View-based query processing

Nadime Francis

Université Paris-Est Marne-la-Vallée
nadime.francis@u-pem.fr

EPIT 2019
Thursday, April, 11th

Introduction

View-based query processing

 General setting

View-based query processing

View-based query processing

 General setting

View-based query processing

Scenario : query optimization and caching

View-based query processing

View-based query procesing

Scenario : virtual data integration

Source databases
Virtual database

Views

View definition, view image, view instance

Let σ and τ be two database schemas.
■ View definition (or simply view): A view definition \mathbf{V} from σ to τ is a set of queries over σ indexed by τ :

$$
\mathbf{V}=\left\{Q_{b} \mid b \in \tau\right\}
$$

such that:

$$
\forall b \in \tau, \quad \operatorname{arity}(b)=\operatorname{arity}\left(Q_{b}\right)
$$

■ View instance: A view instance E is a database over τ.

■ View image: Given a database D over σ and a view \mathbf{V} from σ to τ, the view image of $D, \mathbf{V}(D)$, is a view instance such that:

$$
\forall b \in \tau, \bar{x} \in D, \quad \bar{x} \in b(\mathbf{V}(D)) \Leftrightarrow \bar{x} \in Q_{b}(D)
$$

Example: view definition, view image, view instance

$$
\sigma=\{b, f, w\}
$$

Database D over σ

Example: view definition, view image, view instance

$$
\sigma=\{b, f, w\}
$$

$$
\tau=\{g, s\}
$$

Database D over σ

Example: view definition, view image, view instance

$$
\sigma=\{b, f, w\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{g}(x, y)=x \xrightarrow{w} z \xrightarrow{f} z^{\prime} \xrightarrow{f} y \\
Q_{s}(x, y)=x \stackrel{f}{\leftarrow} z \xrightarrow{f} y \wedge x \neq y
\end{array}\right\} \quad \tau=\{g, s\}
$$

Database D over σ

Example: view definition, view image, view instance

$$
\sigma=\{b, f, w\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{g}(x, y)=x \xrightarrow{w} z \xrightarrow{f} z^{\prime} \xrightarrow{f} y \\
Q_{s}(x, y)=x \stackrel{f}{\leftarrow} z \xrightarrow{f} y \wedge x \neq y
\end{array}\right\} \quad \tau=\{g, s\}
$$

Database D over σ

Example: view definition, view image, view instance

$$
\sigma=\{b, f, w\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{g}(x, y)=x \xrightarrow{w} z \xrightarrow{f} z^{\prime} \xrightarrow{f} y \\
Q_{s}(x, y)=x \stackrel{f}{\leftarrow} z \xrightarrow{f} y \wedge x \neq y
\end{array}\right\} \quad \tau=\{g, s\}
$$

Database D over σ

Example: view definition, view image, view instance

$$
\sigma=\{b, f, w\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{g}(x, y)=x \xrightarrow{w} z \xrightarrow{f} z^{\prime} \xrightarrow{f} y \\
Q_{s}(x, y)=x \stackrel{f}{\leftarrow} z \xrightarrow{f} y \wedge x \neq y
\end{array}\right\} \quad \tau=\{g, s\}
$$

Database D over σ

Example: view definition, view image, view instance

$$
\sigma=\{b, f, w\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{g}(x, y)=x \xrightarrow{w} z \xrightarrow{f} z^{\prime} \xrightarrow{f} y \\
Q_{s}(x, y)=x \stackrel{f}{\leftarrow} z \xrightarrow{f} y \wedge x \neq y
\end{array}\right\} \quad \tau=\{g, s\}
$$

Database D over σ

Example: view definition, view image, view instance

$$
\sigma=\{b, f, w\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{g}(x, y)=x \xrightarrow{w} z \xrightarrow{f} z^{\prime} \xrightarrow{f} y \\
Q_{s}(x, y)=x \stackrel{f}{\leftarrow} z \xrightarrow{f} y \wedge x \neq y
\end{array}\right\} \quad \tau=\{g, s\}
$$

Database D over σ

View image $\mathbf{V}(D)$ over τ

Example: view definition, view image, view instance

$$
\sigma=\{b, f, w\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{g}(x, y)=x \xrightarrow{w} z \xrightarrow{f} z^{\prime} \xrightarrow{f} y \\
Q_{s}(x, y)=x \stackrel{f}{\leftarrow} z \xrightarrow[\rightarrow]{f} y \wedge x \neq y
\end{array}\right\} \quad \tau=\{g, s\}
$$

View instance E over τ

Example: view definition, view image, view instance

$$
\sigma=\{b, f, w\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{g}(x, y)=x \xrightarrow{w} z \xrightarrow{f} z^{\prime} \xrightarrow{f} y \\
Q_{s}(x, y)=x \stackrel{f}{\leftarrow} z \xrightarrow[\rightarrow]{f} y \wedge x \neq y
\end{array}\right\} \quad \tau=\{g, s\}
$$

Is E the image of some database D through \mathbf{V} ?

View instance E over τ

Example: view definition, view image, view instance

$$
\sigma=\{b, f, w\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{g}(x, y)=x \xrightarrow{w} z \xrightarrow{f} z^{\prime} \xrightarrow{f} y \\
Q_{s}(x, y)=x \stackrel{f}{\leftarrow} z \xrightarrow[\rightarrow]{f} y \wedge x \neq y
\end{array}\right\} \quad \tau=\{g, s\}
$$

Is E the image of some database D through \mathbf{V} ?

Example: view definition, view image, view instance

$$
\sigma=\{b, f, w\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{g}(x, y)=x \xrightarrow{w} z \xrightarrow{f} z^{\prime} \xrightarrow{f} y \\
Q_{s}(x, y)=x \stackrel{f}{\leftarrow} z \xrightarrow[\rightarrow]{ } y \wedge x \neq y
\end{array}\right\} \quad \tau=\{g, s\}
$$

Is E the image of some database D through \mathbf{V} ?

Example: view definition, view image, view instance

$$
\sigma=\{b, f, w\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{g}(x, y)=x \xrightarrow{w} z \xrightarrow{f} z^{\prime} \xrightarrow{f} y \\
Q_{s}(x, y)=x \stackrel{f}{\leftarrow} z \xrightarrow[\rightarrow]{ } y \wedge x \neq y
\end{array}\right\} \quad \tau=\{g, s\}
$$

Is E the image of some database D through \mathbf{V} ?

Example: view definition, view image, view instance

$$
\sigma=\{b, f, w\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{g}(x, y)=x \xrightarrow{w} z \xrightarrow{f} z^{\prime} \xrightarrow{f} y \\
Q_{s}(x, y)=x \stackrel{f}{\leftarrow} z \xrightarrow[\rightarrow]{ } y \wedge x \neq y
\end{array}\right\} \quad \tau=\{g, s\}
$$

Is E the image of some database D through \mathbf{V} ?

What happened there?

- Myth 1:

- Myth 2:

What happened there?

- Myth 1 :

(because Aphrodite is the daughter of Uranus \quad And so is Cronus
- Myth 2:

What happened there?

- Myth 1 :

(because Aphrodite is the daughter of Uranus \quad And so is Cronus
- Myth 2:

(because Aphrodite is the daughter of Zeus And Zeus is the son of Rhea

What happened there?

- Myth 1 :

$\binom{$ because Aphrodite is the daughter of Uranus }{ And so is Cronus }
- Myth 2:

(because Aphrodite is the daughter of Zeus And Zeus is the son of Rhea

We failed virtual data integration \rightarrow the two myths are incompatible

Testing view consistency

```
Problem : View consistency
Input : A view V from \sigma to }\tau\mathrm{ , a view instance E
Question : Is there some D over \sigma such that V (D)=E
```


Testing view consistency

Problem : View consistency for language \mathcal{L} Infut : An \mathcal{L}-view \mathbf{V} from σ to τ, a view instance E Question : Is there some D over σ such that $\mathbf{V}(D)=E$?

Testing view consistency

- Combined complexity:

$$
\begin{array}{ll}
\text { Problem } & : \text { View Consistency for language } \mathcal{L} \\
\text { Input } & : \text { An } \mathcal{L} \text {-view } \mathbf{V} \text { from } \sigma \text { to } \tau \text {, a view instance } \mathrm{E} \\
\text { Question } & : \\
\text { Is there some } D \text { over } \sigma \text { such that } \mathbf{V}(D)=E \text { ? }
\end{array}
$$

- Data complexity:

Let \mathbf{V} be a fixed view from σ to τ in some language \mathcal{L} :

$$
\begin{array}{ll}
\text { Problem } & : \text { View Consistency }(\mathbf{V}) \\
\text { Input } & : \text { A view instance } \mathrm{E} \\
\text { Question } & : \text { Is there some } D \text { over } \sigma \text { such that } \mathbf{V}(D)=E \text { ? }
\end{array}
$$

Example: how hard is testing consistency?

$$
\sigma=\{c, e, p\}
$$

Example: how hard is testing consistency?

$$
\sigma=\{c, e, p\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{\mathrm{edge}}(x, y)=e(x, y) \\
\end{array}\right\}
$$

Example: how hard is testing consistency?

$$
\sigma=\{c, e, p\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{\text {edge }}(x, y)=e(x, y) \\
Q_{\text {palette }}(x)=p(x) \\
\end{array}\right\}
$$

Example: how hard is testing consistency?

$$
\sigma=\{c, e, p\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{\text {edge }}(x, y)=e(x, y) \\
Q_{\text {palette }}(x)=p(x) \\
Q_{\text {color }}(x)=\exists z \cdot p(z) \wedge c(x, z)
\end{array}\right\}
$$

Example: how hard is testing consistency?

$$
\sigma=\{c, e, p\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{\text {edge }}(x, y)=e(x, y) \\
Q_{\text {palette }}(x)=p(x) \\
Q_{\text {color }}(x)=\exists z \cdot p(z) \wedge c(x, z)
\end{array}\right\}
$$

Example: how hard is testing consistency?

$$
\sigma=\{c, e, p\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{\text {edge }}(x, y)=e(x, y) \\
Q_{\text {palette }}(x)=p(x) \\
Q_{\text {color }}(x)=\exists z \cdot p(z) \wedge c(x, z)
\end{array}\right\}
$$

Example: how hard is testing consistency?

$$
\sigma=\{c, e, p\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{\text {edge }}(x, y)=e(x, y) \\
Q_{\text {palette }}(x)=p(x) \\
Q_{\text {color }}(x)=\exists z \cdot p(z) \wedge c(x, z)
\end{array}\right\}
$$

Example: how hard is testing consistency?

$$
\sigma=\{c, e, p\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{\text {edge }}(x, y)=e(x, y) \\
Q_{\text {palette }}(x)=p(x) \\
Q_{\text {color }}(x)=\exists z \cdot p(z) \wedge c(x, z)
\end{array}\right\}
$$

Example: how hard is testing consistency?

Example: how hard is testing consistency?

$$
\sigma=\{c, e, p\}
$$

$$
\mathbf{V}=\left\{\begin{array}{c}
Q_{\text {edge }}(x, y)=e(x, y) \\
Q_{\text {palette }}(x)=p(x) \\
Q_{\text {color }}(x)=\exists z \cdot p(z) \wedge c(x, z) \\
Q_{\text {error }}(x, y)=\exists z \cdot c(x, z) \wedge c(y, z) \wedge e(x, y)
\end{array}\right\}
$$

Example: how hard is testing consistency?

$\sigma=\{c, e, p\}$

$$
\mathbf{V}=\left\{\begin{array}{c}
Q_{\text {edge }}(x, y)=e(x, y) \\
Q_{\text {paletete }}(x)=p(x) \\
Q_{\text {color }}(x)=\exists z \cdot p(z) \wedge c(x, z) \\
Q_{\text {error }}(x, y)=\exists z \cdot c(x, z) \wedge c(y, z) \wedge e(x, y)
\end{array}\right\}
$$

$Q_{\text {error }}$ should show if there is a coloring error... but it is empty.

Example: how hard is testing consistency?

$$
\sigma=\{c, e, p\}
$$

$$
\mathbf{V}=\left\{\begin{array}{c}
Q_{\text {edge }}(x, y)=e(x, y) \\
Q_{\text {palette }}(x)=p(x) \\
Q_{\text {color }}(x)=\exists z \cdot p(z) \wedge c(x, z) \\
Q_{\text {error }}(x, y)=\exists z \cdot c(x, z) \wedge c(y, z) \wedge e(x, y)
\end{array}\right\}
$$

$Q_{\text {error }}$ should show if there is a coloring error... but it is empty.
The view instance is consistent iff the graph is 3-colorable!

