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This talk is based on joint work with P. Pylyavskyy.



What is a cluster algebra/Laurent phenomenon algebra?

A Laurent phenomenon algebra is a commutative algebra A with a
distinguished set of generators, called cluster variables.

The cluster variables are arranged into collections {x1, x2, . . . , xn}
called clusters. Each cluster forms a transcendence basis for
Frac(A) over the coefficient ring R .

The clusters are connected by mutation: for each cluster
{x1, x2, . . . , xn} and each i ∈ {1, 2, . . . , n}, there is an adjacent
cluster {x1, x2, . . . , x

′
i , . . . , xn} where the new cluster variable x ′i

and the old one are related by

xix
′
i = exchange binomial for a cluster algebra

xix
′
i = exchange Laurent polynomial for a Laurent phenomenon algebra

where the RHS is a Laurent polynomial in
x1, x2, . . . , xi−1, xi+1, . . . , xn with coefficients in R .



Seeds

A Laurent phenomenon algebra is (essentially) completely
determined by any one cluster and its exchange polynomials, called
a seed:

(x,F) = ({x1, x2, . . . , xn}, {F1,F2, . . . ,Fn})

Mutation at i takes a seed (x,F) to a seed (x′,F′):

1 We have x ′j = xj for all j 6= i .

2 But potentially F ′j differs from Fj for all j 6= i .

There is a (nearly) deterministic algorithm for producing (x′,F′)
from (x,F), and all seeds are assumed to be connected by
mutation.



The Grassmannian Gr(2, 5)

Consider the homogeneous coordinate ring of the Grassmannian
Gr(2, 5), which is a six-dimensional projective variety. It has
(5
2

)

= 10 Plucker coordinates ∆i ,j satisfying the Plucker relations.
It can be arranged into a cluster algebra of rank 2 with 5 clusters:

{∆13,∆14} {∆13,∆35}

{∆25,∆35}

{∆25,∆24}

{∆14,∆24}

where the coefficient ring is R = C[∆12,∆23,∆34,∆45,∆15] and
the exchange relations all look like

∆14∆35 = ∆15∆34 +∆13∆45



The Grassmannian Gr(2, 5)

Consider the homogeneous coordinate ring of the Grassmannian
Gr(2, 5), which is a six-dimensional projective variety. It has
(5
2

)

= 10 Plucker coordinates ∆i ,j satisfying the Plucker relations.
It can be arranged into a cluster algebra of rank 2 with 5 clusters:

{∆13,∆14} {∆13,∆35}

{∆25,∆35}

{∆25,∆24}

{∆14,∆24}

Note the combinatorics of a pentagon (dimension two
associahedron) appearing out of a purely algebraic construction.



Combinatorics and cluster algebras

Cluster algebras have applications in

total positivity

coordinate rings of flag varieties and other Lie-theoretic
varieties

representation theory of quivers

Poisson geometry

Teichmüller theory

integrable systems

Donaldson-Thomas invariants

· · ·



Combinatorics and cluster algebras

For a combinatorialist, we may think of cluster algebras as a
machine which generates, and can be used to study:

combinatorial recurrences: octahedron recurrence, Y -systems

certain instances of the (positive) Laurent phenomenon

polytopes known as generalized associahedra

Catalan-style combinatorics

combinatorics associated to planar networks and total
positivity



Combinatorics and cluster algebras

For a combinatorialist, we may think of cluster algebras as a
machine which generates, and can be used to study:

combinatorial recurrences: octahedron recurrence, Y -systems

certain instances of the (positive) Laurent phenomenon

polytopes known as generalized associahedra

Catalan-style combinatorics

combinatorics associated to planar networks and total
positivity

All of these features extend to our new Laurent phenomenon
algebras. In some cases the combinatorial phenomenon had already
been studied but the algebraic framework was unknown; in other
cases we obtain new combinatorial phenomenon.



More careful definition

Let ({x1, x2, . . . , xn}, {F1, . . . ,Fn}) be a seed. Then the mutated
seed (x′,F′) = µi(x,F) has exchange polynomials F ′j roughly given
by the following procedure.

