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@ matchingon {1,2,...,2n}

1 23456 7 8 910

@ noncrossing matching on {1, 2,...,2n}
—~ —~ S~
1 23456 738 9 10

@ Dyck path of length 2n «+» partition contained in (n—1,n —

o B

@ These objects are counted by Catalan number C, = n+1 (2"
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@ This example has matching:

~ N\

1 2 3 456

@ P(m): probability that a random double-dimer has matching =
@ M: matrix whose rows and columns are indexed by Dyck paths of length 2n:

v L A
AT 10, otherwise.

@ Kenyon and Wilson showed that one can compute P(7) using the inverse of M.

Theorem (Kenyon and Wilson, 2010)

(M™Y. = (=1)I**#l x (# cover-inclusive Dyck tilings of shape \/u)
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(cover-inclusive) Dyck tilings

@ Dyck tile
@ Dyck tiling of shape A\/u

@ Cell Ais covered by cell B: @

@ cover-inclusive Dyck tiling: if tile A has a cell covered by a cell of tile B,
then A is completely covered by B.

PN AN
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Notations

@ D(\/p): set of Dyck tilings of shape A/
/= | DOW),
veDyck(2n)
px/w= | Dw/w.
veDyck(2n)
@ |D(\/)| = # Dyck tilings with lower path X\ = row sum of |[M 1|
@ |D(x/p)| = # Dyck tilings with upper path p = column sum of [M~1]|

Main Problem
@ Find [D(\/%)| and |D(x/u)|.
@ Find g-analogs of |D(\/x)| and |D(x/u)|: Kenyon and Wilson’s conjectures
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Chords of Dyck paths

@ A chord is a matching pair of up step and down step

@ The length |c| and the height ht(c) are defined as follows:




7119

D()\/x): fixed lower path

@ There are 12 Dyck tilings with fixed lower path

AN\ AN AN N
AN N AR LN
P APALTA LI N



7119

D()\/x): fixed lower path

@ There are 12 Dyck tilings with fixed lower path

AN AN AN AN
AN N AR LN
P APALTA LI N

@ The fixed lower path has half length n = 4 with chords of length 1,1,1,2



7119

D()\/x): fixed lower path

@ There are 12 Dyck tilings with fixed lower path

AN AN AN AN
AN N AR LN
P APALTA LI N

@ The fixed lower path has half length n = 4 with chords of length 1,1,1,2

PNV N

4 n!
1-1-1-2 HceChord(,\) |c|

(weak) Conjecture 1 of KW
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D(x/u): fixed upper path
@ There are 12 Dyck tilings with fixed upper path

/SN AN NN A

AN LR OO AR
AN LN N SN

@ The fixed upper path has chords of height 3,2, 2,1

V4 1 AN
1

012=3.2-2-1= [] htc) (weak) Conjecture 2 of KW
ceChord(u)
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@ We need nice statistics of Dyck tilings.
@ For T € D(\/un) define

|T| = number of tiles in T

M u| +|T| _ area+tiles

at(T) = 2 2
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g-analogs?

@ We need nice statistics of Dyck tilings.
@ For T € D(\/un) define

|T| = number of tiles in T

Nup|+|T area+liles
e = P ITI_ areas

_5+3

@ area(T) = 5, tiles(T) = 3, art(T) 4

@ The usual g-integers, g-factorials:

[n}q:l+q+"'+qn_l’ [n]q!: [l}q[z]q[n]q
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Two conjectures of Kenyon and Wilson

Conjecture (Kenyon and Wilson, 2010)

T g = [n]q!

TED(M\ /%) " Teecnoaon el

Conjecture (Kenyon and Wilson, 2010)

> d= [ [l

TeD(x/p) ceChord( )

@ Conjecture 1 has been proved by Kim (non-bijectively) and Kim, Mészaros,
Panova, Wilson (bijectively).

