c-woods.

(L1) Around every inner vertex, the incident corners form 5 non-empty intervals
I1, I2, I3, I4, I5 in clockwise order, with all corners in Ii having label i .

(L2) Around every inner face, in clockwise order, there are two label jumps equal
to 2 and one label jump equal to 1.

Conditions (L0-L2) are illustrated in Figure 3 (middle row).
Next, we define a bijection Φ between 5c-labelings and 5c-orientations. The

mapping Φ is represented in Figure 4(a).

Definition 2.3 Given a 5c-labeling L of G, we define an orientation Φ(L) on
G+ as follows. First we note that there is a one-to-one correspondence between
the inner corners of G and the inner faces of G+, hence we interpret L as a
labeling of the inner faces of G+. Let e = {v, x} be an inner edge of G+, where
v is either a primal or dual vertex, and x is an edge-vertex.

– If v is a primal vertex, and f− and f+ are the faces incident to e in G+ in
clockwise order around v, then e is oriented toward v if and only if the label
jump from f− to f+ is 0 (i.e., f− and f+ have the same label).
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Fig. 4. Rules giving the bijections between 5c-orientations, 5c-labelings, and 5c-wood.
Vertices of G are represented by solid black dots, whereas dual vertices are represented
by squares, and edge-vertices are represented by crosses. (a) Local rule giving the
bijection Φ from 5c-labelings to 5c-orientations. (b) Local rule giving the bijection Θ
from 5c-labelings to 5c-woods.

– If v is a dual vertex, and f− and f+ are the faces incident to e in G+ in
clockwise order around v, then e is oriented toward v if and only if the label
jump from f− to f+ is 1.

Lemma 2.4 The map Φ is a bijection between the set LG of 5c-labelings on G
and the set OG of 5c-orientations on G.

The proof of Lemma 2.4 can be found in Appendix A.1.
The third incarnation is called 5c-woods, where the structure is encoded by

a tuple W = (W1, ...,W5) of directed trees. An example is given in Figure 2(a).
It is sometimes convenient to think of the tuple W = (W1, ...,W5) as a

coloring in [1 : 5] of the inner arcs of G. We say that an inner arc a of G has a
color i if this arc belongs to Wi. The precise definition of a 5c-wood is as follows.

Definition 2.5 Given a 5-triangulation G, a 5c-wood of G is a tuple W =
(W1, ...,W5) of disjoint subsets of inner arcs, satisfying the following conditions:

(W0) No arc inW starts at an outer vertex, and those ending at the outer vertex
vi have color i for all i ∈ [1 : 5].

(W1) Every inner vertex v has a unique outgoing arc of color i, for i ∈ [1 : 5],
and these arcs appear in clockwise order around v.

(W2) Let v be an inner vertex with incident outgoing arcs a1, ..., a5 of colors
1, ..., 5, respectively. Any arc a of color i having terminal vertex v appears
weakly between ai+2 and ai+3 in clockwise order around v ( weakly means
that a may be the arc opposite to ai+2 or ai+3).

(W3) Every inner edge has at least one color.

Conditions (W0-W3) are illustrated in the bottom row of Figure 3. We will
prove later (see Proposition 3.1) that for any 5c-wood W = (W1, . . . ,W5) the
set of arcs Wi is acyclic for all i. Given that every inner vertex has outdegree 1
in Wi, it follows that Wi is a tree spanning all the inner vertices and the outer



vertex vi, and oriented toward the root-vertex vi (that is, every arc in Wi is
oriented from child to parent when vi is taken as the root of the tree Wi).

Now we define a bijection Θ between 5c-labelings and 5c-woods. The mapping
Θ is represented in Figure 4(b).

Definition 2.6 Given a 5c-labeling L of G, we define a tuple Θ(L) = (W1, ...,W5)
of subsets of inner arcs of G (interpreted as a partial arc coloring) as follows:
an inner arc a = (u, v) receives color i if the labels of the corners on the left and
on the right of a (at u) are i + 2 and i + 3, respectively; the arc a has no color
if the two labels are equal.

Lemma 2.7 The map Θ is a bijection between the set LG of 5c-labelings on G
and the set WG of 5c-woods on G.

The proof of Lemma 2.7 can be found in Appendix A.2.

Remark 1. We can give a fourth incarnation of 5c-structures, as a representation
of the 5-triangulation by a contact system of “soft pentagons” as indicated in
Figure 5. Let G be a 5-triangulation. A soft pentagon contact representation
of G is a collection of interior-disjoint “soft pentagons” (the sides of which are
curves rather than straight-line segments) inside a regular “outer pentagon”,
with vertices of each pentagon labeled 1 to 5 in clockwise order such that
– the side [i + 2, i + 3] of the outer pentagon corresponds to the outer vertex
vi of G, for i ∈ [1 : 5],

– the soft pentagons correspond to the inner vertices of G,
– contacts between pentagons correspond to the inner edges of G,
– all the pentagon contacts occur between a soft pentagon vertex of label i ∈

[1 : 5] and either the side labeled [i+2, i+3] of another soft pentagon (vertex-
to-side contact), or the vertex i+2 or i+3 of another soft pentagon (vertex-
to-vertex contact), or the side labeled [i + 2, i + 3] of the outer pentagon
(outer contact, always vertex-to-side).