1 Substitution step: Let

Gj = Fj |
xi←

F̂i |xj←0

x′
i

2 Cancellation step: Next remove all common factors between
Gj and F̂i |xj←0 from Gj , to obtain Hj .

3 Normalization step: Finally, normalize Hj using a Laurent
monomial to get an irreducible polynomial F ′j .

The tricky step is the cancellation step. For a cluster algebra this
cancellation is always a monomial, and so can be absorbed into the
last step.



Laurent phenomenon

Theorem (L.-Pylyavskyy)

Let (x,F) and (y,G) be two seeds in a Laurent phenomenon

algebra. Then each yi is a Laurent polynomial in the xi .



Laurent phenomenon

Theorem (L.-Pylyavskyy)

Let (x,F) and (y,G) be two seeds in a Laurent phenomenon

algebra. Then each yi is a Laurent polynomial in the xi .

From the beginning of the theory, Fomin and Zelevinsky were
aware that this Laurent phenomenon held beyond the cluster
setting, including for recurrences such as the Gale-Robinson and
Somos sequences, and the cube recurrence.



Gale-Robinson LP algebra

One case of the Gale-Robinson recurrence:

yiyi+6 = y2i+3 + yi+2yi+4 + yi+1yi+5.

Laurent phenomenon for Gale-Robinson sequence:

Theorem (Fomin-Zelevinsky)

y7, y8, . . . are Laurent polynomials in

Z[y±11 , y±12 , y±13 , y±14 , y±15 , y±16 ]



Gale-Robinson LP algebra

One case of the Gale-Robinson recurrence:

yiyi+6 = y2i+3 + yi+2yi+4 + yi+1yi+5.

Laurent phenomenon for Gale-Robinson sequence:

Theorem (Fomin-Zelevinsky)

y7, y8, . . . are Laurent polynomials in

Z[y±11 , y±12 , y±13 , y±14 , y±15 , y±16 ]

y7 =
y2y6 + y3y5 + y24

y1

y8 =
y3y7 + y4y6 + y25

y2
= · · ·

y13 =
y8y12 + y9y10 + y211

y7
=???



Gale-Robinson LP algebra

Start with the seed

{(y1, y
2
4 + y3y5 + y2y6), (y2, y3y

2
4 + y23 y5 + y1y

2
5 + y1y4y6),

(y3, y2y
2
4 y5 + y1y4y

2
5 + y1y

2
4 y6 + y22 y5y6 + y1y2y

2
6 ),

(y4, y2y
2
3 y5 + y1y2y

2
5 + y22 y3y6 + y1y

2
3 y6 + y21 y5y6),

(y5, y
2
3 y4 + y1y3y6 + y2y

2
4 + y22 y6), (y6, y

2
3 + y2y4 + y1y5)}

Mutating at y1 we obtain the seed

{(y7, y
2
4 + y3y5 + y2y6), (y2, y

2
5 + y4y6 + y3y7),

(y3, y4y
2
5 + y24 y6 + y2y

2
6 + y2y5y7),

(y4, y3y
2
5 y6 + y2y5y

2
6 + y2y

2
5 y7+, y23 y6y7 + y2y3y

2
7 ),

(y5, y3y
2
4 y6 + y2y3y

2
6 + y23 y4y7 + y2y

2
4 y7 + y22 y6y7),

(y6, y
2
4 y5 + y2y4y7 + y3y

2
5 + y23 y7)}

where y7 is the new cluster variable, related to y1 via the formula

y1y7 = y24 + y3y5 + y2y6.



Gale-Robinson LP algebra

After mutating at y1, y2, . . . , yk we will have a seed containing
yk+1, yk+2, . . . , yk+6.

So the Laurent phenomenon for the Gale-Robinson sequence
follows from the result for LP algebras.



Gale-Robinson LP algebra

After mutating at y1, y2, . . . , yk we will have a seed containing
yk+1, yk+2, . . . , yk+6.

So the Laurent phenomenon for the Gale-Robinson sequence
follows from the result for LP algebras.
But we can also mutate in other directions. Here’s another seed:

{(v , uw2y45 + u2y6z + w3y25 (y5y6 + z)2),

(w , u3vy56 + v3z + u5y36 (y5y6 + z)),

(z , u + wy26 ),

(u, v2z2 + vw2y5y
3
6 z(y5y6 + z) + w5y35 (y5y6 + z)4),

(y5, u
3vy56 + u2vwy76 + v3z + u4wy56 z),

(y6, u
2w6y125 + 2uw7y105 z2 + z2(v2w3y55 + v3z + w8y85 z

2))}

There’s a lot of (unexplained) positivity going on...