How hard is testing consistency?

Short answer: it's hard, even for simple languages and in data complexity.

How hard is testing consistency?

Short answer: it's hard, even for simple languages and in data complexity.

Theorem [Abiteboul, Duschka]

There exists a fixed view \mathbf{V} defined using conjunctive queries such that View Consistency(V) is NP-complete.

Our proof sketch easily extends to UCQ, RPQ, CRPQ...

How hard is testing consistency?

Short answer: it's hard, even for simple languages and in data complexity.
Theorem [Abiteboul, Duschka]
There exists a fixed view \mathbf{V} defined using conjunctive queries such that View Consistency (\mathbf{V}) is NP-complete.

Our proof sketch easily extends to UCQ, RPQ, CRPQ...

The problem quickly becomes undecidable for more expressive languages.
Theorem [Abiteboul, Duschka]
There exists a fixed view \mathbf{V} defined using Datalog queries such that View Consistency (\mathbf{V}) is undecidable.

This also holds for context-free path queries, first-order queries...

Certain answers

Example: answering queries using views

$$
\sigma=\{b, f, w\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{g}(x, y)=x \xrightarrow{w} z \xrightarrow{f} z^{\prime} \xrightarrow{f} y \\
Q_{f}(x, y)=x \xrightarrow{f} y
\end{array}\right\} \quad \tau=\{f, g\}
$$

Example: answering queries using views

$$
\sigma=\{b, f, w\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{g}(x, y)=x \xrightarrow{w} z \xrightarrow{f} z^{\prime} \xrightarrow{f} y \\
Q_{f}(x, y)=x \xrightarrow{f} y
\end{array}\right\} \quad \tau=\{f, g\}
$$

Can we answer $Q(x, y)=w(x, y)$ based on the view instance?

Example: answering queries using views

$$
\sigma=\{b, f, w\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{g}(x, y)=x \xrightarrow{w} z \xrightarrow{f} z^{\prime} \xrightarrow{f} y \\
Q_{f}(x, y)=x \xrightarrow{f} y
\end{array}\right\} \quad \tau=\{f, g\}
$$

Can we answer $Q(x, y)=w(x, y)$ based on the view instance?

- w (Hera, Zeus)?

Example: answering queries using views

$$
\sigma=\{b, f, w\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{g}(x, y)=x \xrightarrow{w} z \xrightarrow{f} z^{\prime} \xrightarrow{f} y \\
Q_{f}(x, y)=x \xrightarrow{f} y
\end{array}\right\} \quad \tau=\{f, g\}
$$

Can we answer $Q(x, y)=w(x, y)$ based on the view instance?
■ w (Hera, Zeus)? $\quad \rightarrow$ no clue Hera even exists...

Example: answering queries using views

$$
\sigma=\{b, f, w\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{g}(x, y)=x \xrightarrow{w} z \xrightarrow{f} z^{\prime} \xrightarrow{f} y \\
Q_{f}(x, y)=x \xrightarrow{f} y
\end{array}\right\} \quad \tau=\{f, g\}
$$

Can we answer $Q(x, y)=w(x, y)$ based on the view instance?
■ w (Hera, Zeus) $? \quad \rightarrow$ no clue Hera even exists...

- w (Athena, Ares)?

Example: answering queries using views

$$
\sigma=\{b, f, w\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{g}(x, y)=x \xrightarrow{w} z \xrightarrow{f} z^{\prime} \xrightarrow{f} y \\
Q_{f}(x, y)=x \xrightarrow{f} y
\end{array}\right\} \quad \tau=\{f, g\}
$$

Can we answer $Q(x, y)=w(x, y)$ based on the view instance?

- w (Hera, Zeus)? \rightarrow no clue Hera even exists...
- w (Athena, Ares)? \rightarrow possible, but no guarantee...

Example: answering queries using views

$$
\sigma=\{b, f, w\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{g}(x, y)=x \xrightarrow{w} z \xrightarrow{f} z^{\prime} \xrightarrow{f} y \\
Q_{f}(x, y)=x \xrightarrow{f} y
\end{array}\right\} \quad \tau=\{f, g\}
$$

Can we answer $Q(x, y)=w(x, y)$ based on the view instance?

- w (Hera, Zeus)? \rightarrow no clue Hera even exists...
- w (Athena, Ares)? \rightarrow possible, but no guarantee...
- w(Rhea, Cronus)?

Example: answering queries using views

$$
\sigma=\{b, f, w\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{g}(x, y)=x \xrightarrow{w} z \xrightarrow{f} z^{\prime} \xrightarrow{f} y \\
Q_{f}(x, y)=x \xrightarrow{f} y
\end{array}\right\} \quad \tau=\{f, g\}
$$

Can we answer $Q(x, y)=w(x, y)$ based on the view instance?

- w (Hera, Zeus)? \rightarrow no clue Hera even exists...
- w (Athena, Ares)? \rightarrow possible, but no guarantee...
- w (Rhea, Cronus)?
\rightarrow she has to be the wife of some grandfather

Example: answering queries using views

$$
\sigma=\{b, f, w\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{g}(x, y)=x \xrightarrow{w} z \xrightarrow{f} z^{\prime} \xrightarrow{f} y \\
Q_{f}(x, y)=x \xrightarrow{f} y
\end{array}\right\} \quad \tau=\{f, g\}
$$

Can we answer $Q(x, y)=w(x, y)$ based on the view instance?
■ w (Hera, Zeus) $? \quad \rightarrow$ no clue Hera even exists...

- w (Athena, Ares) $? \quad \rightarrow$ possible, but no guarantee...
- w(Rhea, Cronus)?
\rightarrow she has to be the wife of some grandfather
\rightarrow Cronus is a candidate; could there be another?

Answering queries using views

Given: $\left\{\begin{array}{l}\mathbf{V}: \text { view from } \sigma \text { to } \tau \\ E: \text { view instance over } \tau \\ Q: \text { query over } \sigma\end{array}\right.$

- Certain answers:

$$
\operatorname{cert}_{Q, \mathbf{V}}(E)=\bigcap_{D \mid \mathbf{V}(D)=E} Q(D)
$$

Answering queries using views

Given: $\left\{\begin{array}{l}\mathbf{V}: \text { view from } \sigma \text { to } \tau \\ E: \text { view instance over } \tau \\ Q: \text { query over } \sigma\end{array}\right.$

- Certain answers under the exact view assumption:

$$
\operatorname{cert}_{Q, V}^{\text {exact }}(E)=\bigcap_{D \mid \vee(D)=E} Q(D)
$$

- Certain answers under the sound view assumption:

$$
\operatorname{cert}_{Q, \mathrm{~V}}^{\text {sound }}(E)=\bigcap_{D \mid \vee(D) \supseteq E} Q(D)
$$

The problem(s) of computing certain answers

```
Problem : Certain answers
    A view V from }\sigma\mathrm{ to }\tau\mathrm{ ,
InPUT : A query Q over }\sigma\mathrm{ ,
    A view instance E and }\overline{u}\in
QUEStion : }\overline{u}\in\mp@subsup{\operatorname{cert}}{Q,v}{v}(E)\mathrm{ ?
```


The problem(s) of computing certain answers

```
Problem : Certain answers for \mathcal{L and L}\mp@subsup{\mathcal{L}}{}{\prime}
    An L
Input : An L'L
    A view instance E and }\overline{u}\in
QUESTION : }\overline{u}\in\mp@subsup{\operatorname{cert}}{Q,v}{v}(E)\mathrm{ ?
```


The problem(s) of computing certain answers

```
Problem : Certain answers for }\mathcal{L}\mathrm{ and }\mp@subsup{\mathcal{L}}{}{\prime
    An L
InPut : An (')
    A view instance E and }\overline{u}\in
QuESTION : }\overline{u}\in\mp@subsup{\operatorname{cert}}{Q,V}{\textrm{exact}}(E)?\quad\overline{u}\in\mp@subsup{\operatorname{cert}}{Q,V}{\mathrm{ sound}}(E)
```


The problem(s) of computing certain answers

- Combined complexity:

```
Problem : Certain answers for \mathcal{L and L}\mp@subsup{\mathcal{L}}{}{\prime}
    An L
Input : An \mathcal{L}
    A view instance E and }\overline{u}\in
Question : }\overline{u}\in\mp@subsup{\operatorname{cert}}{Q,V}{\mathrm{ exact }}(E)?\quad\overline{u}\in\mp@subsup{\operatorname{certr}}{Q,v}{\mathrm{ sound}}(E)
```

- Data complexity:

Let \mathbf{V} be a fixed view from σ to τ and Q be a fixed query over σ :

$$
\begin{array}{ll}
\text { Problem } & : \\
\text { Certain answers }(Q, \mathbf{V}) \\
\text { Input } & : \\
\text { A view instance } E \text { and } \bar{u} \in E \\
\text { Question } & : \bar{u} \in \operatorname{cert}_{Q, V}^{\text {exact }}(E) ? \quad \bar{u} \in \operatorname{certr}_{Q, V}^{\text {sound }}(E) ?
\end{array}
$$

Example: how hard is computing certain answers?

$$
\sigma=\{c, e, p\}
$$

$$
\mathbf{V}=\left\{\begin{array}{c}
Q_{\text {edge }}(x, y)=e(x, y) \\
Q_{\text {palette }}(x)=p(x) \\
Q_{\text {color }}(x)=\exists z \cdot p(z) \wedge c(x, z)
\end{array}\right\}
$$

Example: how hard is computing certain answers?

$$
\mathbf{V}=\left\{\begin{array}{c}
Q_{\text {edge }}(x, y)=e(x, y) \\
Q_{\text {palette }}(x)=p(x) \\
Q_{\text {color }}(x)=\exists z \cdot p(z) \wedge c(x, z)
\end{array}\right\}
$$

Can we answer $Q_{\text {error }}()=\exists x, y, z \cdot c(x, z) \wedge c(y, z) \wedge e(x, y)$?

Example: how hard is computing certain answers?

$\sigma=\{c, e, p\}$

$$
\mathbf{V}=\left\{\begin{array}{c}
Q_{\text {edge }}(x, y)=e(x, y) \\
Q_{\text {palette }}(x)=p(x) \\
Q_{\text {color }}(x)=\exists z \cdot p(z) \wedge c(x, z)
\end{array}\right\}
$$

Can we answer $Q_{\text {error }}()=\exists x, y, z \cdot c(x, z) \wedge c(y, z) \wedge e(x, y)$?

- Exact view: $Q_{\text {error }}$ is certain iff the graph is not 3-colorable!

Example: how hard is computing certain answers?

$\sigma=\{c, e, p\}$

$$
\mathbf{V}=\left\{\begin{array}{c}
Q_{\text {edge }}(x, y)=e(x, y) \\
Q_{\text {palette }}(x)=p(x) \\
Q_{\text {color }}(x)=\exists z \cdot p(z) \wedge c(x, z)
\end{array}\right\}
$$

Can we answer $Q_{\text {error }}()=\exists x, y, z \cdot c(x, z) \wedge c(y, z) \wedge e(x, y)$?

- Exact view: $Q_{\text {error }}$ is certain iff the graph is not 3-colorable!

■ Sound view: we can always invent more colors!

How hard is computing certain answers?

Short answer: it's hard, even for simple languages and in data complexity,

How hard is computing certain answers?

Short answer: it's hard, even for simple languages and in data complexity,

- cert ${ }^{\text {exact }}$ is closely related to testing consistency.

How hard is computing certain answers?

Short answer: it's hard, even for simple languages and in data complexity,

- cert ${ }^{\text {exact }}$ is closely related to testing consistency.
(it's usually equivalent to testing inconsistency)

How hard is computing certain answers?

Short answer: it's hard, even for simple languages and in data complexity,

- cert ${ }^{\text {exact }}$ is closely related to testing consistency.
(it's usually equivalent to testing inconsistency)
- cert ${ }^{\text {sound }}$ is usually easier (but not strictly) than certexact

How hard is computing certain answers?

Short answer: it's hard, even for simple languages and in data complexity,

- cert ${ }^{\text {exact }}$ is closely related to testing consistency. (it's usually equivalent to testing inconsistency)
- cert ${ }^{\text {sound }}$ is usually easier (but not strictly) than cert ${ }^{\text {exact }}$

Some results from [Abiteboul, Duschka'98]:

quew	CQ	CQ^{\neq}	Datalog	FO
CQ	PTime/CoNP	CONP	PTime/CoNP	Undec.
CQ \neq	PTime/coNP	CONP	PTime/coNP	Undec.
Datalog	CONP/Undec.	Undec.	Undec.	Undec.
FO	Undec.	Undec.	Undec.	Undec.