A soft pentagon contact representation is complete if every vertex of every soft
pentagon has a contact. It is easy to see that the 5c-woods of G are in bijec-
tion with its complete soft pentagon contact representations. This is illustrated
in Figure 5. This topological interpretation of 5c-woods allows us to compare
them to the five color forests introduced in [13]. For a 5-triangulation G these
structures correspond to general (potentially incomplete) soft pentagon contact
representations without vertex-to-vertex contact. In particular, one can easily
turn any 5c-wood into a five color forest, upon resolving each vertex-to-vertex
contact into a vertex-to-side contact. At the level of the 5c-wood (interpreted as
a collection of arcs colored in [1 : 5]), this amounts to deleting one colored arc
for each edge of G bearing 2 colored arcs. Note however that it is usually not
possible to turn a five color forest into a 5c-wood. Indeed, five color forests exist
for any simple 5-triangulation, while (as stated below) 5c-woods only exist for
5c-triangulations.
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Fig. 5. Left: A 5c-wood. Right: The corresponding (complete) soft pentagon contact
representation.

2.3 Existence and computation of Schnyder structures

We now state our main result on 5c-structures (where we include the already
obtained bijective statements).

Theorem 2.8 A 5-triangulation G admits a 5c-wood (resp. 5c-labeling, 5c-
orientation) if and only if G is a 5c-triangulation. In this case, the sets of
5c-woods, 5c-labelings and 5c-orientations of G are in bijection. Moreover, a 5c-
wood (resp. 5c-labeling, 5c-orientation) of a 5c-triangulation can be computed in
linear time in the number of vertices.

We have already stated in Section 2.2 that, for any 5-triangulation G, the
sets of 5c-woods, 5c-labelings and 5c-orientations of G are in bijection. Moreover,
it is clear that these bijections can be performed in linear time in the number of
vertices. It thus remains to show that a 5-triangulation admits a 5c-orientation
if and only if it is a 5c-triangulation, and that, in this case, a 5c-orientation can
be computed in time linear. We already proved this existence (and algorithmic)
result in [3] within the larger framework of quasi-Schnyder structures. Since
there are many layers to the proof given in [3], we sketch a more direct proof
(and construction algorithm) in Appendix A.3.

3 Graph drawing algorithm for 5c-triangulations

3.1 Paths and regions

In this section we explain how a 5c-wood gives rise to paths and regions associ-
ated to each vertex of a 5c-triangulation; see Figure 6(b).

Let G be an undirected graph. A biorientation of G is an arbitrary subset of
arcs of G (so that each edge of G is oriented in either 0, 1 or 2 directions). A
biorientation is acyclic if it contains no simple directed cycle, with the convention
that two opposite arcs (coming from the same edge oriented in 2 directions) do
not constitute a simple cycle. Suppose now that G is a 5c-triangulation, and let
W = (W1, . . . ,W5) be a 5c-wood. For i ∈ [1 : 5], we denote by W−i the set of
arcs obtained by reversing the arcs in Wi (that is, taking the opposite arcs).



Proposition 3.1 Let W = (W1, . . . ,W5) be a 5c-wood of G. For all i ∈ [1 : 5],
the biorientation Oi = Wi∪Wi−1∪Wi+1∪W−i−2∪W

−
i+2 is acyclic. Consequently,

for each pair j, k ∈ [1 : 5], the biorientation Wj ∪W−k is acyclic.

The proof of Proposition 3.1 can be found in Appendix A.4. An example is
shown in Figure 6(a).
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Fig. 6. (a) The biorientation O3 for the 5c-wood represented in Figure 2. (b) The paths
P1(v), . . . , P5(v) and the region R1(v) for the 5c-wood in Figure 2.

As mentioned in Section 2, Proposition 3.1 implies that in any 5c-woodW =
(W1, . . . ,W5) of G, each set Wi is a tree directed toward the outer vertex vi.
For an inner vertex v of G, we denote by Pi(v) the directed path from v to vi
in Wi. These paths are indicated in Figure 6(b). Proposition 3.1 implies that
the paths P1(v), . . . , P5(v) have no vertex in common except v (since if Pj(v)
and Pk(v) had a vertex in common, the biorientation Wj ∪W−k would contain
a directed cycle). We denote by Ri(v) the region enclosed by the simple cycle
made of the outer edge (vi+2, vi−2) together with the paths Pi−2(v) and Pi+2(v).
See Figure 6(b) for an example.

3.2 Graph drawing algorithm

For convenience, we extend the definition of Ri(v) for v an outer vertex by
declaring Ri(vi) = G for all i ∈ [1 : 5], and Ri(vj) = {vj} for all j 6= i. For a
vertex v of G and for i ∈ [1 : 5], the size of Ri(v), denoted by |Ri(v)|, is the
number of inner faces inRi(v). Letting n be the number of vertices ofG, the Euler
relation implies that G has 2n−7 inner faces. Let αi(v) := |Ri(v)|/(2n−7). Since

the inner faces of G are partitioned among the 5 regions, we have
∑5
i=1 αi(v) = 1.

The 5c-barycentric drawing algorithm then consists of the following steps:

1. Draw a regular pentagon (v1, v2, v3, v4, v5) (in clockwise order).

2. Place each vertex v at the barycenter
∑5
i=1 αi(v)vi.

3. Draw each edge of G as a segment connecting the corresponding points.



An output of this algorithm is represented in Figure 7. In all our drawings,
the outer pentagon is drawn with the edge {v1, v5} as an horizontal bottom
segment.