Finite type cluster algebras

A cluster algebra is of finite type if it has finitely many clusters.
One of the highlights of the theory of cluster algebras is the
classification of finite type cluster algebras.

Theorem (Fomin-Zelevinsky)

Cluster algebras of finite type have the same classification as the

Cartan-Killing classification of semisimple complex Lie algebras.



Finite type cluster algebras

A cluster algebra is of finite type if it has finitely many clusters.
One of the highlights of the theory of cluster algebras is the
classification of finite type cluster algebras.

Theorem (Fomin-Zelevinsky)

Cluster algebras of finite type have the same classification as the

Cartan-Killing classification of semisimple complex Lie algebras.

The cluster complex of a cluster algebra is the simplicial complex
with base set the set of cluster variables, and with simplices given
by subsets of cluster variables belonging to the same cluster.

Theorem (Fomin-Zelevinsky, Chapoton-Fomin-Zelevinsky)

The cluster complex of a finite type cluster algebra is the dual

complex to a polytope called a generalized associahedron.



Generalized associahedra and Catalan combinatorics

In type A, the generalized associahedron is the usual
associahedron. It has Catalan number of vertices, and is a
pentagon in two dimensions.

In type B , the generalized associahedron is the cyclohedron. It is a
hexagon in two dimensions.

Generalized associahedra give a uniform root-system theoretic way
of developing Catalan-style combinatorics to all (finite) root
systems.



Classifying finite type LP algebras

In dimension 3 there are only two polytopes which come up as
generalized associahedra for irreducible root systems: the
(three-dimensional) associahedron and cyclohedron.
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In dimension 3 there are only two polytopes which come up as
generalized associahedra for irreducible root systems: the
(three-dimensional) associahedron and cyclohedron.

We have already found over 20 polytopes in dimension 3 which are
dual to the cluster complexes of LP algebras.

There are lots more types of LP algebras than cluster algebras!



Classifying finite type LP algebras

In dimension 3 there are only two polytopes which come up as
generalized associahedra for irreducible root systems: the
(three-dimensional) associahedron and cyclohedron.

We have already found over 20 polytopes in dimension 3 which are
dual to the cluster complexes of LP algebras.

There are lots more types of LP algebras than cluster algebras!

A classification may to some extent be impossible, because as we
shall explain it would include a classification of isomorphism types
of directed graphs.



Linear LP algebras

Let us consider LP algebras AΓ with a linear seed of the following
form: {(Xi ,Fi = Ai +

∑

i→j Xj)} where i → j are the edges in a
fixed directed graph Γ. For example we might have the seed

{(X1,A1 + X2 + X3 + X4), (X2,A2 + X1 + X3),

(X3,A3 + X1 + X2 + X4), (X4,A4 + X2)}.

associated to

1 3

2

4



Acyclic functions

Let I ⊂ {1, 2, . . . , n} = [n] be a set of vertices of Γ. A function
f : I → [n] is acyclic if

1 For each i ∈ I , either f (i) = i , or i → f (i) is an edge of Γ; and

2 the subgraph consisting of the edges i → f (i) is has no
directed cycles.



Acyclic functions

Let I ⊂ {1, 2, . . . , n} = [n] be a set of vertices of Γ. A function
f : I → [n] is acyclic if

1 For each i ∈ I , either f (i) = i , or i → f (i) is an edge of Γ; and

2 the subgraph consisting of the edges i → f (i) is has no
directed cycles.

Suppose I = {1, 2, 3}.
Take f (1) = 2, f (2) = 3, f (3) = 4.

1 3

2

4 ACYCLIC



Acyclic functions

Let I ⊂ {1, 2, . . . , n} = [n] be a set of vertices of Γ. A function
f : I → [n] is acyclic if

1 For each i ∈ I , either f (i) = i , or i → f (i) is an edge of Γ; and

2 the subgraph consisting of the edges i → f (i) is has no
directed cycles.