@ Conjecture 2 has been proved bijectively by Kim and Konvalinka independently.
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Inductive Proof of Conjecture 1

@ D(A\/x;a,b): set of generalized Dyck tilings

@ The upper path starts a units above the starting point of A and ends b units above

the ending point of A.
W

Theorem (K., 2011)

[n]g!
Z qart(T) _ q Z qart(T)
TeD(A/*;a,b) HCGChord(A) HC”q TeD(An/*;a,b)

@ Anp: the highest path = A

@ D(A\/%;0,0) = D(A\/x*)
@ D(An/x*;0,0) has only one tile, the empty tiling of An/An.
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Bijective Proof of Conjecture 1

Theorem (K., Mészaros, Panova, Wilson, 2011)

There is a bijection ¢ from Dyck tilings to increasing ordered trees such that the
lower path of T corresponds to the shape of the tree ¢(T) and

art(T) = inv(¢(T)).
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Bijective Proof of Conjecture 1

Theorem (K., Mészaros, Panova, Wilson, 2011)

There is a bijection ¢ from Dyck tilings to increasing ordered trees such that the
lower path of T corresponds to the shape of the tree ¢(T) and

art(T) = inv(¢(T)).

Theorem (Bjérner and Wachs, 1989)

S e = [n]g!
(P)=A [Teecnordny ¢l
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Hermite Histories

@ A Hermite history of shape p is a labeling H of the down steps such that
@ a down step of heighti has label in {0,1,...,i — 1}.

@ H(u): set of Hermite histories of shape 1

@ ||H||= sum of labels
S oqtl= [T ht©),-
HeH (n) ceChord( )

@ It is sufficient to find a bijection from D(x/u) to H ().
@ There is a simple bijection between Hermite histories and matchings:

12345678 910

@ IfH «» =, then ||H|| = cr(x).
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A bijection between Dyck tilings and Hermite histories

@ The entry and the exit of a Dyck tile are defined:

entry

exit
@ The label of a down step is the number of tiles traveled:

@ If T < H, then [T| = [|H].

]

DR LI S s IS, (1)

TeD(x/p) HeH (n) ceChord(u)
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@ There are three bijections on Dyck tilings.
@ Bij, : {Dyck tilings} — {matchings}
9 Bij, : {Dyck tilings} — {increasing ordered trees}
9 Bij, : {Dyck tilings} — {increasing ordered trees}

@ Bij, sends upper path p to shape (of matching), and tiles to crossings

Z qtiIeS(T) — H [ht(c)]q

TED(x/p) ceChord(p)

@ Bij; sends lower path A to shape (of plane tree), and art to inv

Z qart(T) _ [n}q!

TED(A/*) I eecnoraen) lIcllq

@ When lower path \ = zigzagn

@ Dyck tilings = Dyck tableaux (Aval, Boussicault, Dasse-Hartaut)

@ increasing ordered trees = permutations

@ Bij; sends art to inv

@ Bij, sends art to mad (mahonian statistic, Clarke, Steingrimsson, Zeng, 1997)
@ Bij, reduces to the bijection of Aval, Boussicault, Dasse-Hartaut



19/19

References

E

[

[

[

J.-C. Aval, A. Boussicault, and S. Dasse-Hartaut.
Dyck tableaux.
Theoretical Computer Science, 2012, to appear.

R. W. Kenyon and D. B. Wilson.

Double-dimer pairings and skew Young diagrams.
Electron. J. Combin., 18(1):Paper 130, 2011.
arXiv:1007.2006.

J. S. Kim.

Proofs of two conjectures of Kenyon and Wilson on Dyck tilings.
J. Combin. Theory Ser. A 119 (2012) 1692-1710
arXiv:1108.5558.

J. S. Kim, K. Mészaros, G. Panova, and D. B. Wilson.
Dyck tilings, linear extensions, descents, and inversions.
arXiv:1205.6578

Thank you for your attention!


http://arxiv.org/abs/1007.2006
http://arxiv.org/abs/1108.5558
http://arxiv.org/abs/1205.6578