(a) (b)

v1

v2

v3

v4

v5

Fig. 7. (a) A 5c-wood W = (W1, . . . ,W5) of a 5c-triangulation (the sets of arcs in
W1, . . . ,W5 are represented by arrows of 5 different colors). (b) The drawing of G
obtained by applying the 5c-barycentric drawing algorithm with W as input.

Theorem 3.2 For each 5c-triangulation G with n vertices, the 5c-barycentric
drawing algorithm yields a planar straight-line drawing of G, which can be com-
puted in O(n) operations.

Remark 2. Compared to Schnyder’s algorithm [25] and to Tutte’s spring embed-
ding [27], it is important here that the 5 outer vertices are placed so as to form
a regular pentagon, and we use this property in our proof of planarity.

We will prove the planarity of the 5c-barycentric drawing in the next section.
The time-complexity analysis can be found in Appendix A.5.

3.3 Proof of planarity

The proof of planarity in Theorem 3.2 crucially relies on a property (illustrated
in the right drawing of Figure 9 and to be established in Lemma 3.4) stating that
the directions of the arcs of each color from an inner vertex are constrained to
be in certain cones. As a first step we show the following “half-plane property”,
illustrated in Figure 8.

Lemma 3.3 Let G be a 5c-triangulation endowed with a 5c-wood. In the asso-

ciated 5c-barycentric drawing, for i ∈ [1 : 5], let
−→
Vi be the vector connecting the

center of the outer pentagon (i.e. the center of the circle circumscribed to that
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Fig. 8. Left: Situation for two vertices u 6= v such that u ∈ Ri(v), where the interior
of Ri(v) is shown in yellow, and the interior of Ri−2,i+2(v) is shown in blue. Right: In
the 5c-barycentric drawing, u is in the half-plane “below” v upon rotating the drawing

such that
−→
Vi points upward.

pentagon) to the outer vertex vi. Then, for any vertices u 6= v of G such that

u ∈ Ri(v), we have
−→
Vi · −→vu < 0, where −→vu is the vector connecting v to u in the

5c-barycentric drawing.

Proof. For each vertex w and each subset S of [1 : 5], we use the extended
notation RS(w) = ∪i∈SRi(w), and αS(w) =

∑
i∈S αi(w). We then observe the

following containment relations (see Figure 8):

Ri(v) ⊃ Ri(u), Ri−2,i+2(v) ⊂ Ri−2,i+2(u).

The second relation is due to the fact (which follows from Condition (W2) of 5c-
woods) that, whenever Pi−1(u) (resp. Pi+1(u)) leaves the region Ri(v), it occurs
just after visiting a vertex on Pi−2(v) (resp. on Pi+2(v)).

Defining z− < z < z+ as

z− =
−→
Vi ·
−−→
Vi−2 =

−→
Vi ·
−−→
Vi+2, z =

−→
Vi ·
−−→
Vi−1 =

−→
Vi ·
−−→
Vi+1, z+ =

−→
Vi ·
−→
Vi ,

and letting r = αi−2,i+2(u) − αi−2,i+2(v), s = αi−1,i+1(u) − αi−1,i+1(v), and
t = αi(u)− αi(v), we then have

−→vu ·
−→
Vi =

5∑
k=1

(αk(u)− αk(v))
−→
Vk ·
−→
Vi

= r z− + s z + t z+

= r z− + (−r − t)z + t z+ = r (z− − z) + t (z+ − z),

where from the 2nd to 3rd line we use the identity r + s + t = 1 − 1 = 0. The

above containment relations ensure that t < 0 and r > 0, so that −→vu ·
−→
Vi < 0. ut

Lemma 3.4 Let G be a 5c-triangulation endowed with a 5c-wood. For v an
inner vertex of G, and for i ∈ [1 : 5], let u be the terminal vertex of the arc of



color i from v. Then, in the 5c-barycentric drawing of G, the angle between the

vector
−→
Vi (defined as in Lemma 3.3) and the vector −→vu is in the open interval

(− 3π
10 ,

3π
10 ) (see Figure 9 right).

Proof. Clearly u ∈ Pi(v) = Ri−2(v) ∩ Ri+2(v). Hence, by Lemma 3.3 we have
−→vu ·
−−→
Vi−2 < 0 and −→vu ·

−−→
Vi+2 < 0, which is equivalent to the stated property. ut

Remark 3. Lemmas 3.3 and 3.4 are the analogues of well-known properties of
Schnyder drawings for simple triangulations, where (− 3π

10 ,
3π
10 ) is to be replaced by

(−π6 ,
π
6 ) in Lemma 3.4. A difference here is that the property as stated does not

immediately guarantee that the outgoing edges of an inner vertex are in clockwise
order in the drawing, since the cones for adjacent colors overlap. However, as
we now show, the property is actually enough to ensure planarity, and thus the
cyclic ordering of edges around a vertex is preserved in the drawing.
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Fig. 9. Left: Possible cases for the colors of arcs around an inner face with corner labels
1, 3, 5. Right: Conditions of Lemma 3.4 (a sector Si can only have the arc of color i
from the shown vertex, a sector Si,j can only have the arcs of colors in {i, j}).

