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A Uq(g)-crystal is a nonempty set B with maps

wt: B → P
ei , fi : B → B ∪ {∅} for all i ∈ I

Write -b b’ir r for b′ = fi(b)
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Kashiwara–Nakashima tableaux

embed B(1N) ↪→ B( )⊗|λ|

Type Ar :

Example
Type A3

1
3
4
7→ 4 ⊗ 3 ⊗ 1

• strictly increasing in columns
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Kashiwara–Nakashima tableaux
embed B(1N) ↪→ B( )⊗|λ|

Type Cr :

Example

Type C3

1
3
3̄
7→ 3̄ ⊗ 3 ⊗ 1

• alphabet [r ] := {1 < 2 < . . . < r < r < r − 1 < . . . < 1}
• strictly increasing in columns
• for column b = b(k) . . . b(1) there is no pair (z, z) s.t.:

z = b(p) , z = b(q) , q − p ≤ k − z .
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Column KR crystals for types A(1)
n and C(1)
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Energy function
B := Bµ = Bµ′1,1 ⊗ Bµ′2,1 ⊗ · · · , connected by f0 arrows.

The energy D : B → Z originates from exactly solvable lattice
models (computed via local energies and the combinatorial
R-matrix).

Alternative construction (S., Tingley) as affine grading on B :
• constant on classical components (f0 arrows removed)
• increases by 1 along f0 arrows which are not at the end of

a 0-string (Demazure arrows)

Remark
In most cases, B is still connected upon removal of
non-Demazure f0 arrows.
⇒ D is well-defined up to constant.
Notable exception: type C.
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Charge type A

Charge à la Lascoux and Schützenberger:
w word of partition content µ

Example
µ = (3,3,3,1)

1132214323

charge(1132214323) = 1 + 2 + 3 = 6
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Charge on KN tableaux - type A

Bµ :=

µ1⊗
i=1

Bµ′i ,1

circular order ≺i : i ≺i i + 1 ≺i · · · ≺i n ≺i 1 ≺i · · · ≺i i − 1
construct reordered c from b ∈ Bµ

Example

b =
3 2 1 2
5 3 2
6 4 4

and c =
3 3 4 2
5 2 2
6 4 1

cw(b) =

(
6 5 4 4 3 3 2 2 2 1
1 1 3 2 2 1 4 3 2 3

)
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γ∈Des(c)
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Remark
A similar construction works in type C.
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Relation between charge and energy

Theorem (Lenart, S. 2011)

B = BrN ,1 ⊗ · · · ⊗ Br1,1 of type A(1)
n or type C(1)

n
Then for b ∈ B

D(b) = charge(b)

Idea of proof: Verify that charge satisfies the recursive relations
of the energy function.
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Generalizing the charge to arbitrary root systems

Key concept: quantum Bruhat graph (QBG).

In type An−1, it is the graph on Sn with directed edges

w−→wtij ,

where

`(wtij) = `(w) + 1 (Bruhat graph) , or
`(wtij) = `(w)− `(tij) = `(w)− 2(j − i) + 1 .
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Quantum Bruhat graph for S3:

321

α 13

2312

1223

1313

2312

αα

αα

αα

αα

123

132213

231 312
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The key ingredient

Fact. Fix two column strict fillings (in type A)

a1

a2

...
ak

and

b1

b2

...
bk

,

where the second one is reordered according to the first.

There is a unique path in the quantum Bruhat graph of the
following form:
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Fillings as chains of permutations

b = 3 2 1 2
4 3

7→ c = 3 3 1 2
4 2

7→ Π = (π1, π2, . . .) .

3
4

1
2

>
→

3
1

4
2

<
→

3
2

4
1

|

((2,3), (2,4), (1,3), (1,4) |
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lr 1 1 3 3 2 2 2 1 1 1
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4 2∗ − −

∗ − −

3 3 1∗ 2∗
4 2

∗ ∗

lr = arm(descent)

charge(b) =
∑

γ∈Des(c)

arm(γ) =
∑

πr>πr+1

lr =: level(Π) .
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Construction of level statistic
Step 1. Fix a partition µ.

Step 2. Associate with µ a sequence (µ-chain) Γ of pairs (ir , jr )
(i.e., roots in type A) − several choices possible, but not
explained.

Example. For µ = (4,2,0), we considered

Γ = ((2,3), (2,4), (1,3), (1,4)|(1,2), (1,3), (1,4)|(1,2), (1,3), (1,4)) .

Step 3. Define lr = #{s ≥ r : (is, js) = (ir , jr )} .

Step 4. Define admissible subsets:

A(Γ) = A(µ) = #{subsets Π of Γ giving rise to paths in the QBG} .

Step 5. Given Π = (π1, π2, . . .) ∈ A(µ) as a path in the QBG,
define

level(Π) =
∑

πr>πr+1

lr .
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Remarks.
1. The above construction works for any finite root system, as
all the ingredients apply to the general case.

2. The level statistic originates in the Ram-Yip formula for
Macdonald polynomials of arbitrary type:

(∗) Pµ(x ; q,0) =
∑

Π∈A(µ)

qlevel(Π) xweight(Π) .

In fact, we can rewrite (*) via the bijection between A(µ) and
fillings explained before (which also works in type C).

Theorem (L.)

In types A and C, we have

Pµ(x ; q,0) =
∑

b∈Bµ
′
1,1⊗Bµ

′
2,1⊗...

qcharge(b) xweight(b) .
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Main results (in arbitrary type)

Construction. (L. and Lubovsky) On A(µ) was defined the
structure of an affine crystal (purely combinatorially) − the
quantum alcove model.

Conjecture. (L. and Lubovsky)

1. There is a bijection between A(µ) in type Xn and the KR
crystal Bµ := Bµ′1,1 ⊗ Bµ′2,1 ⊗ . . . of type X (1)

n under which
the arrows of A(µ) correspond to arrows of Bµ.

2. If Π ∈ A(µ)↔ b ∈ Bµ under this bijection, then

E(b) = level(Π) .
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Main results (cont.)

Status of the conjecture. (L., Naito, Sagaki, S., Shimozono)
• The KR crystal and its energy function are realized in

terms of quantum Lakshmibai-Seshadri (LS) paths.
• For µ regular (in type A: partitions with distinct parts), the

quantum LS paths are in bijection with A(Γ) for a special
µ-chain Γ. The conjecture is verified in this case.

• It remains to:
1. relate quantum LS-paths and the quantum alcove model for

arbitrary µ;
2. consider arbitrary µ-chains Γ.
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