Complexity of answering queries using sound or exact views.

Determinacy and rewriting

Example: determinacy and rewriting

$$
\sigma=\{b, f, w\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{s 1}(x)=\exists z \cdot x \xrightarrow{w} z \\
Q_{s 2}(x)=\exists z \cdot z \xrightarrow{w} x \\
Q_{g f}(x, y)=x \xrightarrow{f} z \xrightarrow{f} y
\end{array}\right\} \quad \tau=\{g f, s 1, s 2\}
$$

Example: determinacy and rewriting

$$
\sigma=\{b, f, w\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{s 1}(x)=\exists z \cdot x \xrightarrow{w} z \\
Q_{s 2}(x)=\exists z \cdot z \xrightarrow{w} x \\
Q_{g f}(x, y)=x \xrightarrow{f} z \xrightarrow{f} y
\end{array}\right\} \quad \tau=\{g f, s 1, s 2\}
$$

Can we answer $Q(x, y)=x \xrightarrow{w} z \xrightarrow{f} z^{\prime} \xrightarrow{f} y$ based on the view instance?

Example: determinacy and rewriting

$$
\sigma=\{b, f, w\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{s 1}(x)=\exists z \cdot x \xrightarrow{w} z \\
Q_{s 2}(x)=\exists z \cdot z \xrightarrow{w} x \\
Q_{g f}(x, y)=x \xrightarrow{f} z \xrightarrow{f} y
\end{array}\right\} \quad \tau=\{g f, s 1, s 2\}
$$

Can we answer $Q(x, y)=x \xrightarrow{w} z \xrightarrow{f} z^{\prime} \xrightarrow{f} y$ based on the view instance?
Yes! Rhea is the grandmother of Athena.
And nothing else: possible and certain answers coincide.

Example: determinacy and rewriting

$$
\sigma=\{b, f, w\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{s 1}(x)=\exists z \cdot x \xrightarrow{w} z \\
Q_{s 2}(x)=\exists z \cdot z \xrightarrow{w} x \\
Q_{g f}(x, y)=x \xrightarrow{f} z \xrightarrow{f} y
\end{array}\right\} \quad \tau=\{g f, s 1, s 2\}
$$

Can we answer $Q(x, y)=x \xrightarrow{w} z \xrightarrow{f} z^{\prime} \xrightarrow{f} y$ based on the view instance?

Example: determinacy and rewriting

$$
\sigma=\{b, f, w\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{s 1}(x)=\exists z \cdot x \xrightarrow{w} z \\
Q_{s 2}(x)=\exists z \cdot z \xrightarrow{w} x \\
Q_{g f}(x, y)=x \xrightarrow{f} z \xrightarrow{f} y
\end{array}\right\} \quad \tau=\{g f, s 1, s 2\}
$$

Can we answer $Q(x, y)=x \xrightarrow{w} z \xrightarrow{f} z^{\prime} \xrightarrow{f} y$ based on the view instance?
There is no way to match husbands and wives...
Nothing is certain and every match is possible.

Example: determinacy and rewriting (2)

$$
\sigma=\{b, f, w\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{w}(x, y)=x \xrightarrow{w} y \\
Q_{g f}(x, y)=x \xrightarrow{f} z \xrightarrow[\rightarrow]{f} y
\end{array}\right\} \quad \tau=\{g f, w\}
$$

Example: determinacy and rewriting (2)

$$
\sigma=\{b, f, w\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{w}(x, y)=x \xrightarrow{w} y \\
Q_{g f}(x, y)=x \xrightarrow{f} z \xrightarrow[\rightarrow]{f} y
\end{array}\right\} \quad \tau=\{g f, w\}
$$

Can we answer $Q(x, y)=x \xrightarrow{w} z \xrightarrow{f} z^{\prime} \xrightarrow{f} y$ based on the view instance?

Example: determinacy and rewriting (2)

$$
\sigma=\{b, f, w\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{w}(x, y)=x \xrightarrow{w} y \\
Q_{g f}(x, y)=x \xrightarrow{f} z \xrightarrow[\rightarrow]{f} y
\end{array}\right\} \quad \tau=\{g f, w\}
$$

Can we answer $Q(x, y)=x \xrightarrow{w} z \xrightarrow{f} z^{\prime} \xrightarrow{f} y$ based on the view instance?
■ Yes! Rhea is grandmother to Ares and Athena, and Hera to Phobos. And nothing else: possible and certain answers coincide.

Example: determinacy and rewriting (2)

$$
\sigma=\{b, f, w\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{w}(x, y)=x \xrightarrow{w} y \\
Q_{g f}(x, y)=x \xrightarrow{f} z \xrightarrow{f} y
\end{array}\right\} \quad \tau=\{g f, w\}
$$

Can we answer $Q(x, y)=x \xrightarrow{w} z \xrightarrow{f} z^{\prime} \xrightarrow{f} y$ based on the view instance?
■ Yes! Rhea is grandmother to Ares and Athena, and Hera to Phobos. And nothing else: possible and certain answers coincide.

- Better yet: this is a static property of \mathbf{V} and Q.

Example: determinacy and rewriting (2)

$$
\sigma=\{b, f, w\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{w}(x, y)=x \xrightarrow{w} y \\
Q_{g f}(x, y)=x \xrightarrow{f} z \xrightarrow{f} y
\end{array}\right\} \quad \tau=\{g f, w\}
$$

Can we answer $Q(x, y)=x \xrightarrow{w} z \xrightarrow{f} z^{\prime} \xrightarrow{f} y$ based on the view instance?

- Yes! Rhea is grandmother to Ares and Athena, and Hera to Phobos. And nothing else: possible and certain answers coincide.
- Better yet: this is a static property of \mathbf{V} and Q.
- Q can be rewritten as $R(x, y)=x \xrightarrow{w} z \xrightarrow{g f} y$ over τ.

Determinacy and rewriting

Let \mathbf{V} be a view from σ to τ and Q be a query over σ.

- Determinacy: we say that \mathbf{V} determines Q iff for any database D, the certain answers and the possible answers to Q on $V(D)$ coincide. This is a static analysis property.

Determinacy and rewriting

Let \mathbf{V} be a view from σ to τ and Q be a query over σ.

- Determinacy: we say that \mathbf{V} determines Q iff for any database D, the certain answers and the possible answers to Q on $V(D)$ coincide. This is a static analysis property.
- Equivalent definition: \mathbf{V} determines $Q($ denoted $\mathbf{V} \rightarrow Q)$ iff: $\forall D, D^{\prime}$

$$
\mathbf{V}(D)=\mathbf{V}\left(D^{\prime}\right) \Longrightarrow Q(D)=Q\left(D^{\prime}\right)
$$

Determinacy and rewriting

Let \mathbf{V} be a view from σ to τ and Q be a query over σ.
■ Determinacy: we say that \mathbf{V} determines Q iff for any database D, the certain answers and the possible answers to Q on $V(D)$ coincide. This is a static analysis property.

- Equivalent definition: \mathbf{V} determines $Q($ denoted $\mathbf{V} \rightarrow Q)$ iff:

$$
\forall D, D^{\prime} \quad \mathbf{V}(D)=\mathbf{V}\left(D^{\prime}\right) \Longrightarrow Q(D)=Q\left(D^{\prime}\right)
$$

$\Rightarrow \quad \bigcap_{\substack{D_{0} \\ \mathbf{D}(D) \\=\mathbf{V}\left(D_{0}\right)}} Q\left(D_{0}\right) \subseteq Q(D) \subseteq \bigcup_{\substack{D_{0} \\ \mathbf{v}(D) \\=}} Q\left(D_{0}\right)$

Determinacy and rewriting

Let \mathbf{V} be a view from σ to τ and Q be a query over σ.

- Determinacy: we say that \mathbf{V} determines Q iff for any database D, the certain answers and the possible answers to Q on $V(D)$ coincide.
This is a static analysis property.
■ Equivalent definition: \mathbf{V} determines $Q($ denoted $\mathbf{V} \rightarrow Q)$ iff: $\forall D, D^{\prime}$

$$
\mathbf{V}(D)=\mathbf{V}\left(D^{\prime}\right) \Longrightarrow Q(D)=Q\left(D^{\prime}\right)
$$

$\Rightarrow \quad \bigcap_{\substack{D_{0} \\ \mathbf{V}(D) \\=\\ \mathbf{V}\left(D_{0}\right)}} Q\left(D_{0}\right) \subseteq Q(D) \subseteq \bigcup_{\substack{D_{0} \\ \mathbf{v}(D) \\=\\ \mathbf{V}\left(D_{0}\right)}} Q\left(D_{0}\right)$
Assume possible and certain answers coincide, then:

Determinacy and rewriting

Let \mathbf{V} be a view from σ to τ and Q be a query over σ.

- Determinacy: we say that \mathbf{V} determines Q iff for any database D, the certain answers and the possible answers to Q on $V(D)$ coincide.
This is a static analysis property.
■ Equivalent definition: \mathbf{V} determines $Q($ denoted $\mathbf{V} \rightarrow Q)$ iff: $\forall D, D^{\prime}$

$$
\mathbf{V}(D)=\mathbf{V}\left(D^{\prime}\right) \Longrightarrow Q(D)=Q\left(D^{\prime}\right)
$$

$\Rightarrow \quad \bigcap_{\substack{D_{0} \\ \mathbf{V}(D) \\=\\ \mathbf{V}\left(D_{0}\right)}} Q\left(D_{0}\right) \subseteq Q(D) \subseteq \bigcup_{\substack{D_{0} \\ \mathbf{v}(D) \\=\\ \mathbf{V}\left(D_{0}\right)}} Q\left(D_{0}\right)$
Assume possible and certain answers coincide, then:

$$
Q(D)=\operatorname{cert}_{Q, \mathbf{v}}(\mathbf{V}(D))
$$

Determinacy and rewriting

Let \mathbf{V} be a view from σ to τ and Q be a query over σ.

- Determinacy: we say that \mathbf{V} determines Q iff for any database D, the certain answers and the possible answers to Q on $V(D)$ coincide.
This is a static analysis property.
- Equivalent definition: \mathbf{V} determines $Q($ denoted $\mathbf{V} \rightarrow Q)$ iff: $\forall D, D^{\prime}$

$$
\mathbf{V}(D)=\mathbf{V}\left(D^{\prime}\right) \Longrightarrow Q(D)=Q\left(D^{\prime}\right)
$$

$\Rightarrow \quad \bigcap_{\substack{D_{0} \\ \mathbf{V}(D) \\=\\ \mathbf{V}\left(D_{0}\right)}} Q\left(D_{0}\right) \subseteq Q(D) \subseteq \bigcup_{\substack{D_{0} \\ \mathbf{v}(D) \\=\\ \mathbf{V}\left(D_{0}\right)}} Q\left(D_{0}\right)$
Assume possible and certain answers coincide, then:

$$
Q(D)=\operatorname{cert}_{Q, \mathbf{v}}(\mathbf{V}(D))=\operatorname{cert}_{Q, \mathbf{v}}\left(\mathbf{V}\left(D^{\prime}\right)\right)
$$

Determinacy and rewriting

Let \mathbf{V} be a view from σ to τ and Q be a query over σ.
■ Determinacy: we say that \mathbf{V} determines Q iff for any database D, the certain answers and the possible answers to Q on $V(D)$ coincide.
This is a static analysis property.
■ Equivalent definition: \mathbf{V} determines $Q($ denoted $\mathbf{V} \rightarrow Q$) iff: $\forall D, D^{\prime}$

$$
\mathbf{V}(D)=\mathbf{V}\left(D^{\prime}\right) \Longrightarrow Q(D)=Q\left(D^{\prime}\right)
$$

$\begin{aligned} & \quad \bigcap_{\substack{D_{0} \\ \mathbf{V}(D) \\ \mathbf{v}\left(D_{0}\right)}} Q\left(D_{0}\right) \subseteq Q(D) \subseteq \bigcup_{D_{0}} Q\left(D_{0}\right) \\ & \mathbf{v}(D) \stackrel{D_{0}}{=} \mathbf{v}\left(D_{0}\right)\end{aligned}$
Assume possible and certain answers coincide, then:

$$
Q(D)=\operatorname{cert}_{Q, \mathbf{v}}(\mathbf{V}(D))=\operatorname{cert}_{Q, \mathbf{v}}\left(\mathbf{V}\left(D^{\prime}\right)\right)=Q\left(D^{\prime}\right)
$$

Determinacy and rewriting

Let \mathbf{V} be a view from σ to τ and Q be a query over σ.