To show that the drawing is planar, by a known topological argument (see
e.g. [9, Lem.4.4]), it suffices to show that each inner face is properly represented,
that is, represented as a non-degenerated triangle that is not flipped (indeed,
this condition ensures that the function mapping a point p inside the enclosing
pentagon to the number n(p) of triangles covering it is locally constant, hence has
to be equal to 1 everywhere). In other words, if the corner labels are i, i+2, i+3
in clockwise order around an inner face, we have to show that these corners are
seen in the same cyclic order in the triangle representing the face. It is clear
that the 5 inner faces incident to the 5 outer edges are properly represented,
so we can focus on inner faces incident to 3 inner edges. Let us treat the case
i = 3 (the other cases can be treated symmetrically), where the vertices at
the corners 3, 5, 1 are respectively denoted u, v, w. Given the conditions defining



corner-labelings, and the bijection between 5c-woods and 5c-labelings, it is easy
to check that the following holds (see Figure 9 left):

– The arc (v, w) has color 2, and the arc (w, v) has color 4.
– The arc (v, u) has color 3 if colored, the arc (u, v) has color 5 if colored, and

at least one of these two arcs is colored.
– The arc (w, u) has color 3 if colored, the arc (u,w) has color 1 if colored,

and at least one of these two arcs is colored.

By Lemma 3.4, and using the notation of Figure 9 right, the arc (v, w) is
in sector S2 ∪ S1,2 from v, and the arc (w, v) is in sector S4 ∪ S4,5 from w (the
fact that {v, w} is a straight segment in the drawing excludes sectors S2,3 and
S3,4 respectively). If the arc (v, u) is colored (with color 3), then it is in sector
S2,3 ∪ S3 ∪ S3,4 from v, hence the directed angle from (v, u) to (v, w) around v
is in the open interval (0, π), so that the face (u, v, w) is properly represented.
Similarly, if the arc (w, u) is colored (with color 3), then the directed angle from
(w, v) to (w, u) around w is in the open interval (0, π), so that the face (u, v, w) is
properly represented. Finally, if none of the arcs (v, u) or (w, u) is colored, then
the arc (u,w) has color 1, and the arc (u, v) has color 5. Assume for contradiction
that the face (u, v, w) is not properly represented. Then the directed angle from
(u,w) to (u, v) around u is not in the open interval (0, π). Given Lemma 3.4,
these two arcs have to be in S5,1 from u, that is, the arc (w, u) is in S3 from
w and the arc (v, u) is in S3 from v. But then, the angle from (w, v) to (w, u)
around w is in the open interval (π/5, 4π/5), so that the face (u, v, w) is properly
represented. This concludes the proof of planarity in Theorem 3.2.

3.4 Variations and other properties

We discuss here some variants (weighted faces, vertex-counting) and aesthetic
properties of the drawing, and end with some open questions.

Variants of the embedding algorithm. As in the case of Schnyder’s algo-
rithm [14], one can give a weighted version of the 5c-barycentric drawing algo-
rithm. In this version, each inner face is assigned a positive weight, and αi(v) is
the total weight of inner faces in Ri(v), divided by the total weight of inner faces.
The proof of Lemma 3.4 and the proof of planarity extend verbatim. Moreover, as
in [25, Sec.7], a vertex-counting variant can also be given, upon changing |Ri(v)|
to be the number of vertices in Ri(v)\Pi−2(v), and using αi(v) = |Ri(v)|/(n−1),
with n the number of vertices of G. The relevant inequalities to prove Lemma 3.3
become, for u 6= v such that u ∈ Ri(v),

|Ri(v)| ≥ |Ri(u)|, |Ri−2,i+2(v)| < |Ri−2,i+2(u)|.

(Note that, even if Ri(v) ⊃ Ri(u), here we may have |Ri(v)| = |Ri(u)| when u, v
are part of a triangular face (v, u, w) such that u is the end of the arc of color
i− 2 and w is the end of the arc of color i+ 2 from v.) Hence, Lemma 3.4 still
holds, which as before implies planarity.



Symmetries. Compared to Tutte’s spring embedding [27] (and similarly as
for Schnyder’s drawing), the drawing algorithm (either in its face-counting or
vertex-counting version) can display rotational symmetries, but not mirror sym-
metries. Precisely, there is a canonical 5c-wood corresponding to the minimal
5c-orientation, that is, the unique 5c-orientation with no counterclockwise di-
rected cycle. If G is invariant by a rotation of order 5, then so is the minimal
5c-orientation, and so is the corresponding 5c-wood under a shift of the arc col-
ors (and indices of the outer vertices) by 1. Thus, the drawing obtained using
this canonical 5c-wood displays the rotational symmetry.
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Fig. 10. The configuration (up to rotation and mirror) of vertex-pairs (u, v) of smallest
possible distance in Schnyder’s drawing (left) and in our drawing (right).

