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The symmetric group S, and group algebra C|S),]

Generators: s1,...,S8,_1.
Relations:
S%ze fore=1,...,n—1,
SZ'S]'SZ' — S]‘SiSj for ’Z — ]‘ — 1,
5iSj = 5;5i for [i — j| > 2.

Call sj, - -+ s;, reduced if it is equal to no shorter product;
call £ the length of this element of 5),.

C[Sy,| = C-linear combinations of .Sy,-elements.

Call a homomorphism p : C[Sy,| — Matjy 4(C)
a (C-) representation of C[Sy,] (of degree d).



Wiring diagrams, one-line, two-line notation

Multiply generators by concatenating graphs
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X

§1==—, S9=—,
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X _

Define one-line and two-line notation by following wires.

Example: The wiring diagram of s9s351s951 in Sy is

X = §>,—< §§>§§é‘
2 2
1 1

X X
1234

T'wo-line notation is (3 421); one-line notation is 3421.
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The Iwahori-Hecke algebra Hj(q)

Generators over (C[q%, q_%] Toyyoo o, Ts 4
Relations:
Tiz(q—l)TSﬂ—qTe fori=1,...,n—1,
Ty Ts Ts, = Ts T/ T, for |i — j| = 1,
TSZ.TS]. = Tszsi for [i — 7| > 2.

Natural basis: {Ty, |w € Sy},
Tw:TSil'”TSW (w:sil---sw reduced),

T = multiplicative identity.

Call a homomorphism p, : Hy(q) — Matdxd((C[q%, q_%])
a ((C[q%, q_%]—) representation of Hy(q) (of degree d).



Partitions and characters

A partition of n is a weakly decreasing nonnegative integer se-
quence A = (Aq, ..., A;) summing to n.
Write A = n for “)\ is a partition of n”.

Fach degree-d representation of C|Sy] or Hy(q) can be described
in terms of certain irreducible representations

A A
{p"[AFn}y,  {pg|AFn},
or corresponding functions called ¢rreducible characters

OAMAFRY, {0 Fa,

where o
X)\ : ClSn] = C X()]\ . Hp(q) — Clg2, ¢2|
w s tr(p(w)), T+ t2(pg(Tow)).



Open problems and a strategy for progress

Problem: State a nice formula for y(w) or X;‘(T w)-

Idea: (G-J, G, S-S, H '92-'93) Choose a strategic subset Q) C S,
and state a formula for XA(ZweQ w) or Xf]\(ZwEQ Tw).

Strategy: Let Q) = Q(F') be the set of permutations covering a
descending star network F'.
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Descending star networks
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Fact: () always contains GZ)
Let m; denote the unique j-to-j path in F.
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Example: F' =
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F-tableaux

Define an F'-tableau of shape A = n to be an arrangement of

1, ..., T into lett-justified rows, with A; paths in row q.
Call an F-tableau semistandard (SS) if
T§ m; lies entirely T m; intersects or
T below 5, T lies entirely below ;.
4 4
Example: Semistandard F-tableaux for F' = g % 5; ‘;’ are
1 1
Ty Ty
(shape 31)
Th| TR| TB Th| TG| T

(shape 4) | T8 T TU T/ To| B W Tk Tk T& T

7 ’ 7 e o o

(none of shapes 22, 211, 1111.)



Gasharov’s interpretation

If permutations () cover descending star network F', define

B =Y w  y(F) = T
WER wew)
Theorem: (G '96) Y (8(F)) = # SS F-tableaux of shape \.

Example: For previous network F', we have
XHBIF) =2, xXNBF)) =18,
B = X BF)) = xHH(B(F) = 0.

Question: What is X;‘(ﬂq(F))?



Inversions in F-tableaux

Call intersecting paths (7, m;) an inversion in an F-tableau if
7 >t and 7; appears in an earlier column than ;.

Define INV(U) = # inversions in U.

4
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Example: For F' =
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Inversions in F-tableaux

Call intersecting paths (7, m;) an inversion in an F-tableau if
7 >t and 7; appears in an earlier column than ;.

Define INV(U) = # inversions in U.

4 4
Example: For F' = ‘Z’> g; g, we have
1 1
Th TR| T3
INV( | Ti| T m) = 1,
INV T =3
o T o ’ INV(T@T& 12 TL[):47-




Inversions in F-tableaux

Call intersecting paths (7, m;) an inversion in an F-tableau if
7 >t and 7; appears in an earlier column than ;.

Define INV(U) = # inversions in U.

4 4
Example: For F' = g > §< g, we have
1 1
Th TR2| TB
INV( | Ti| T m) = 1,
INV i =3
o T8 o ’ INV(T@T& 12 TL[):47-




Inversions in F-tableaux

Call intersecting paths (7, m;) an inversion in an F-tableau if
7 >t and 7; appears in an earlier column than ;.

Define INV(U) = # inversions in U.
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Inversions in F-tableaux

Call intersecting paths (7, m;) an inversion in an F-tableau if
7 >t and 7; appears in an earlier column than ;.

Define INV(U) = # inversions in U.
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Inversions in F-tableaux

Call intersecting paths (7, m;) an inversion in an F-tableau if
7 >t and 7; appears in an earlier column than ;.

Define INV(U) = # inversions in U.

4 4
Example: For F' = ‘Z’> g; g, we have
1 1
Th TR2| TB
INV( | Ti| T m) = 1,
INV i =3
6 T ) INv(mmnznl):4,.




Inversions in F-tableaux

Call intersecting paths (7, m;) an inversion in an F-tableau if
7 >4 and 7; appears in an earlier column than ;.

Define INV(U) = # inversions in U.
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Inversions in F-tableaux

Call intersecting paths (7, m;) an inversion in an F-tableau if
7 >t and 7; appears in an earlier column than ;.

Define INV(U) = # inversions in U.

4
3

E §< >, We have
1

INV( T TP

Example: For F' =

T
INV
( | TR TB)

INV( Th| Th| T3
INV m 3
e ) INV( T Th Th| T

R NWHr

=

g
||

=

=

N—— N—— —
|
\'H

2

?

|
I




Conjectured interpretation of X;‘(ﬂq(F )

Conjecture: (Shelton ’11) We have
Xq (By(F Z V)

where the sum is over all S5 F- tableaux of shape A.

Example: For previous network F', we have
Xo (Bg(F)) = ¢* + ¢,
Xq(Bq(F)) = 1+ 3¢+ 5¢* + 5¢° + 3¢" + q5,
Xg (Bg(F)) = xg' ' (Bg(F)) = x¢' "' (By(F)) =