- Determinacy: we say that \mathbf{V} determines Q iff for any database D, the certain answers and the possible answers to Q on $V(D)$ coincide. This is a static analysis property.
- Equivalent definition: \mathbf{V} determines $Q($ denoted $\mathbf{V} \rightarrow Q)$ iff:

$$
\forall D, D^{\prime} \quad \mathbf{V}(D)=\mathbf{V}\left(D^{\prime}\right) \Longrightarrow Q(D)=Q\left(D^{\prime}\right)
$$

\Leftarrow Assume $\mathbf{V} \rightarrow Q$. Let D be any database, then:

Determinacy and rewriting

Let \mathbf{V} be a view from σ to τ and Q be a query over σ.
■ Determinacy: we say that \mathbf{V} determines Q iff for any database D, the certain answers and the possible answers to Q on $V(D)$ coincide. This is a static analysis property.

■ Equivalent definition: \mathbf{V} determines $Q($ denoted $\mathbf{V} \rightarrow Q$) iff:

$$
\forall D, D^{\prime} \quad \mathbf{V}(D)=\mathbf{V}\left(D^{\prime}\right) \Longrightarrow Q(D)=Q\left(D^{\prime}\right)
$$

\Leftarrow Assume $\mathbf{V} \rightarrow Q$. Let D be any database, then:

$$
\bigcap_{\substack{D_{0} \\=\\ \mathbf{v}(D) \\=}} Q\left(D_{0}\right)=Q(D)
$$

Determinacy and rewriting

Let \mathbf{V} be a view from σ to τ and Q be a query over σ.

- Determinacy: we say that \mathbf{V} determines Q iff for any database D, the certain answers and the possible answers to Q on $V(D)$ coincide. This is a static analysis property.

■ Equivalent definition: \mathbf{V} determines $Q($ denoted $\mathbf{V} \rightarrow Q$) iff:

$$
\forall D, D^{\prime} \quad \mathbf{V}(D)=\mathbf{V}\left(D^{\prime}\right) \Longrightarrow Q(D)=Q\left(D^{\prime}\right)
$$

\Leftarrow Assume $\mathbf{V} \rightarrow Q$. Let D be any database, then:

$$
\bigcap_{\substack{D_{0} \\(D)=}} Q\left(D_{0}\right)=Q(D) \quad \text { and } \quad \bigcup_{\substack{D_{0} \\=}} Q\left(D_{0}\right)=Q(D)
$$

Determinacy and rewriting

Let \mathbf{V} be a view from σ to τ and Q be a query over σ.
■ Determinacy: we say that \mathbf{V} determines Q iff for any database D, the certain answers and the possible answers to Q on $V(D)$ coincide. This is a static analysis property.

■ Equivalent definition: \mathbf{V} determines $Q($ denoted $\mathbf{V} \rightarrow Q$) iff:

$$
\forall D, D^{\prime} \quad \mathbf{V}(D)=\mathbf{V}\left(D^{\prime}\right) \Longrightarrow Q(D)=Q\left(D^{\prime}\right)
$$

\Leftarrow Assume $\mathbf{V} \rightarrow Q$. Let D be any database, then:

$$
\begin{array}{lc}
\bigcap_{\substack{D_{0} \\
=\\
D \\
=\\
\left(D_{0}\right)}} Q\left(D_{0}\right)=Q(D) \quad \text { and } \quad \bigcup_{\substack{D_{0} \\
=}} Q\left(D_{0}\right)=Q(D) \\
\mathbf{v}(D)=\mathbf{D})
\end{array}
$$

Thus possible and certain answers coincide both with $Q(D)$.

Determinacy and rewriting

Let \mathbf{V} be a view from σ to τ and Q be a query over σ.

- Determinacy: we say that \mathbf{V} determines Q iff for any database D, the certain answers and the possible answers to Q on $V(D)$ coincide. This is a static analysis property.
- Equivalent definition: \mathbf{V} determines $Q($ denoted $\mathbf{V} \rightarrow Q)$ iff:

$$
\forall D, D^{\prime} \quad \mathbf{V}(D)=\mathbf{V}\left(D^{\prime}\right) \Longrightarrow Q(D)=Q\left(D^{\prime}\right)
$$

- Rewriting: A rewriting of Q using \mathbf{V} is a query R over τ such that:
$\forall D$,

$$
Q(D)=R(\mathbf{V}(D))
$$

Determinacy and rewriting

Let \mathbf{V} be a view from σ to τ and Q be a query over σ.
■ Determinacy: we say that \mathbf{V} determines Q iff for any database D, the certain answers and the possible answers to Q on $V(D)$ coincide. This is a static analysis property.

- Equivalent definition: \mathbf{V} determines $Q($ denoted $\mathbf{V} \rightarrow Q)$ iff:

$$
\forall D, D^{\prime} \quad \mathbf{V}(D)=\mathbf{V}\left(D^{\prime}\right) \Longrightarrow Q(D)=Q\left(D^{\prime}\right)
$$

- Rewriting: A rewriting of Q using \mathbf{V} is a query R over τ such that: $\forall D$,

$$
Q(D)=R(\mathbf{V}(D))
$$

Remark: Assume $\mathbf{V}(D)=\mathbf{V}\left(D^{\prime}\right)$, then $R(\mathbf{V}(D))=R\left(\mathbf{V}\left(D^{\prime}\right)\right)$. Thus $Q(D)=Q\left(D^{\prime}\right)$.

Determinacy and rewriting

Let \mathbf{V} be a view from σ to τ and Q be a query over σ.
■ Determinacy: we say that \mathbf{V} determines Q iff for any database D, the certain answers and the possible answers to Q on $V(D)$ coincide.
This is a static analysis property.

- Equivalent definition: \mathbf{V} determines $Q($ denoted $\mathbf{V} \rightarrow Q)$ iff: $\forall D, D^{\prime}$

$$
\mathbf{V}(D)=\mathbf{V}\left(D^{\prime}\right) \Longrightarrow Q(D)=Q\left(D^{\prime}\right)
$$

- Rewriting: A rewriting of Q using \mathbf{V} is a query R over τ such that:
$\forall D$,

$$
Q(D)=R(\mathbf{V}(D))
$$

Remark: Assume $\mathbf{V}(D)=\mathbf{V}\left(D^{\prime}\right)$, then $R(\mathbf{V}(D))=R\left(\mathbf{V}\left(D^{\prime}\right)\right)$. Thus $Q(D)=Q\left(D^{\prime}\right)$.
The existence of a rewriting immediately implies that $\mathbf{V} \rightarrow Q$.

Example: proving non-determinacy

$$
\sigma=\{a\} \quad \mathbf{V}=\left\{Q_{a_{3}}(x, y)=x \xrightarrow{a} z \xrightarrow{a} z^{\prime} \xrightarrow{a} y\right\} \quad \tau=\left\{a_{3}\right\}
$$

Example: proving non-determinacy

$$
\sigma=\{a\} \quad \mathbf{V}=\left\{Q_{a_{3}}(x, y)=x \xrightarrow{a^{3}} y\right\} \quad \tau=\left\{a_{3}\right\}
$$

Example: proving non-determinacy

$$
\sigma=\{a\} \quad \mathbf{V}=\left\{Q_{a_{3}}(x, y)=x \xrightarrow{a^{3}} y\right\} \quad \tau=\left\{a_{3}\right\}
$$

How to prove that \mathbf{V} does not determine $Q(x, y)=x \xrightarrow{a^{4}} y$?

Example: proving non-determinacy

$$
\sigma=\{a\} \quad \mathbf{V}=\left\{Q_{a_{3}}(x, y)=x \xrightarrow{a^{3}} y\right\} \quad \tau=\left\{a_{3}\right\}
$$

How to prove that \mathbf{V} does not determine $Q(x, y)=x \xrightarrow{a^{4}} y$?

Example: proving non-determinacy

$$
\sigma=\{a\} \quad \mathbf{V}=\left\{Q_{a_{3}}(x, y)=x \xrightarrow{a^{3}} y\right\} \quad \tau=\left\{a_{3}\right\}
$$

How to prove that \mathbf{V} does not determine $Q(x, y)=x \xrightarrow{a^{4}} y$?

Example: proving non-determinacy

$$
\sigma=\{a\} \quad \mathbf{V}=\left\{Q_{a_{3}}(x, y)=x \xrightarrow{a^{3}} y\right\} \quad \tau=\left\{a_{3}\right\}
$$

How to prove that \mathbf{V} does not determine $Q(x, y)=x \xrightarrow{a^{4}} y$?

Example: proving non-determinacy

$$
\sigma=\{a\} \quad \mathbf{V}=\left\{Q_{a_{3}}(x, y)=x \xrightarrow{a^{3}} y\right\} \quad \tau=\left\{a_{3}\right\}
$$

How to prove that \mathbf{V} does not determine $Q(x, y)=x \xrightarrow{a^{4}} y$?

$$
\mathbf{V}(D)=\mathbf{V}\left(D^{\prime}\right) \text { but } Q(D)=\{(\bullet, \bullet)\} \text { and } Q\left(D^{\prime}\right)=\emptyset
$$

Example: proving determinacy

$$
\sigma=\{a\} \quad \mathbf{V}=\left\{Q_{\mathrm{a}_{2}}(x, y)=x \xrightarrow{a^{2}} y\right\} \quad \tau=\left\{a_{2}\right\}
$$

Example: proving determinacy

$$
\sigma=\{a\} \quad \mathbf{V}=\left\{Q_{a_{2}}(x, y)=x \xrightarrow{a^{2}} y\right\} \quad \tau=\left\{a_{2}\right\}
$$

How to prove that \mathbf{V} determines $Q(x, y)=x \xrightarrow{a^{4}} y$?

Example: proving determinacy

$$
\sigma=\{a\} \quad \mathbf{V}=\left\{Q_{a_{2}}(x, y)=x \xrightarrow{a^{2}} y\right\} \quad \tau=\left\{a_{2}\right\}
$$

How to prove that \mathbf{V} determines $Q(x, y)=x \xrightarrow{a^{4}} y$?
\leftrightarrows By providing a rewriting of Q using \mathbf{V}

Example: proving determinacy

$$
\sigma=\{a\} \quad \mathbf{V}=\left\{Q_{a_{2}}(x, y)=x \xrightarrow{a^{2}} y\right\} \quad \tau=\left\{a_{2}\right\}
$$

How to prove that \mathbf{V} determines $Q(x, y)=x \xrightarrow{a^{4}} y$?
\leftrightarrows By providing a rewriting of Q using \mathbf{V}

$$
R(x, y)=\exists z \cdot a_{2}(x, z) \wedge a_{2}(z, y)
$$

Example: proving determinacy

$$
\sigma=\{a\} \quad \mathbf{V}=\left\{Q_{\mathrm{a}_{2}}(x, y)=x \xrightarrow{a^{2}} y\right\} \quad \tau=\left\{a_{2}\right\}
$$

How to prove that \mathbf{V} determines $Q(x, y)=x \xrightarrow{a^{4}} y$?
\rightarrow By providing a rewriting of Q using \mathbf{V}

$$
R(x, y)=\exists z \cdot a_{2}(x, z) \wedge a_{2}(z, y)
$$

$$
Q(D) \subseteq R(\mathbf{V}(D))
$$

$$
R(\mathbf{V}(D)) \subseteq Q(D)
$$

Example: proving determinacy

$$
\sigma=\{a\} \quad \mathbf{V}=\left\{Q_{a_{2}}(x, y)=x \xrightarrow{a^{2}} y\right\} \quad \tau=\left\{a_{2}\right\}
$$

How to prove that \mathbf{V} determines $Q(x, y)=x \xrightarrow{a^{4}} y$?
\rightarrow By providing a rewriting of Q using \mathbf{V}

$$
R(x, y)=\exists z \cdot a_{2}(x, z) \wedge a_{2}(z, y)
$$

$$
Q(D) \subseteq R(\mathbf{V}(D))
$$

$$
R(\mathbf{V}(D)) \subseteq Q(D)
$$

[^0]
Example: proving determinacy

$$
\sigma=\{a\} \quad \mathbf{V}=\left\{Q_{a_{2}}(x, y)=x \xrightarrow{a^{2}} y\right\} \quad \tau=\left\{a_{2}\right\}
$$

How to prove that \mathbf{V} determines $Q(x, y)=x \xrightarrow{a^{4}} y$?
\rightarrow By providing a rewriting of Q using \mathbf{V}

$$
R(x, y)=\exists z \cdot a_{2}(x, z) \wedge a_{2}(z, y)
$$

$$
Q(D) \subseteq R(\mathbf{V}(D))
$$

$$
R(\mathbf{V}(D)) \subseteq Q(D)
$$

Example: proving determinacy

$$
\sigma=\{a\} \quad \mathbf{V}=\left\{Q_{a_{2}}(x, y)=x \xrightarrow{a^{2}} y\right\} \quad \tau=\left\{a_{2}\right\}
$$