Quality of the drawing. Besides the fact that the family of triangulations is
more restricted, an obvious disadvantage of our algorithm compared to Schny-
der’s one (and also to straight-line drawings using transversal structures [15],
or using shelling orders [8,7,18,22,21]) is that we can not use an affine trans-
formation to turn the drawing into one on a regular square-grid of linear width
and height3. Let us however discuss a parameter (vertex resolution) for which
our algorithm brings some improvement. For n ≥ 1, we let µ3(n) (resp. µ5(n))
denote the smallest possible distance between vertices over Schnyder’s drawings
on simple triangulations with n vertices (resp. over our 5c-barycentric drawings
on 5-connected triangulations with n vertices), assuming the drawing is normal-
ized to have circumscribed circle of radius 1. Below we use complex numbers to
represent points in the plane. Let ω3 = e2iπ/3 (resp. ω5 = e2iπ/5). For a vector
δ = (δ1, δ2, δ3) ∈ Z3 (resp. δ = (δ1, δ2, δ3, δ4, δ5) ∈ Z5) whose components add up
to 0, we define the modulus ||δ|| of δ as the modulus |z| of the complex number

z =
∑3
i=1 δiω

i
3 (resp. z =

∑5
i=1 δiω

i
5). The vector δ is called possible if there

3 If we use an affine transformation to have v1, v2 and v5 placed at (0, 0), (0, 1) and
(1, 0) respectively, then we get a drawing with vertex-coordinates in Q(

√
5).



is a vertex pair (u, v) in a Schnyder’s drawing (resp. in our drawing) such that
the number of faces in Ri(u) minus the number of faces in Ri(v) equals δi for
i ∈ {1, 2, 3} (resp. for i ∈ [1 : 5]), in which case the distance between u and v in
the drawing is ||δ||/(2n− 5) (resp. is ||δ||/(2n− 9)).

As shown in Figure 10 (and following an easy case inspection), the pos-
sible δ of smallest modulus (up to dihedral permutation of the entries) for
Schnyder’s drawing is (−1, 2,−1), of modulus d3 = 3, and for our drawing is
(−2,−1, 3, 1,−1), of modulus d5 ≈ 5.97. Thus (for n large enough) we have
µ3(n) = d3

2n−5 , and µ5(n) = d5
2n−9 . Hence, the vertices are better kept away from

each other in our drawing, the worst-case distance being increased by a factor
d5/d3 ≈ 1.99 (to have a comparison over the same objects, we note that µ3(n)
is also attained by drawings of 5-connected triangulations with n vertices, for n
large enough).

In the vertex-counting variant, the possible δ of smallest modulus (up to
cyclic permutation of the entries) in Schnyder’s algorithm is now (0, 1,−1), of
modulus d′3 =

√
3 ≈ 1.73, and in our drawing is (−1,−1, 1, 1, 0), of modulus

d′5 ≈ 3.08 (these are again attained by the patterns shown in Figure 10). Then we

have (for n large enough) µ3(n) =
d′3
n−1 and µ5(n) =

d′5
n−2 , so that the worst-case

distance is increased by a factor d′5/d
′
3 ≈ 1.78 (in both algorithms the vertex-

counting variant brings a slight improvement over the face-counting version).

Open questions: We conclude with some open questions:

Question 1. Can 5c-woods, and the 5c-barycentric algorithm, be generalized to
5-connected plane graphs in the spirit of the extension of Schnyder woods,
and drawing algorithm, to 3-connected planar graphs [6,10,11,20]?

Question 2. Can 5c-woods be used to define a graph drawing algorithm for the
dual of 5c-triangulations (possibly with bent edges but restrictions on the
directions of the edge segments). Such algorithms are known for the dual of
triangulations [12,20], the dual of irreducible triangulations of the 4-gon [17],
and the dual of quadrangulations [1,4,26].

Question 3. Is there a shelling procedure on 5c-triangulations to output a 5c-
wood (perhaps by adapting the 5-canonical decomposition introduced in [23])?

Question 4. Can 5c-orientations be used (e.g. using the framework of [2]) to
have a bijective derivation of the generating function of 5-connected trian-
gulations, expressed in [16]?

Question 5. Is there a nice counting formula for the total number of 5c-woods on
5c-triangulations with n inner vertices? (For Schnyder woods such a formula

is 6(2n)!(2n+2)!
n!(n+1)!(n+2)!(n+3)! [5].)
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A Appendix

In this appendix we prove Lemmas 2.4, 2.7, and Proposition 3.1. We also com-
plete the proof of Theorem 2.8 by describing a linear time algorithm for con-
structing 5c-structures. Lastly, we prove that the complexity of the drawing
algorithm is linear in the number of vertices.

A.1 Proof of Lemma 2.4

We start by proving an additional property of 5c-labelings.

Lemma A.1 Let L be a 5c-labeling of a 5-triangulation G. For any inner edge
e, the sum of label jumps between consecutive corners in counterclockwise order
around e is equal to 5. This is represented in Figure 11.

Proof. Note that for any inner vertex or any inner face x, the sum cw-jump(x)
of label jumps between consecutive corners in clockwise order around x is equal
to 5. For an inner edge e we denote by ccw-jump(e) the sum of label jumps
between consecutive corners in counterclockwise order around e.

Observe that a clockwise label jump around an inner vertex or an inner face
is either a counterclockwise label jump around an inner edge, or a label jump
along an outer edge (and there are exactly 5 such jumps, each with value 1).

Hence,
∑
f∈F

cw-jump(f) +
∑
v∈V

cw-jump(v) = 5 +
∑
e∈E

ccw-jump(e), where V,E, F

are the sets of inner vertices, inner faces and inner edges, respectively. The left-
hand side is equal to 5(|V |+ |F |), which in turn is equal to 5 + 5|E| by the Euler
relation. Since ccw-jump(e) must be a nonzero (by Condition (L2)) multiple of
5, it has to be exactly 5, for all e ∈ E. ut

i

j k

l
δ

ε

δ′

ε′

δ + ε+ δ′ + ε′ = 5

Fig. 11. Counterclockwise label jumps around an edge.