Suppose I = {1, 2, 3}.
Take f (1) = 2, f (2) = 3, f (3) = 1.

1 3

2

4 NOT ACYCLIC



Y -variables

For a subset I of vertices define

YI =

∑

acyclic f : I−→[n]

∏

i∈I X̃f (i)
∏

i∈I Xi

where

X̃f (i) =

{

Xf (i) if i 6= f (i)

Af (i) if i = f (i).



Y -variables

For a subset I of vertices define

YI =

∑

acyclic f : I−→[n]

∏

i∈I X̃f (i)
∏

i∈I Xi

where

X̃f (i) =

{

Xf (i) if i 6= f (i)

Af (i) if i = f (i).

Y124 =
X1(X2(X3 + A1) + A4(X3 + X4 + A1))

X1X2X4

+
(X2 + A4)(X2 + X3 + X4 + A1)(X3 + A2)

X1X2X4



Nested complex

Let I ⊂ 2[n] denote the collection of strongly-connected subsets of
Γ. A family of subsets S = {I1, . . . , Ik} ∈ I is nested if

for any pair Ii , Ij either one of them lies inside the other, or
they are disjoint;

for any tuple of disjoint Ij -s, they are the strongly connected
components of their union.

The support S of a nested family S = {I1, . . . , Ik} is S =
⋃

Ij . A
nested family is maximal if it is not properly contained in another
nested family with the same support.



Linear LP algebras

Theorem (L.-Pylyavskyy)

The cluster variables of AΓ are exactly X1,X2, . . . ,Xn and YI

for I ⊂ [n] a strongly connected subset of Γ.

The clusters of AΓ are in bijection with the maximal nested

families S = {I1, . . . , Ik} of Γ:

{Xi | i /∈ I1 ∪ I2 ∪ · · · ∪ Ik} ∪ {YI1,YI2, . . . ,YIk}



Linear LP algebras

Theorem (L.-Pylyavskyy)

The cluster variables of AΓ are exactly X1,X2, . . . ,Xn and YI

for I ⊂ [n] a strongly connected subset of Γ.

The clusters of AΓ are in bijection with the maximal nested

families S = {I1, . . . , Ik} of Γ:

{Xi | i /∈ I1 ∪ I2 ∪ · · · ∪ Ik} ∪ {YI1,YI2, . . . ,YIk}

One of the clusters in our example is {Y3,Y23,Y123,X4}. The
cluster variable Y1 belongs to another cluster, and has the
following Laurent polynomial expression

Y1 =
1 + Y 2

3 + Y23 + Y3(2 + Y123)

Y3Y23
.

Note that this expression is also positive, which we don’t yet have
a general explanation for even in this linear LP case.



Nested complexes as cluster complexes

1 We don’t know if the cluster complex of AΓ is dual the face
complex of a polytope.

2 But inside it is a subcomplex called the nested complex
studied by Feichtner and Sturmfels, and by Postnikov. This
subcomplex is the cluster complex for some “frozen”
modification of AΓ.

3 The nested complex is dual to a polytope called the
nestohedron, which includes a class of polytopes known as
graph associahedra, a name coined by Carr and Devadoss, and
also studied by De Concini and Procesi, and Toledano-Laredo.



Graph associahedra and nestohedra

Zelevinsky: noted “striking similarity” between nested complexes
and cluster complexes/generalized associahedra.
Cluster complexes of finite type LP algebras are a common
generalization of nestohedra and generalized associahedra.



Graph associahedra and nestohedra

Zelevinsky: noted “striking similarity” between nested complexes
and cluster complexes/generalized associahedra.
Cluster complexes of finite type LP algebras are a common
generalization of nestohedra and generalized associahedra.

For a subset I ⊂ {1, 2, . . . , n} let

∆I = convex hull(ei | i ∈ I ) ⊂ R
n

Then the digraph associahedron P(Γ) is given by the Minkowski
sum

P(Γ) =
∑

I

∆I

where the sum is over all strongly connected subsets of Γ.



Total positivity

One of the main initial examples of cluster algebras are those
associated to double Bruhat cells of seimsimple Lie groups. For
double Bruhat cells of GLn, these cluster algebras encode
combinatorics related to wiring diagrams, planar networks, and
total positivity.