How to prove that \mathbf{V} determines $Q(x, y)=x \xrightarrow{a^{4}} y$?
\rightarrow By providing a rewriting of Q using \mathbf{V}

$$
R(x, y)=\exists z \cdot a_{2}(x, z) \wedge a_{2}(z, y)
$$

$$
Q(D) \subseteq R(\mathbf{V}(D))
$$

$$
R(\mathbf{V}(D)) \subseteq Q(D)
$$

Example: proving determinacy

$$
\sigma=\{a\} \quad \mathbf{V}=\left\{Q_{a_{2}}(x, y)=x \xrightarrow{a^{2}} y\right\} \quad \tau=\left\{a_{2}\right\}
$$

How to prove that \mathbf{V} determines $Q(x, y)=x \xrightarrow{a^{4}} y$?
\rightarrow By providing a rewriting of Q using \mathbf{V}

$$
R(x, y)=\exists z \cdot a_{2}(x, z) \wedge a_{2}(z, y)
$$

$$
Q(D) \subseteq R(\mathbf{V}(D)) \checkmark \quad R(\mathbf{V}(D)) \subseteq Q(D)
$$

Example: proving determinacy

$$
\sigma=\{a\} \quad \mathbf{V}=\left\{Q_{a_{2}}(x, y)=x \xrightarrow{a^{2}} y\right\} \quad \tau=\left\{a_{2}\right\}
$$

How to prove that \mathbf{V} determines $Q(x, y)=x \xrightarrow{a^{4}} y$?
\rightarrow By providing a rewriting of Q using \mathbf{V}

$$
R(x, y)=\exists z \cdot a_{2}(x, z) \wedge a_{2}(z, y)
$$

$$
Q(D) \subseteq R(\mathbf{V}(D)) \checkmark \quad R(\mathbf{V}(D)) \subseteq Q(D)
$$

Example: proving determinacy

$$
\sigma=\{a\} \quad \mathbf{V}=\left\{Q_{a_{2}}(x, y)=x \xrightarrow{a^{2}} y\right\} \quad \tau=\left\{a_{2}\right\}
$$

How to prove that \mathbf{V} determines $Q(x, y)=x \xrightarrow{a^{4}} y$?
\rightarrow By providing a rewriting of Q using \mathbf{V}

$$
R(x, y)=\exists z \cdot a_{2}(x, z) \wedge a_{2}(z, y)
$$

$Q(D) \subseteq R(\mathbf{V}(D))$
$R(\mathbf{V}(D)) \subseteq Q(D)$

Example: proving determinacy

$$
\sigma=\{a\} \quad \mathbf{V}=\left\{Q_{a_{2}}(x, y)=x \xrightarrow{a^{2}} y\right\} \quad \tau=\left\{a_{2}\right\}
$$

How to prove that \mathbf{V} determines $Q(x, y)=x \xrightarrow{a^{4}} y$?
\rightarrow By providing a rewriting of Q using \mathbf{V}

$$
R(x, y)=\exists z \cdot a_{2}(x, z) \wedge a_{2}(z, y)
$$

$Q(D) \subseteq R(\mathbf{V}(D)) \checkmark$
$R(\mathbf{V}(D)) \subseteq Q(D)$

Example: proving determinacy

$$
\sigma=\{a\} \quad \mathbf{V}=\left\{Q_{\mathrm{a}_{2}}(x, y)=x \xrightarrow{a^{2}} y\right\} \quad \tau=\left\{a_{2}\right\}
$$

How to prove that \mathbf{V} determines $Q(x, y)=x \xrightarrow{a^{4}} y$?
\rightarrow By providing a rewriting of Q using \mathbf{V}

$$
R(x, y)=\exists z \cdot a_{2}(x, z) \wedge a_{2}(z, y)
$$

$Q(D) \subseteq R(\mathbf{V}(D))$
$R(\mathbf{V}(D)) \subseteq Q(D) \checkmark$

Example: it's not always that simple...

$$
\sigma=\{a\} \quad \mathbf{V}=\left\{\begin{array}{l}
Q_{a_{3}}(x, y)=x \xrightarrow{a^{3}} y \\
Q_{a_{4}}(x, y)=x \xrightarrow{a^{4}} y
\end{array}\right\} \quad \tau=\left\{a_{3}, a_{4}\right\}
$$

Example: it's not always that simple...

$$
\begin{array}{cc}
\sigma=\{a\} \quad \mathbf{V}=\left\{\begin{array}{l}
Q_{a_{3}}(x, y)=x \xrightarrow{a^{3}} y \\
Q_{a_{4}}(x, y)=x \xrightarrow{a^{4}} y
\end{array}\right\} & \tau=\left\{a_{3}, a_{4}\right\} \\
\text { Does } \mathbf{V} \text { determine } Q(x, y)=x \xrightarrow{a^{5}} y ?
\end{array}
$$

Example: it's not always that simple...

$$
\begin{gathered}
\sigma=\{a\} \quad \mathbf{V}=\left\{\begin{array}{l}
Q_{a_{3}}(x, y)=x \xrightarrow{a^{3}} y \\
Q_{a_{4}}(x, y)=x \xrightarrow{a^{4}} y
\end{array}\right\} \\
\text { Does } \mathbf{V} \text { determine } Q(x, y)=x \xrightarrow{a^{5}} y ? \\
R(x, y)=\exists z \cdot a_{4}(x, z) \wedge\left(\forall z^{\prime} \cdot a_{3}\left(z^{\prime}, z\right) \Rightarrow a_{4}\left(z^{\prime}, y\right)\right)
\end{gathered}
$$

Example: it's not always that simple...

$$
\begin{gathered}
\sigma=\{a\} \quad \mathbf{V}=\left\{\begin{array}{l}
Q_{a_{3}}(x, y)=x \xrightarrow{a^{3}} y \\
Q_{a_{4}}(x, y)=x \xrightarrow{a^{4}} y
\end{array}\right\} \\
\text { Does } \mathbf{V} \text { determine } Q(x, y)=x \xrightarrow{a^{5}} y ? \\
R(x, y)=\exists z \cdot a_{4}(x, z) \wedge\left(\forall z^{\prime} \cdot a_{3}\left(z^{\prime}, z\right) \Rightarrow a_{4}\left(z^{\prime}, y\right)\right) \\
Q(D) \subseteq R(\mathbf{V}(D)) \quad R(\mathbf{V}(D)) \subseteq Q(D)
\end{gathered}
$$

Example: it's not always that simple...

$$
\sigma=\{a\} \quad \mathbf{V}=\left\{\begin{array}{l}
Q_{a_{3}}(x, y)=x \xrightarrow{a^{3}} y \\
Q_{a_{4}}(x, y)=x \xrightarrow{a^{4}} y
\end{array}\right\} \quad \tau=\left\{a_{3}, a_{4}\right\}
$$

Does \mathbf{V} determine $Q(x, y)=x \xrightarrow{a^{5}} y$?

$$
R(x, y)=\exists z \cdot a_{4}(x, z) \wedge\left(\forall z^{\prime} \cdot a_{3}\left(z^{\prime}, z\right) \Rightarrow a_{4}\left(z^{\prime}, y\right)\right)
$$

$Q(D) \subseteq R(\mathbf{V}(D))$

$$
R(\mathbf{V}(D)) \subseteq Q(D)
$$

Example: it's not always that simple...

$$
\sigma=\{a\} \quad \mathbf{V}=\left\{\begin{array}{l}
Q_{a_{3}}(x, y)=x \xrightarrow{a^{3}} y \\
Q_{a 4}(x, y)=x \xrightarrow{a^{4}} y
\end{array}\right\} \quad \tau=\left\{a_{3}, a_{4}\right\}
$$

Does \mathbf{V} determine $Q(x, y)=x \xrightarrow{a^{5}} y$?

$$
R(x, y)=\exists z \cdot a_{4}(x, z) \wedge\left(\forall z^{\prime} \cdot a_{3}\left(z^{\prime}, z\right) \Rightarrow a_{4}\left(z^{\prime}, y\right)\right)
$$

$$
Q(D) \subseteq R(\mathbf{V}(D))
$$

$$
R(\mathbf{V}(D)) \subseteq Q(D)
$$

Example: it's not always that simple...

$$
\sigma=\{a\} \quad \mathbf{V}=\left\{\begin{array}{l}
Q_{a_{3}}(x, y)=x \xrightarrow{a^{3}} y \\
Q_{a_{4}}(x, y)=x \xrightarrow{a^{4}} y
\end{array}\right\} \quad \tau=\left\{a_{3}, a_{4}\right\}
$$

Does \mathbf{V} determine $Q(x, y)=x \xrightarrow{a^{5}} y$?

$$
R(x, y)=\exists z \cdot a_{4}(x, z) \wedge\left(\forall z^{\prime} \cdot a_{3}\left(z^{\prime}, z\right) \Rightarrow a_{4}\left(z^{\prime}, y\right)\right)
$$

$Q(D) \subseteq R(\mathbf{V}(D))$ $R(\mathbf{V}(D)) \subseteq Q(D)$

Example: it's not always that simple...

$$
\sigma=\{a\} \quad \mathbf{V}=\left\{\begin{array}{l}
Q_{a_{3}}(x, y)=x \xrightarrow{a^{3}} y \\
Q_{a_{4}}(x, y)=x \xrightarrow{a^{4}} y
\end{array}\right\} \quad \tau=\left\{a_{3}, a_{4}\right\}
$$

Does \mathbf{V} determine $Q(x, y)=x \xrightarrow{a^{5}} y$?

$$
R(x, y)=\exists z \cdot a_{4}(x, z) \wedge\left(\forall z^{\prime} \cdot a_{3}\left(z^{\prime}, z\right) \Rightarrow a_{4}\left(z^{\prime}, y\right)\right)
$$

$Q(D) \subseteq R(\mathbf{V}(D))$ $R(\mathbf{V}(D)) \subseteq Q(D)$

Example: it's not always that simple...

$$
\sigma=\{a\} \quad \mathbf{V}=\left\{\begin{array}{l}
Q_{a_{3}}(x, y)=x \xrightarrow{a^{3}} y \\
Q_{a_{4}}(x, y)=x \xrightarrow{a^{4}} y
\end{array}\right\} \quad \tau=\left\{a_{3}, a_{4}\right\}
$$

Does \mathbf{V} determine $Q(x, y)=x \xrightarrow{a^{5}} y$?

$$
R(x, y)=\exists z \cdot a_{4}(x, z) \wedge\left(\forall z^{\prime} \cdot a_{3}\left(z^{\prime}, z\right) \Rightarrow a_{4}\left(z^{\prime}, y\right)\right)
$$

$Q(D) \subseteq R(\mathbf{V}(D))$ $R(\mathbf{V}(D)) \subseteq Q(D)$

Example: it's not always that simple...

$$
\sigma=\{a\} \quad \mathbf{V}=\left\{\begin{array}{l}
Q_{a_{3}}(x, y)=x \xrightarrow{a^{3}} y \\
Q_{a_{4}}(x, y)=x \xrightarrow{a^{4}} y
\end{array}\right\} \quad \tau=\left\{a_{3}, a_{4}\right\}
$$

Does \mathbf{V} determine $Q(x, y)=x \xrightarrow{a^{5}} y$?

$$
R(x, y)=\exists z \cdot a_{4}(x, z) \wedge\left(\forall z^{\prime} \cdot a_{3}\left(z^{\prime}, z\right) \Rightarrow a_{4}\left(z^{\prime}, y\right)\right)
$$

$Q(D) \subseteq R(\mathbf{V}(D)) \checkmark$ $R(\mathbf{V}(D)) \subseteq Q(D)$

Example: it's not always that simple...

$$
\sigma=\{a\} \quad \mathbf{V}=\left\{\begin{array}{l}
Q_{a_{3}}(x, y)=x \xrightarrow{a^{3}} y \\
Q_{a_{4}}(x, y)=x \xrightarrow{a^{4}} y
\end{array}\right\} \quad \tau=\left\{a_{3}, a_{4}\right\}
$$

Does \mathbf{V} determine $Q(x, y)=x \xrightarrow{a^{5}} y$?

$$
R(x, y)=\exists z \cdot a_{4}(x, z) \wedge\left(\forall z^{\prime} \cdot a_{3}\left(z^{\prime}, z\right) \Rightarrow a_{4}\left(z^{\prime}, y\right)\right)
$$