Now we prove Lemma 2.4. Let L ∈ LG. We first show that Φ(L) is a 5c-
orientation. Condition (O0) is a direct consequence of Condition (L0). Every
inner primal vertex has outdegree 5 by Condition (L1), and every dual vertex has
outdegree 2 by Condition (L2). Also, Lemma A.1 implies that every edge-vertex
has outdegree 1. Hence, Condition (O1) holds, and Φ(L) is a 5c-orientation.

We now describe the inverse map. Let O be a 5c-orientation. The orientations
of edges inO dictate the label jumps between consecutive corners around vertices



and faces. One can then follow these label jumps in order to propagate labels,
starting from corners at the outer vertices (which are fixed by Condition (L0))
inward to all corners. If no conflict arises in this propagation (so that all the
dictated label jumps are satisfied), then one obtains a labeling of corners L,
which we denote by Φ(O). We prove below that, for any 5c-orientation O, no
conflict occurs during the propagation of labels, and that Φ(O) is a 5c-labeling.

Consider the corner graph CG of G defined as follows: CG is a directed graph
whose vertices are the inner corners of G, and there is an oriented edge from a
corner c to a corner c′ in CG if c′ is the corner following c in clockwise order
around a face or a vertex. A corner graph is represented in Figure 12. CG is
naturally endowed with an embedding which is induced by the embedding of G
(in fact CG is obtained from the dual of G+ by deleting a vertex). In particular,
CG has three types of inner faces, corresponding to inner vertices, inner edges
and inner faces of G respectively.

We define the O-weight w(a) of an arc a = (c, c′) of CG to be the label jump
from c to c′ determined by O according to the rules given by Figure 4(a). The
O-weight w(P ) of a directed path P of CG is the sum of the O-weight of the arcs
of P . Note that the propagation rule causes no conflicts if and only if for any
two (not necessarily consecutive) corners c and c′ and any two directed paths
P1, P2 in CG from c to c′, we have w(P1) ≡ w(P2) (mod 5). To show the later
property it suffices to show that for any simple cycle C in CG, we have∑

a∈C+

w(a)−
∑
a∈C−

w(a) ≡ 0 (mod 5),

where C+ and C− are the sets of arcs appearing clockwise and counterclockwise
on C, respectively. It is easy to see that this holds if and only if the O-weight
of the contour of each inner face in CG is congruent to 0 modulo 5. This last
condition is implied by Condition (O1) of 5c-orientations. Hence the corner la-
beling L = Φ(O) is well-defined. Moreover L is indeed a 5c-labeling because
Condition (L0) is satisfied by definition, and Conditions (L1) and (L2) are easy
consequences of Condition (O1).

Finally, it is easy to see that Φ and Φ are inverse to each other, hence they
give bijections between 5c-labelings and 5c-orientations of G. This completes the
proof of Lemma 2.4.

A.2 Proof of Lemma 2.7

Let L be a 5c-labeling of G. We first show that Θ(L) is a 5c-wood. By (L0),
the arcs that start at outer vertices receive no color. Moreover, Conditions (L1)
and (L2) and Lemma A.1 imply that for any inner edge e = {u, v} with labels i
on each side at v, the labels at u must be i+ 2 on the left and i+ 3 on the right,
so that the arc (u, v) receives label i. This implies that the inner arcs ending at
vi receive color i by Θ. Hence Θ(L) satisfies (W0).

It is clear that (W1) is a direct consequence of (L1). To verify (W2), consider
an inner arc a = (u, v) of color i ∈ [1 : 5], with v an inner vertex. Let i+2, i+3, j, k



G CG

Fig. 12. A 5-triangulation G and its corner graph CG.

be the labels in counterclockwise order around a, starting with those two incident
to u. By (L2), j ∈ {i − 1, i} and k ∈ {i, i + 1}. Therefore the opposite arc −a
has either no color while being between the arcs of colors i+ 2 and i+ 3 starting
from v, or it has color i+ 2, or color i+ 3, which proves that the arc a satisfies
(W2).

Lastly, for any inner edge e = {u, v}, Lemma A.1 and Conditions (L1) and
(L2) easily imply that either 1 or 2 arcs of e receive a color (depending on having
one or two label jumps equal to 2 along e, giving respectively two or one label
jumps equal to 1 across e). Therefore Θ(L) satisfies (W3) and is a 5c-wood.

To prove that Θ is a bijection, we now describe the inverse map. Given a
5c-wood W on G, we define a corner labeling Θ(W) as follows:

– the inner corners incident to the outer vertex vi receive label i;

– a corner incident to an inner vertex v receives label i if it is between the
outgoing arcs of colors i+ 2 and i+ 3 in clockwise order around v.

We need to show that Θ(W) is indeed a 5c-labeling. Conditions (L0) and (L1)
are clearly satisfied. Next we check that any label jump in clockwise direction
around a face is equal to 1 or 2. Let e = {u, v} be an inner edge of G. By (W3),
one of its two arcs has some color i, say the one starting at u. Let i+2, i+3, j, k be
the labels of the corners in counterclockwise order around e, starting with those
two incident to u. Then (W2) implies that (j, k) ∈ {(i− 1, i), (i, i), (i, i+ 1)}. In
all cases, the label jumps from i+ 3 to j and from k to i+ 2 are both in {1, 2}.
Since the sum of label jumps in clockwise direction around a face is a multiple
of 5, and each jump is in {1, 2}, the only possibility is that one label jump is
equal to 1 and two label jumps are equal to 2. This shows that Θ(W) satisfies
(L2), hence is a 5c-wood.