A real matrix is totally positive if all minors of the matrix are
strictly positive.





a b c

d e f

g h i





a > 0, b > 0, . . . ae − bd > 0, ai − cg > 0, . . . det > 0



Total positivity

One of the main initial examples of cluster algebras are those
associated to double Bruhat cells of seimsimple Lie groups. For
double Bruhat cells of GLn, these cluster algebras encode
combinatorics related to wiring diagrams, planar networks, and
total positivity.

Question

How many minors do you need to check to ensure that a square
n × n matrix is totally positive?

Turns out that some such collections of minors form clusters in the
cluster algebra of the open double Bruhat cell of GLn.



Electrical networks

An electrical network consisting only of resistors can be modeled
by an undirected weighted graph Γ.

21

1.3

0.5

1

40.1

2
1



Response matrices

The response matrix

L(Γ) : R#boundary vertices → R
#boundary vertices

describes the current that flows through the boundary vertices
when specified voltages are applied.

Inverse problem

To what extent can we recover Γ from L(Γ)?

Detection problem

Given a matrix M, how can we tell if M = L(Γ) for some Γ?

Connection problem

Given L(Γ), how many (algebraic) functions do we need to check
to ensure that Γ is well-connected? (Is as well-connected as any
planar electrical network?)



Planar electrical networks

For a planar electrical network, these problems were studied (and
to a large extent solved) by Curtis-Ingerman-Morrow and de
Verdière-Gitler-Vertigan.



Electrical Lie groups

To study electrical networks, we introduced an electrical Lie group
EL2n acting on electrical networks.

GLn ↔ EL2n

totally positive matrices ↔ response matrices

minors ↔ electrical measurements

planar directed networks ↔ electrical networks

Serre relation[e, [e, e′]] = 0 ↔ electrical Serre relation[e, [e, e′]] = −2e



Electrical cells as Laurent phenomenon algebras

Theorem (Berenstein-Fomin-Zelevinsky, Geiss-Leclerc-Schröer)

The uni-upper triangular subgroup Un ⊂ GLn has a Bruhat

decomposition

Un =
⊔

w∈Sn

Cw

such that the coordinate ring C[Cw ] is naturally equipped with the

structure of a cluster algebra.

Conjecture

The electrical Lie group EL2n has a decomposition

EL2n =
⊔

w∈S2n

Aw

such that each coordinate ring C[Aw ] is naturally equipped with
the structure of a Laurent phenomenon algebra.



Electrical LP algebras

a

b

X

Y

Z

T

V

U

W

P

c

a

b
c

d

e

f
g

h

`

m

{(a, bX+cY+PZ ), (b, acT+cUY+PUZ+aVZ ), (c ,PU+aV+bW )}

The rule for the exchange polynomials appeared in work of
Henriques and Speyer, but also can be deduced from our general
theory.



Electrical LP algebras
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b
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Electrical LP algebras

a

b

X

Y

Z

T

V

U

W

P

c

a

b
c

d

e

f
g

h

`

m

{(a, bX+cY+PZ ), (b, acT+cUY+PUZ+aVZ ), (c ,PU+aV+bW )}

The exchange relations for a and c

ad = bX + cY + PZ and cf = PU + aV + bW .

are instances of the cube recurrence studied by Propp, Carroll,
Speyer, Henriques, Fomin, Zelevinsky...



Another seed is

{(a, e + UX ), (e, acT + cUY + PUZ + aVZ ), (c , e +WZ )}

which does not come from a wiring diagram (“non-Plucker seed”).
Each of the 16 seeds looks like either this seed, or the initial seed.



Another seed is

{(a, e + UX ), (e, acT + cUY + PUZ + aVZ ), (c , e +WZ )}

which does not come from a wiring diagram (“non-Plucker seed”).
Each of the 16 seeds looks like either this seed, or the initial seed.

The cluster variable m is given by the Laurent polynomial

1

abc
(acPT + bPUX + abVX + b2WX + cPUY+

bcWY + P2UZ + aPVZ + bPWZ )

with respect to the initial seed.



The end

Thankyou!