$Q(D) \subseteq R(\mathbf{V}(D)) \checkmark$
$R(\mathbf{V}(D)) \subseteq Q(D)$

Example: it's not always that simple...

$$
\sigma=\{a\} \quad \mathbf{V}=\left\{\begin{array}{l}
Q_{a_{3}}(x, y)=x \xrightarrow{a^{3}} y \\
Q_{a_{4}}(x, y)=x \xrightarrow{a^{4}} y
\end{array}\right\} \quad \tau=\left\{a_{3}, a_{4}\right\}
$$

Does \mathbf{V} determine $Q(x, y)=x \xrightarrow{a^{5}} y$?

$$
R(x, y)=\exists z \cdot a_{4}(x, z) \wedge\left(\forall z^{\prime} \cdot a_{3}\left(z^{\prime}, z\right) \Rightarrow a_{4}\left(z^{\prime}, y\right)\right)
$$

$Q(D) \subseteq R(\mathbf{V}(D)) \checkmark$
$R(\mathbf{V}(D)) \subseteq Q(D)$

a_{4}

Example: it's not always that simple...

$$
\sigma=\{a\} \quad \mathbf{V}=\left\{\begin{array}{l}
Q_{a_{3}}(x, y)=x \xrightarrow{a^{3}} y \\
Q_{a_{4}}(x, y)=x \xrightarrow{a^{4}} y
\end{array}\right\} \quad \tau=\left\{a_{3}, a_{4}\right\}
$$

Does \mathbf{V} determine $Q(x, y)=x \xrightarrow{a^{5}} y$?

$$
R(x, y)=\exists z \cdot a_{4}(x, z) \wedge\left(\forall z^{\prime} \cdot a_{3}\left(z^{\prime}, z\right) \Rightarrow a_{4}\left(z^{\prime}, y\right)\right)
$$

$Q(D) \subseteq R(\mathbf{V}(D)) \checkmark$
$R(\mathbf{V}(D)) \subseteq Q(D)$

Example: it's not always that simple...

$$
\sigma=\{a\} \quad \mathbf{V}=\left\{\begin{array}{l}
Q_{a_{3}}(x, y)=x \xrightarrow{a^{3}} y \\
Q_{a_{4}}(x, y)=x \xrightarrow{a^{4}} y
\end{array}\right\} \quad \tau=\left\{a_{3}, a_{4}\right\}
$$

Does \mathbf{V} determine $Q(x, y)=x \xrightarrow{a^{5}} y$?

$$
R(x, y)=\exists z \cdot a_{4}(x, z) \wedge\left(\forall z^{\prime} \cdot a_{3}\left(z^{\prime}, z\right) \Rightarrow a_{4}\left(z^{\prime}, y\right)\right)
$$

$Q(D) \subseteq R(\mathbf{V}(D)) \checkmark$
$R(\mathbf{V}(D)) \subseteq Q(D)$

Example: it's not always that simple...

$$
\sigma=\{a\} \quad \mathbf{V}=\left\{\begin{array}{l}
Q_{a_{3}}(x, y)=x \xrightarrow{a^{3}} y \\
Q_{a_{4}}(x, y)=x \xrightarrow{a^{4}} y
\end{array}\right\} \quad \tau=\left\{a_{3}, a_{4}\right\}
$$

Does \mathbf{V} determine $Q(x, y)=x \xrightarrow{a^{5}} y$?

$$
R(x, y)=\exists z \cdot a_{4}(x, z) \wedge\left(\forall z^{\prime} \cdot a_{3}\left(z^{\prime}, z\right) \Rightarrow a_{4}\left(z^{\prime}, y\right)\right)
$$

$Q(D) \subseteq R(\mathbf{V}(D)) \checkmark$

$$
R(\mathbf{V}(D)) \subseteq Q(D)
$$

Example: it's not always that simple...

$$
\sigma=\{a\} \quad \mathbf{V}=\left\{\begin{array}{l}
Q_{a_{3}}(x, y)=x \xrightarrow{a^{3}} y \\
Q_{a_{4}}(x, y)=x \xrightarrow{a^{4}} y
\end{array}\right\} \quad \tau=\left\{a_{3}, a_{4}\right\}
$$

Does \mathbf{V} determine $Q(x, y)=x \xrightarrow{a^{5}} y$?

$$
R(x, y)=\exists z \cdot a_{4}(x, z) \wedge\left(\forall z^{\prime} \cdot a_{3}\left(z^{\prime}, z\right) \Rightarrow a_{4}\left(z^{\prime}, y\right)\right)
$$

$Q(D) \subseteq R(\mathbf{V}(D)) \checkmark$

On the relationship between determinacy and rewriting(s)

Let \mathbf{V} be a view from σ to τ and Q be a query over σ.
Reminder: if there exists R such that $Q(D)=R(\mathbf{V}(D))$, then $\mathbf{V} \rightarrow Q$. What about the converse?

On the relationship between determinacy and rewriting(s)

Let \mathbf{V} be a view from σ to τ and Q be a query over σ.
Reminder: if there exists R such that $Q(D)=R(\mathbf{V}(D))$, then $\mathbf{V} \rightarrow Q$. What about the converse?

Assume $\forall D, D^{\prime} \cdot \mathbf{V}(D)=\mathbf{V}\left(D^{\prime}\right) \Longrightarrow Q(D)=Q\left(D^{\prime}\right)$

On the relationship between determinacy and rewriting(s)

Let \mathbf{V} be a view from σ to τ and Q be a query over σ.
Reminder: if there exists R such that $Q(D)=R(\mathbf{V}(D))$, then $\mathbf{V} \rightarrow Q$. What about the converse?

Assume $\forall D, D^{\prime} \cdot \mathbf{V}(D)=\mathbf{V}\left(D^{\prime}\right) \Longrightarrow Q(D)=Q\left(D^{\prime}\right)$
\rightarrow functional dependency between $\mathbf{V}(D)$ and $Q(D)$
$Q, \mathbf{V} \rightsquigarrow f$: function induced by Q using \mathbf{V}

On the relationship between determinacy and rewriting(s)

Let \mathbf{V} be a view from σ to τ and Q be a query over σ.
Reminder: if there exists R such that $Q(D)=R(\mathbf{V}(D))$, then $\mathbf{V} \rightarrow Q$. What about the converse?

Assume $\forall D, D^{\prime} \cdot \mathbf{V}(D)=\mathbf{V}\left(D^{\prime}\right) \Longrightarrow Q(D)=Q\left(D^{\prime}\right)$
\rightarrow functional dependency between $\mathbf{V}(D)$ and $Q(D)$
$Q, \mathbf{V} \rightsquigarrow f$: function induced by Q using \mathbf{V}
f is only defined over view images.
A rewriting is any query over τ that coincides with f on view images.

On the relationship between determinacy and rewriting(s)

Let \mathbf{V} be a view from σ to τ and Q be a query over σ.
Reminder: if there exists R such that $Q(D)=R(\mathbf{V}(D))$, then $\mathbf{V} \rightarrow Q$. What about the converse?

Assume $\forall D, D^{\prime} \cdot \mathbf{V}(D)=\mathbf{V}\left(D^{\prime}\right) \Longrightarrow Q(D)=Q\left(D^{\prime}\right)$
\rightarrow functional dependency between $\mathbf{V}(D)$ and $Q(D)$
$Q, \mathbf{V} \rightsquigarrow f$: function induced by Q using \mathbf{V}
f is only defined over view images.
A rewriting is any query over τ that coincides with f on view images.
Does there always exist one?

On the relationship between determinacy and rewriting(s)

Let \mathbf{V} be a view from σ to τ and Q be a query over σ.
Reminder: if there exists R such that $Q(D)=R(\mathbf{V}(D))$, then $\mathbf{V} \rightarrow Q$. What about the converse?

Assume $\forall D, D^{\prime} \cdot \mathbf{V}(D)=\mathbf{V}\left(D^{\prime}\right) \Longrightarrow Q(D)=Q\left(D^{\prime}\right)$
\rightarrow functional dependency between $\mathbf{V}(D)$ and $Q(D)$
$Q, \mathbf{V} \rightsquigarrow f$: function induced by Q using \mathbf{V}
f is only defined over view images.
A rewriting is any query over τ that coincides with f on view images.
Does there always exist one?
Yes! $\operatorname{cert}_{Q, v}$ is always a rewriting.

On the relationship between determinacy and rewriting(s)

Let \mathbf{V} be a view from σ to τ and Q be a query over σ.
Reminder: if there exists R such that $Q(D)=R(\mathbf{V}(D))$, then $\mathbf{V} \rightarrow Q$. What about the converse?

Assume $\forall D, D^{\prime} \cdot \mathbf{V}(D)=\mathbf{V}\left(D^{\prime}\right) \Longrightarrow Q(D)=Q\left(D^{\prime}\right)$
\rightarrow functional dependency between $\mathbf{V}(D)$ and $Q(D)$
$Q, \mathbf{V} \rightsquigarrow f$: function induced by Q using \mathbf{V}
f is only defined over view images.
A rewriting is any query over τ that coincides with f on view images.
Does there always exist one?
Yes! cert ${ }_{Q, v}$ is always a rewriting.
But there can be more, as we have seen in previous examples.

On the relationship between determinacy and rewriting(s)

Let \mathbf{V} be a view from σ to τ and Q be a query over σ.
Reminder: if there exists R such that $Q(D)=R(\mathbf{V}(D))$, then $\mathbf{V} \rightarrow Q$. What about the converse?

Assume $\forall D, D^{\prime} \cdot \mathbf{V}(D)=\mathbf{V}\left(D^{\prime}\right) \Longrightarrow Q(D)=Q\left(D^{\prime}\right)$
\rightarrow functional dependency between $\mathbf{V}(D)$ and $Q(D)$
$Q, \mathbf{V} \rightsquigarrow f$: function induced by Q using \mathbf{V}
f is only defined over view images.
A rewriting is any query over τ that coincides with f on view images.
Does there always exist one?
Yes! cert ${ }_{Q, v}$ is always a rewriting.
But there can be more, as we have seen in previous examples.
Rewritings can differ in behavior and complexity outside of view images.

Example: different rewritings of varying complexity

$$
\sigma=\{c, e, p\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{\text {edge }}(x, y)=e(x, y) \\
Q_{\text {peletel }}(x)=p(x) \\
Q_{\text {color }}(x)=\exists z \cdot p(z) \wedge c(x, z) \\
Q_{\text {error }}(x, y)=\exists z \cdot c(x, z) \wedge c(y, z) \wedge e(x, y)
\end{array}\right\}
$$

Example: different rewritings of varying complexity

$$
\sigma=\{c, e, p\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{\text {edge }}(x, y)=e(x, y) \\
Q_{\text {peletel }}(x)=p(x) \\
Q_{\text {color }}(x)=\exists z \cdot p(z) \wedge c(x, z) \\
Q_{\text {error }}(x, y)=\exists z \cdot c(x, z) \wedge c(y, z) \wedge e(x, y)
\end{array}\right\}
$$

$$
Q(x)=p(x) \wedge Q_{\text {error }}
$$

Example: different rewritings of varying complexity

$$
\sigma=\{c, e, p\}
$$

$$
\mathbf{V}=\left\{\begin{array}{c}
Q_{\text {edge }}(x, y)=e(x, y) \\
Q_{\text {papelte }}(x)=p(x) \\
Q_{\text {color }}(x)=\exists z \cdot p(z) \wedge c(x, z) \\
Q_{\text {errror }}(x, y)=\exists z \cdot c(x, z) \wedge c(y, z) \wedge e(x, y)
\end{array}\right\}
$$

$$
Q(x)=p(x) \wedge Q_{\text {error }}
$$

$$
R_{1}(x)=x \in \operatorname{cert}_{Q, v}(E)
$$

$$
R_{2}(x)=\operatorname{palette}(x) \wedge \operatorname{error}()
$$

Example: different rewritings of varying complexity

$$
\sigma=\{c, e, p\}
$$

$$
\mathbf{V}=\left\{\begin{array}{c}
Q_{\text {edge }}(x, y)=e(x, y) \\
Q_{\text {papelte }}(x)=p(x) \\
Q_{\text {color }}(x)=\exists z \cdot p(z) \wedge c(x, z) \\
Q_{\text {errror }}(x, y)=\exists z \cdot c(x, z) \wedge c(y, z) \wedge e(x, y)
\end{array}\right\}
$$

$$
Q(x)=p(x) \wedge Q_{\text {error }}
$$

$R_{1}(x)=x \in \operatorname{cert}_{Q, \mathbf{v}}(E)$
(check if the graph is 3 -colorable)
$R_{2}(x)=\operatorname{palette}(x) \wedge$ error ()
(trust the view instance)

Some problems around determinacy and rewritings

```
Problem : Determinacy for languages }\mathcal{L}\mathrm{ and }\mp@subsup{\mathcal{L}}{}{\prime
Input: An \mathcal{L}\mathrm{ -view V and an }\mp@subsup{\mathcal{L}}{}{\prime}\mathrm{ -query }Q
Question : Does V }->\mathrm{ Q ?
```


Some problems around determinacy and rewritings

$$
\begin{array}{ll}
\text { Problem } & : \text { Determinacy for languages } \mathcal{L} \text { and } \mathcal{L}^{\prime} \\
\text { Input } & : \text { An } \mathcal{L} \text {-view } \mathbf{V} \text { and an } \mathcal{L}^{\prime} \text {-query } Q \\
\text { Question } & : \text { Does } \mathbf{V} \rightarrow Q \text { ? }
\end{array}
$$

Problem : \mathcal{P}-Rewriting for languages \mathcal{L} and \mathcal{L}^{\prime}
Input : An \mathcal{L}-view \mathbf{V} and an \mathcal{L}^{\prime}-query Q st $\mathbf{V} \rightarrow Q$
Question : Is there a rewriting of Q using \mathbf{V} satisfying \mathcal{P} ?