Finally, it is clear that the mappings Θ and Θ are inverse of each other,
hence they give bijections between the sets of 5c-labelings and 5c-woods of G.
This completes the proof of Lemma 2.7.



A.3 Proof of Theorem 2.8 and construction algorithm

In this subsection we complete the proof of Theorem 2.8. Let us first show that a
5-triangulation G admitting a 5c-orientation is necessarily a 5c-triangulation. If
G admits a 5c-orientation, it also admits a 5c-wood W = (W1, . . . ,W5). For an
inner vertex v of G, we consider the paths Pi(v) in Wi from v to vi, for i ∈ [1 : 5].
As we have seen in Section 3.1 (up to the forthcoming proof of Proposition 3.1),
the paths P1(v), . . . , P5(v) have no vertex in common except v. Hence v cannot
be in the interior of a simple cycle of length less than 5. This proves that G is a
5c-triangulation.

In the rest of this section, we describe a linear time algorithm for computing
a 5c-orientation of a 5c-triangulation G. The process is illustrated in Figure 13, it
uses some facts about regular edge labelings, which are combinatorial structures
for triangulations of the 4-gon first defined by He in [17], and rediscovered in
[15] under the name of transversal structures. We will rely on an incarnation
of these structures as certain outdegree-constrained orientations. Let H be a
triangulation of the 4-gon, and let H� be the map obtained by placing a face-
vertex in each inner face of H and joining it to the three vertices incident to this
face (and then erasing the original edges of H).

A regular orientation of H is an orientation of H� such that every face-vertex
of H� has outdegree 1 and every original inner vertex of H has outdegree 4; an
example is shown in Figure 13(b). It follows from [17,15] that a triangulation of
the 4-gon H admits a regular orientation if and only if H has no cycle of length
less than 4 containing a vertex in its interior (equivalently, it has no loop nor
multiple edges, and every 3-cycle is the boundary of a face). Moreover, such an
orientation can be computed in linear time [19] (an independent proof is given
in [3]).

Let G be a 5c-triangulation. Let H be the triangulation of the 4-gon obtained
from G by placing a new vertex v0 in the outer face of G and joining v0 to v1,
v2, v3 and v4. Since G is a 5c-triangulation, H has no cycle of length less than 4
containing a vertex in its interior. Hence, as recalled above, H admits a regular
orientationA, which can be computed in linear time. The situation is represented
in Figure 13(a-b). Let G� be the subgraph of H� obtained by deleting the vertices
and edges of H� in the outer face of G. Consider the restriction A′ of A to G�.
Let bi be the face-vertex of G� in the inner face of G incident to the outer edge
{vi, vi+1} for i ∈ [1 : 5]. By definition, the face-vertex bi has outdegree 1 in A′,
and we can reorient one of the edges {bi, vi} or {bi, vi+1} to obtain an orientation
B of G� such that
– for all i ∈ [1 : 5], the face-vertex bi has outdegree 2,
– the face-vertices of G� distinct from b1, . . . , b5 have outdegree 1,
– the original inner vertices of G have outdegree 4.

The orientation B of G� is represented in Figure 13(c).
It is easy to check (using the Euler relation), that in B there is a unique

oriented edge e∗ of G� whose initial vertex is an outer vertex of G. Let v∗ be the
initial vertex of e∗. One can show that the orientation B is accessible from v∗,
that is, for every vertex of v of G� there is a directed path from v∗ to v in B.
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Fig. 13. Construction of a 5c-orientation for a 5c-triangulation. (a) A 5c-triangulation
G. (b) The triangulation of the 4-gon H (obtained from G by placing a vertex v0 in the
outer face of G), and the regular orientation A of H�. (c) The orientation B of G�. (d)
The spanning tree T (indicated by bold lines) oriented from the root vertex v∗ to the
leaves, and the bijection ϕ between the set S of inner faces of G� and set T of edges
not in T : for each edge e in T , the corresponding face ϕ(e) is indicated by a shaded
triangle inside of ϕ(e) and incident to e. (e) The rule (inside each inner face s of G�)
for computing the orientation O of the primal-dual completion G+. (f) The resulting
5c-orientation O of G+.

We leave the proof of this accessibility property to the reader, and only mention
that it relies on the fact that G has no cycle of length less than 5 containing a
vertex in its interior. Since B is accessible from v∗, there exists a spanning tree
T of G� rooted at v∗ and such that every edge of T is oriented from parent to
children in B. The spanning tree T is represented in Figure 13(d).

Next we use B and T to define an orientation O of the primal-dual completion
G+ of G. Let S be the set of inner faces of G�. By definition, S is in bijection
with the inner edges of G, and the primal-dual completion G+ of G is obtained
by:

– adding an edge-vertex xs in each inner face s ∈ S and joining it to the 4
incident vertices of G�,

– adding an edge-vertex xi for all i ∈ [1 : 5] and joining it to vi, vi+1 and bi.