Some problems around determinacy and rewritings

```
Problem : Determinacy for languages }\mathcal{L}\mathrm{ and }\mp@subsup{\mathcal{L}}{}{\prime
Input: An \mathcal{L}\mathrm{ -view V and an }\mp@subsup{\mathcal{L}}{}{\prime}\mathrm{ -query }Q
Question : Does V }->\mathrm{ Q?
```

```
Problem : \(\mathcal{P}\)-Rewriting for languages \(\mathcal{L}\) and \(\mathcal{L}^{\prime}\)
Input : An \(\mathcal{L}\)-view \(\mathbf{V}\) and an \(\mathcal{L}^{\prime}\)-query \(Q\) st \(\mathbf{V} \rightarrow Q\)
Question : Is there a rewriting of \(Q\) using \(\mathbf{V}\) satisfying \(\mathcal{P}\) ?
```


Example:

■ Is there a rewriting that can be expressed in first-order logic?

- Is there a rewriting with PTime evaluation complexity?
- Is there a rewriting that is monotone?

How hard is the determinacy problem?

Short answer: it's hard, even for simple query and view languages.

How hard is the determinacy problem?

Short answer: it's hard, even for simple query and view languages.

- [Gogacz, Marcinkowski'16]: Determinacy is undecidable for conjunctive queries and views.

How hard is the determinacy problem?

Short answer: it's hard, even for simple query and view languages.

- [Gogacz, Marcinkowski'16]: Determinacy is undecidable for conjunctive queries and views.
- [Nash, Segoufin, Vianu'07]: Monotone rewritings of conjunctive queries using conjunctive views can be expressed in CQ. (Existence is NP-complete, using [Levy et al'95])

How hard is the determinacy problem?

Short answer: it's hard, even for simple query and view languages.

- [Gogacz, Marcinkowski'16]: Determinacy is undecidable for conjunctive queries and views.
- [Nash, Segoufin, Vianu'07]: Monotone rewritings of conjunctive queries using conjunctive views can be expressed in CQ. (Existence is NP-complete, using [Levy et al'95])
- [Afrati'11]: Determinacy is decidable for chain queries and chain views. Rewritings can be expressed in FO.

How hard is the determinacy problem?

Short answer: it's hard, even for simple query and view languages.

- [Gogacz, Marcinkowski'16]: Determinacy is undecidable for conjunctive queries and views.
- [Nash, Segoufin, Vianu'07]: Monotone rewritings of conjunctive queries using conjunctive views can be expressed in CQ. (Existence is NP-complete, using [Levy et al'95])
- [Afrati'11]: Determinacy is decidable for chain queries and chain views. Rewritings can be expressed in FO.

Some results over graphs:

How hard is the determinacy problem?

Short answer: it's hard, even for simple query and view languages.

- [Gogacz, Marcinkowski'16]: Determinacy is undecidable for conjunctive queries and views.
- [Nash, Segoufin, Vianu'07]: Monotone rewritings of conjunctive queries using conjunctive views can be expressed in CQ. (Existence is NP-complete, using [Levy et al'95])
- [Afrati'11]: Determinacy is decidable for chain queries and chain views. Rewritings can be expressed in FO.

Some results over graphs:

- [Gluch et al'19]: Determinacy is undecidable for finite RPQs.

How hard is the determinacy problem?

Short answer: it's hard, even for simple query and view languages.

- [Gogacz, Marcinkowski'16]: Determinacy is undecidable for conjunctive queries and views.
- [Nash, Segoufin, Vianu'07]: Monotone rewritings of conjunctive queries using conjunctive views can be expressed in CQ. (Existence is NP-complete, using [Levy et al'95])
- [Afrati'11]: Determinacy is decidable for chain queries and chain views. Rewritings can be expressed in FO.

Some results over graphs:

- [Gluch et al'19]: Determinacy is undecidable for finite RPQs.
- [F., Segoufin, Sirangelo'15]: Monotone rewritings of RPQ queries using RPQ views can be expressed in Datalog.
(Existence is ExpSpace-complete, using [Calvanese et al'02])

Some open problems

Question 1

In which language can we rewrite CQ queries using CQ views?

Some open problems

Question 1

In which language can we rewrite CQ queries using CQ views?

Question 2
In which language can we rewrite RPQ queries using RPQ views?

Some open problems

Question 1

In which language can we rewrite CQ queries using CQ views?

Question 2

In which language can we rewrite RPQ queries using RPQ views?

Question 3

Is determinacy decidable for chain queries and disjunctive chain views?

One last example

Example: disjunctive chain queries - the Chase

$$
\begin{gathered}
\sigma=\{a\} \\
\tau=\{(2),(1,2)\}
\end{gathered} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{2}(x, y)=x \xrightarrow{a^{2}} y \\
Q_{1,2}(x, y)=(x \xrightarrow{a} y) \vee\left(x \xrightarrow{a^{2}} y\right)
\end{array}\right\}
$$

Example: disjunctive chain queries - the Chase

$$
\begin{gathered}
\sigma=\{a\} \\
\tau=\{(2),(1,2)\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{2}(x, y)=x \xrightarrow{a^{2}} y \\
Q_{1,2}(x, y)=(x \xrightarrow{a} y) \vee\left(x \xrightarrow{a^{2}} y\right)
\end{array}\right\}, ~
\end{gathered}
$$

Does \mathbf{V} determine $Q(x, y)=x \xrightarrow{a} y$?

Example: disjunctive chain queries - the Chase

$$
\begin{gathered}
\sigma=\{a\} \\
\tau=\{(2),(1,2)\}
\end{gathered} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{2}(x, y)=x \stackrel{a^{2}}{\longrightarrow} y \\
Q_{1,2}(x, y)=(x \xrightarrow{a} y) \vee\left(x \xrightarrow{a^{2}} y\right)
\end{array}\right\}
$$

Does \mathbf{V} determine $Q(x, y)=x \xrightarrow{a} y$?

Example: disjunctive chain queries - the Chase

$$
\begin{gathered}
\sigma=\{a\} \\
\tau=\{(2),(1,2)\}
\end{gathered} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{2}(x, y)=x \xrightarrow{a^{2}} y \\
Q_{1,2}(x, y)=(x \xrightarrow{a} y) \vee\left(x \xrightarrow{a^{2}} y\right)
\end{array}\right\}
$$

Does \mathbf{V} determine $Q(x, y)=x \xrightarrow{a} y$?

Example: disjunctive chain queries - the Chase

$$
\begin{gathered}
\sigma=\{a\} \\
\tau=\{(2),(1,2)\}
\end{gathered} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{2}(x, y)=x \xrightarrow{a^{2}} y \\
Q_{1,2}(x, y)=(x \xrightarrow{a} y) \vee\left(x \xrightarrow{a^{2}} y\right)
\end{array}\right\}
$$

Does \mathbf{V} determine $Q(x, y)=x \xrightarrow{a} y$?

Example: disjunctive chain queries - the Chase

$$
\begin{gathered}
\sigma=\{a\} \\
\tau=\{(2),(1,2)\}
\end{gathered} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{2}(x, y)=x \xrightarrow{a^{2}} y \\
Q_{1,2}(x, y)=(x \xrightarrow{a} y) \vee\left(x \xrightarrow{a^{2}} y\right)
\end{array}\right\}
$$

Does \mathbf{V} determine $Q(x, y)=x \xrightarrow{a} y$?

Example: disjunctive chain queries - the Chase

$$
\begin{gathered}
\sigma=\{a\} \\
\tau=\{(2),(1,2)\}
\end{gathered} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{2}(x, y)=x \xrightarrow{a^{2}} y \\
Q_{1,2}(x, y)=(x \xrightarrow{a} y) \vee\left(x \xrightarrow{a^{2}} y\right)
\end{array}\right\}
$$

Does \mathbf{V} determine $Q(x, y)=x \xrightarrow{a} y$?

Example: disjunctive chain queries - a rewriting

$$
\mathbf{V}=\left\{\begin{array}{c}
Q_{2}(x, y)=x \xrightarrow{a^{2}} y \\
Q_{1,2}(x, y)=(x \xrightarrow{a} y) \vee\left(x \xrightarrow{a^{2}} y\right) \\
Q_{2,3}(x, y)=\left(x \xrightarrow{a^{2}} y\right) \vee\left(x \xrightarrow{a^{3}} y\right)
\end{array}\right\}
$$

Example: disjunctive chain queries - a rewriting

$$
\mathbf{V}=\left\{\begin{array}{c}
Q_{2}(x, y)=x \xrightarrow{a^{2}} y \\
Q_{1,2}(x, y)=(x \xrightarrow{a} y) \vee\left(x \xrightarrow{a^{2}} y\right) \\
Q_{2,3}(x, y)=\left(x \xrightarrow{a^{2}} y\right) \vee\left(x \xrightarrow{a^{3}} y\right)
\end{array}\right\}
$$

Does \mathbf{V} determine $Q(x, y)=x \xrightarrow{a^{5}} y$?

Example: disjunctive chain queries - a rewriting

$$
\begin{gathered}
\sigma=\{a\} \\
\tau=\left\{a_{2}, a_{1,2}, a_{2,3}\right\}
\end{gathered}
$$

$$
\mathbf{V}=\left\{\begin{array}{c}
Q_{2}(x, y)=x \xrightarrow{a^{2}} y \\
Q_{1,2}(x, y)=(x \xrightarrow{a} y) \vee\left(x \xrightarrow{a^{2}} y\right) \\
Q_{2,3}(x, y)=\left(x \xrightarrow{a^{2}} y\right) \vee\left(x \xrightarrow{a^{3}} y\right)
\end{array}\right\}
$$

$$
\text { Does } \mathbf{V} \text { determine } Q(x, y)=x \xrightarrow{a^{5}} y \text { ? }
$$

$$
\begin{aligned}
& R\left(x_{0}, x_{5}\right)=\exists x_{2}, x_{3} \cdot \\
& a_{2}\left(x_{0}, x_{2}\right) \wedge a_{2}\left(x_{3}, x_{5}\right) \\
& \cdot a_{2,3}\left(x_{2}, x_{5}\right) \\
& \cdot \forall z \cdot a_{1,2}\left(z, x_{2}\right) \Rightarrow\left(a_{2}\left(z, x_{2}\right) \vee a_{2}\left(z, x_{3}\right)\right)
\end{aligned}
$$

Example: disjunctive chain queries - a rewriting

$$
\mathbf{V}=\left\{\begin{array}{c}
Q_{2}(x, y)=x \xrightarrow{a^{2}} y \\
Q_{1,2}(x, y)=(x \xrightarrow{a} y) \vee\left(x \xrightarrow{a^{2}} y\right) \\
Q_{2,3}(x, y)=\left(x \xrightarrow{a^{2}} y\right) \vee\left(x \xrightarrow{a^{3}} y\right)
\end{array}\right\}
$$

Does \mathbf{V} determine $Q(x, y)=x \xrightarrow{a^{5}} y$?

$$
\begin{aligned}
R\left(x_{0}, x_{5}\right)=\exists x_{2}, x_{3} & \cdot a_{2}\left(x_{0}, x_{2}\right) \wedge a_{2}\left(x_{3}, x_{5}\right) \\
\cdot & a_{2,3}\left(x_{2}, x_{5}\right) \\
\cdot & \forall z \cdot a_{1,2}\left(z, x_{2}\right) \Rightarrow\left(a_{2}\left(z, x_{2}\right) \vee a_{2}\left(z, x_{3}\right)\right)
\end{aligned}
$$

Example: disjunctive chain queries - a rewriting

$$
\mathbf{V}=\left\{\begin{array}{c}
Q_{2}(x, y)=x \xrightarrow{a^{2}} y \\
Q_{1,2}(x, y)=(x \xrightarrow{a} y) \vee\left(x \xrightarrow{a^{2}} y\right) \\
Q_{2,3}(x, y)=\left(x \xrightarrow{a^{2}} y\right) \vee\left(x \xrightarrow{a^{3}} y\right)
\end{array}\right\}
$$

Does \mathbf{V} determine $Q(x, y)=x \xrightarrow{a^{5}} y$?

$$
\begin{aligned}
R\left(x_{0}, x_{5}\right)=\exists x_{2}, x_{3} & \cdot a_{2}\left(x_{0}, x_{2}\right) \wedge a_{2}\left(x_{3}, x_{5}\right) \\
\cdot & a_{2,3}\left(x_{2}, x_{5}\right) \\
\cdot & \forall z \cdot a_{1,2}\left(z, x_{2}\right) \Rightarrow\left(a_{2}\left(z, x_{2}\right) \vee a_{2}\left(z, x_{3}\right)\right)
\end{aligned}
$$

Example: disjunctive chain queries - a rewriting

$$
\mathbf{V}=\left\{\begin{array}{c}
Q_{2}(x, y)=x \xrightarrow{a^{2}} y \\
Q_{1,2}(x, y)=(x \xrightarrow{a} y) \vee\left(x \xrightarrow{a^{2}} y\right) \\
Q_{2,3}(x, y)=\left(x \xrightarrow{a^{2}} y\right) \vee\left(x \xrightarrow{a^{3}} y\right)
\end{array}\right\}
$$

Does \mathbf{V} determine $Q(x, y)=x \xrightarrow{a^{5}} y$?

$$
\begin{aligned}
R\left(x_{0}, x_{5}\right)=\exists x_{2}, x_{3} \cdot & a_{2}\left(x_{0}, x_{2}\right) \wedge a_{2}\left(x_{3}, x_{5}\right) \\
\cdot & a_{2,3}\left(x_{2}, x_{5}\right) \\
\cdot & \forall z \cdot a_{1,2}\left(z, x_{2}\right) \Rightarrow\left(a_{2}\left(z, x_{2}\right) \vee a_{2}\left(z, x_{3}\right)\right)
\end{aligned}
$$

Example: disjunctive chain queries - a rewriting

$$
\mathbf{V}=\left\{\begin{array}{c}
Q_{2}(x, y)=x \xrightarrow{a^{2}} y \\
Q_{1,2}(x, y)=(x \xrightarrow{a} y) \vee\left(x \xrightarrow{a^{2}} y\right) \\
Q_{2,3}(x, y)=\left(x \xrightarrow{a^{2}} y\right) \vee\left(x \xrightarrow{a^{3}} y\right)
\end{array}\right\}
$$

Does \mathbf{V} determine $Q(x, y)=x \xrightarrow{a^{5}} y$?

$$
\begin{aligned}
R\left(x_{0}, x_{5}\right)=\exists x_{2}, x_{3} \cdot & a_{2}\left(x_{0}, x_{2}\right) \wedge a_{2}\left(x_{3}, x_{5}\right) \\
\cdot & a_{2,3}\left(x_{2}, x_{5}\right) \\
\cdot & \forall z \cdot a_{1,2}\left(z, x_{2}\right) \Rightarrow\left(a_{2}\left(z, x_{2}\right) \vee a_{2}\left(z, x_{3}\right)\right)
\end{aligned}
$$

Example: disjunctive chain queries - a rewriting

$$
\mathbf{V}=\left\{\begin{array}{c}
Q_{2}(x, y)=x \xrightarrow{a^{2}} y \\
Q_{1,2}(x, y)=(x \xrightarrow{a} y) \vee\left(x \xrightarrow{a^{2}} y\right) \\
Q_{2,3}(x, y)=\left(x \xrightarrow{a^{2}} y\right) \vee\left(x \xrightarrow{a^{3}} y\right)
\end{array}\right\}
$$

Does \mathbf{V} determine $Q(x, y)=x \xrightarrow{a^{5}} y$?

$$
\begin{aligned}
R\left(x_{0}, x_{5}\right)=\exists x_{2}, x_{3} \cdot & a_{2}\left(x_{0}, x_{2}\right) \wedge a_{2}\left(x_{3}, x_{5}\right) \\
\cdot & a_{2,3}\left(x_{2}, x_{5}\right) \\
\cdot & \forall z \cdot a_{1,2}\left(z, x_{2}\right) \Rightarrow\left(a_{2}\left(z, x_{2}\right) \vee a_{2}\left(z, x_{3}\right)\right)
\end{aligned}
$$

Example: disjunctive chain queries - a rewriting

$$
\mathbf{V}=\left\{\begin{array}{c}
Q_{2}(x, y)=x \xrightarrow{a^{2}} y \\
Q_{1,2}(x, y)=(x \xrightarrow{a} y) \vee\left(x \xrightarrow{a^{2}} y\right) \\
Q_{2,3}(x, y)=\left(x \xrightarrow{a^{2}} y\right) \vee\left(x \xrightarrow{a^{3}} y\right)
\end{array}\right\}
$$

Does \mathbf{V} determine $Q(x, y)=x \xrightarrow{a^{5}} y$?

$$
\begin{aligned}
R\left(x_{0}, x_{5}\right)=\exists x_{2}, x_{3} \cdot & a_{2}\left(x_{0}, x_{2}\right) \wedge a_{2}\left(x_{3}, x_{5}\right) \\
\cdot & a_{2,3}\left(x_{2}, x_{5}\right) \\
\cdot & \forall z \cdot a_{1,2}\left(z, x_{2}\right) \Rightarrow\left(a_{2}\left(z, x_{2}\right) \vee a_{2}\left(z, x_{3}\right)\right)
\end{aligned}
$$

Example: disjunctive chain queries - a rewriting

$$
\mathbf{V}=\left\{\begin{array}{c}
Q_{2}(x, y)=x \xrightarrow{a^{2}} y \\
Q_{1,2}(x, y)=(x \xrightarrow{a} y) \vee\left(x \xrightarrow{a^{2}} y\right) \\
Q_{2,3}(x, y)=\left(x \xrightarrow{a^{2}} y\right) \vee\left(x \xrightarrow{a^{3}} y\right)
\end{array}\right\}
$$

Does \mathbf{V} determine $Q(x, y)=x \xrightarrow{a^{5}} y$?

$$
\begin{aligned}
R\left(x_{0}, x_{5}\right)=\exists x_{2}, x_{3} \cdot & a_{2}\left(x_{0}, x_{2}\right) \wedge a_{2}\left(x_{3}, x_{5}\right) \\
\cdot & a_{2,3}\left(x_{2}, x_{5}\right) \\
\cdot & \forall z \cdot a_{1,2}\left(z, x_{2}\right) \Rightarrow\left(a_{2}\left(z, x_{2}\right) \vee a_{2}\left(z, x_{3}\right)\right)
\end{aligned}
$$

Example: disjunctive chain queries - a rewriting

$$
\mathbf{V}=\left\{\begin{array}{c}
Q_{2}(x, y)=x \xrightarrow{a^{2}} y \\
Q_{1,2}(x, y)=(x \xrightarrow{a} y) \vee\left(x \xrightarrow{a^{2}} y\right) \\
Q_{2,3}(x, y)=\left(x \xrightarrow{a^{2}} y\right) \vee\left(x \xrightarrow{a^{3}} y\right)
\end{array}\right\}
$$

Does \mathbf{V} determine $Q(x, y)=x \xrightarrow{a^{5}} y$?

$$
\begin{aligned}
R\left(x_{0}, x_{5}\right)=\exists x_{2}, x_{3} \cdot & a_{2}\left(x_{0}, x_{2}\right) \wedge a_{2}\left(x_{3}, x_{5}\right) \\
\cdot & a_{2,3}\left(x_{2}, x_{5}\right) \\
\cdot & \forall z \cdot a_{1,2}\left(z, x_{2}\right) \Rightarrow\left(a_{2}\left(z, x_{2}\right) \vee a_{2}\left(z, x_{3}\right)\right)
\end{aligned}
$$

Example: disjunctive chain queries - a rewriting

$$
\mathbf{V}=\left\{\begin{array}{c}
Q_{2}(x, y)=x \xrightarrow{a^{2}} y \\
Q_{1,2}(x, y)=(x \xrightarrow{a} y) \vee\left(x \xrightarrow{a^{2}} y\right) \\
Q_{2,3}(x, y)=\left(x \xrightarrow{a^{2}} y\right) \vee\left(x \xrightarrow{a^{3}} y\right)
\end{array}\right\}
$$

Does \mathbf{V} determine $Q(x, y)=x \xrightarrow{a^{5}} y$?

$$
\begin{aligned}
R\left(x_{0}, x_{5}\right)=\exists x_{2}, x_{3} \cdot & a_{2}\left(x_{0}, x_{2}\right) \wedge a_{2}\left(x_{3}, x_{5}\right) \\
\cdot & a_{2,3}\left(x_{2}, x_{5}\right) \\
\cdot & \forall z \cdot a_{1,2}\left(z, x_{2}\right) \Rightarrow\left(a_{2}\left(z, x_{2}\right) \vee a_{2}\left(z, x_{3}\right)\right)
\end{aligned}
$$

Example: disjunctive chain queries - homework

$$
\mathbf{V}=\left\{\begin{array}{c}
Q_{2}(x, y)=x \xrightarrow{a^{2}} y \\
Q_{1,2}(x, y)=(x \xrightarrow{a} y) \vee\left(x \xrightarrow{a^{2}} y\right) \\
Q_{2,5}(x, y)=\left(x \xrightarrow{a^{2}} y\right) \vee\left(x \xrightarrow{a^{5}} y\right)
\end{array}\right\}
$$

Can you prove that \mathbf{V} does not determine $Q(x, y)=x \xrightarrow{a^{9}} y$?

Example: disjunctive chain queries - homework

$$
\mathbf{V}=\left\{\begin{array}{c}
Q_{2}(x, y)=x \xrightarrow{a^{2}} y \\
Q_{1,2}(x, y)=(x \xrightarrow{a} y) \vee\left(x \xrightarrow{a^{2}} y\right) \\
Q_{2,5}(x, y)=\left(x \xrightarrow{a^{2}} y\right) \vee\left(x \xrightarrow{a^{5}} y\right)
\end{array}\right\}
$$

Can you prove that \mathbf{V} does not determine $Q(x, y)=x \xrightarrow{a^{9}} y$?

I know a proof...

Example: disjunctive chain queries - homework

$$
\mathbf{V}=\left\{\begin{array}{c}
Q_{2}(x, y)=x \xrightarrow{a^{2}} y \\
Q_{1,2}(x, y)=(x \xrightarrow{a} y) \vee\left(x \xrightarrow{a^{2}} y\right) \\
Q_{2,5}(x, y)=\left(x \xrightarrow{a^{2}} y\right) \vee\left(x \xrightarrow{a^{5}} y\right)
\end{array}\right\}
$$

Can you prove that \mathbf{V} does not determine $Q(x, y)=x \xrightarrow{a^{9}} y$?

I know a proof...
...and it's ugly...

Example: disjunctive chain queries - homework

$$
\tau=\left\{a_{2}, a_{1,2}, a_{2,5}\right\} \quad \mathbf{V}=\left\{\begin{array}{c}
Q_{2}(x, y)=x \xrightarrow{a^{2}} y \\
Q_{1,2}(x, y)=(x \xrightarrow{a} y) \vee\left(x \xrightarrow{a^{2}} y\right) \\
Q_{2,5}(x, y)=\left(x \xrightarrow{a^{2}} y\right) \vee\left(x \xrightarrow{a^{5}} y\right)
\end{array}\right\}
$$

Can you prove that \mathbf{V} does not determine $Q(x, y)=x \xrightarrow{a^{9}} y$?

I know a proof...
...and it's ugly...
If you think you have an elegant proof, come talk to me!

Announcement

If you want to know more...

Announcement

If you want to know more... come work with us!

Announcement

If you want to know more... come work with us!
1 -year postdoc funding at Marne-la-Vallée

Announcement

If you want to know more... come work with us!
1 -year postdoc funding at Marne-la-Vallée

Thank you!

[^0]: y°