Let T be the set of edges of G� not in T . It is classical (for any spanning
tree T of a plane graph) that T is in bijection with the set S of inner face of



G�, where the bijection ϕ associates to an edge e ∈ T the face ϕ(e) ∈ S incident
to e and enclosed by the unique cycle in T ∪ {e}. The bijection ϕ is indicated
in Figure 13(d). For s ∈ S we denote by ts the terminal vertex of the edge
e ∈ T such that ϕ(e) = s. We now orient G+ by the following rule illustrated in
Figure 13(e):
– for each face s ∈ S, the edge (xs, ts) is oriented toward ts, while the 3 other

edges incident to xs are oriented toward xs,
– for each i ∈ [1 : 5], the edge (xi, bi) is oriented toward bi.

The resulting orientation O of G+ is indicated in Figure 13(f). One can
check that O is a 5c-orientation of G: each edge-vertex has outdegree 1, each
face-vertex has outdegree 2, and each inner original vertex has outdegree 5 (we
leave the proof to the reader). Moreover, the operations required to go from the
regular orientation A to the 5c-orientation O can clearly be performed in linear
time. This concludes the proof of Theorem 2.8.

A.4 Proof of Proposition 3.1

Suppose for contradiction that Oi has a simple directed cycle. We put a partial
order ≺ on the set of simple directed cycles of Oi, by declaring C ≺ C ′ if the
region enclosed by C is contained in the region enclosed by C ′. Let C be a
directed cycle of Oi which is minimal for this partial order.

Suppose first that there is a vertex v0 in the region enclosed by C. For
j ∈ [1 : 5], let Pj be the directed path starting at v0 and made of the arcs in Wj .
This directed path Pj either ends at the outer vertex vj or contains a directed
cycle, but in either case it does not stay within the region enclosed by C (by
minimality of C). Hence Pj contains a directed path P ′j from v0 to a vertex of
C. Hence Oi contains a directed path (going through v0) from a vertex of C to a
vertex of C: for instance, take the opposite of the path P ′i−2 concatenated with
the path P ′i . This contradicts the minimality of C, hence there is no vertex in
the region enclosed by C.

Thus, still by minimality of C, there cannot be any edge enclosed by C (since
every inner edge is oriented at least 1 way in Oi). Hence C must be the contour
of an inner face f of G. If C is a clockwise cycle, it is easy to see that the corners
of f are labeled either i− 1 or i− 2 in the 5c-labeling Θ(W) (because the corner
at a vertex v of f must be incident to the arc of Wi+1 with initial vertex v).
But this is impossible since the 3 corners of f must have distinct labels in the
5c-labeling Θ(W). Similarly, if C is a counterclockwise cycle, then the corners
of f are all labeled either i+ 1 or i+ 2 in Θ(W), which is impossible.

This completes the proof that Oi is acyclic. The second statement in Propo-
sition 3.1 follows immediately, which completes the proof.

A.5 Time complexity

In this subsection we explain how the 5c-barycentric drawing algorithm can be
performed in a number of operations which is linear in the number of vertices.
The proof follows the same line as for Schnyder’s classical algorithm.



First recall from Theorem 2.8 that for a 5c-triangulation G with n vertices,
a 5c-wood W = (W1, . . . ,W5) can be computed in O(n) operations. As we now
explain, the regions’ sizes |Ri(v)| for all inner vertices v and i ∈ [1 : 5] can also
be computed in O(n) operations, hence the total time-complexity of the drawing
algorithm is O(n).

The computation below is based on the following observation: for an inner
vertex v, the vertices strictly inside the region Ri(v) are all the descendants in
the tree Wi of the inner vertices on the paths Pi−2(v) and Pi+2(v) (excluding
the vertices on the paths Pi−2(v) and Pi+2(v)). Let V be the set of inner vertices
of G. For v ∈ V and i ∈ [1 : 5], let Ni(v) be the number of descendants of v
in Wi (with v not considered a descendant of itself). The list {Ni(v), v ∈ V }
can be computed in O(n) operations proceeding from leaves to root, that is,
starting from the set L of leaves of Wi, then the set of leaves of Wi\L, etc. For
j ∈ {i − 2, i + 2}, we let N j

i (v) be Ni(w) + 1 if v has a child w in Wi such
that the arc (v, w) has color j (such a child is necessarily unique by Condition
(W2) of 5c-woods), and be 0 otherwise. Clearly the list {N j

i (v), v ∈ V } can be
computed in O(n) operations. Once all these lists are computed, for i ∈ [1 : 5]
and v ∈ V , and with the notation P ′k(v) = Pk(v)\{v, vk}, we let N left

i (v) =∑
u∈P ′i−2(v)

(Ni(u) − N i−2
i (u)), and N right

i (v) =
∑
u∈P ′i+2(v)

(Ni(u) − N i+2
i (u)).

The list {N left
i (v), v ∈ V } (resp. {N right

i (v), v ∈ V }) can again be computed in
O(n) operations, here proceeding from root to leaves in Wi−2 (resp. in Wi+2).
Then, for v ∈ V , the above observation implies that the number ni(v) of vertices
strictly inside Ri(v) is

ni(v) =
(
Ni(v)−N i−2

i (v)−N i+2
i (v)

)
+N left

i (v) +N right
i (v).

One can also compute the list {length(Pi(v)), v ∈ V } in O(n) operations
(proceeding from root to leaves in Wi). By the Euler relation the number of
faces |Ri(v)| is 2ni(v) + length(Pi−2(v)) + length(Pi+2(v)) − 1. Hence the list
{|Ri(v)|, v ∈ V } can be computed in O(n) operations, as claimed.
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