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Setup

V - is a representation of a quantum group Uy(g).

B - crystal basis for V (assuming it exists).
Usually B is indexed by some combinatorial objects.

Crystal - encodes action of Chevalley generators of Uq(g) on B
as g — 0.

This action is by partial permutations, and is represented as a
colored directed graph

b-s b iffi(b)=4,

fori=1,...,r =rank(g),and b, b’ € B.
f; are called crystal operators.
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Kirillov-Reshetikhin (KR) Crystals

KR-crystals - correspond to certain finite dimensional
representations (KR-modules) of quantum affine algebras
(have fy, corresponding to the affine simple root «y).

Indexed by r x s rectangles and denoted B"5. We only
consider columns B"'.
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Goal

Let i/ = (¢} > ph > - ) be the conjugate partition of ..
B® = BH1:l @ BHal . .
(corresponds to tensor product of KR modules).

Goal: model B®* uniformly across Lie types

Note: Existing models are type specific, work mostly in classical
Lie types A — D, and increase in complexity beyond type A.
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Tensor products of KR crystals in type A,_4

The vertices of B®* are (viewed as) column-strict fillings of u
with entries 1,...,n.

Example
Let u = (3,2,2,1), n=5.
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Crystal operators on B*" in type A

Example

n=>5, un=(54,1),

b+ word(b) = 5313221311 .

Action of f; on b:

» Obtain 1-signature 122111
» Cancel 21 pairs 1 1
» Rightmost 1 — 2

b:1 2
313

5
fi(b) =]
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Crystal operators on B*" in type A

Example

n=5, u=(541), b=

EEE
w
\}
w

b+ word(b) = 5313221311 .

Action of f; on b:

» Obtain 1-signature 122111 f,(b) = 112(1]1]2 ‘
» Cancel 21 pairs 1 1 3|13|2|3
» Rightmost 1 — 2 5

Note: f; is defined by similar procedure on i,/ + 1, for i # 0 and
fo is defined by similar procedure on n, 1.
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Kashiwara-Nakashima columns

There is a model based on fillings in types B, C, D.
B" is realised by Kashiwara-Nakashima columns.
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Finite root systems of arbitrary type X,, X € {A... G}
® c V =R’ is finite and invariant under reflections s,, o € @, in
the hyperplane orthogonal to a.

Simple roots: aq,...,a, € ®; form a basis of V.
Simple reflections: s; := s, .

W=(s :i=1,...,r).

Length: {((w) =min{k : w=s; ..., }.
Coroots: a¥ = 2a/{a, a).

Height: o = >, Giovj, ht(a) =), Ci.

The quantum Bruhat graph on W is the directed graph with
labeled edges
w -2 ws,, where

(wsy) = 4(w)+1 (Bruhat graph), or
(ws,) = (w) — 2ht(a¥) + 1.
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Example type A,_1

Example
V=(c14+...+en)t INR" = (eq,...,ep).
Roots: @ = {aj=¢j—¢ : 1 <i#j<n}.

Weyl group: W ~ S,

Identify: (/,/) with a; and s,
Sa; is realized as the transposition of / and j.
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Quantum Bruhat graph for S3
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Quantum alcove model

Given a dominant weight p, we associate with it a sequence of
roots, called a ;-chain (several choices possible, but not
explained):

r:(ﬁ'lv"'vﬁm)

We consider subsets of positions in I':
J=(1<...<Jjs) C{1,...,m}.
Let rj = sg, w; =r, ...r;. Jis admissible if

Bj Bj Bj
Id=wy — wy —> ... 5 ws

is a path in the quantum Bruhat graph.
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Quantum alcove model (cont.)

Construction: (Lenart and L.) Combinatorial crystal operators
fi,..., fr and fy on the collection A(u) of admissible subsets by
analogy with the bracketing procedure for words.

Remark: The restriction of the non-affine combinatorial crystal
operators fi, ..., f- to admissible subsets corresponding to
paths in the Bruhat graph is the classical alcove model of
Lenart-Postnikov (a discrete counterpart of the Littelmann path
model).
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The quantum alcove model in type A,_4
Let I'(k) be the chain of roots:

((kk+1), (kk+2), ..., (k.n),
@k+1), (2k+2), ... (2n),
(. k+1)., (1Lk+2). .. (1.n)).
Example
Letn=5k=2.

|
r(2) = {(273)>(274)7(275)a(1?3)
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Let I'(k) be the chain of roots:

((kk+1), (kKk+2), ... (kn),
@k+1), (2k+2), ... (2n),
(. k+1)., (1Lk+2). .. (1.n)).
Example
Letn=5k=2.
|
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Let I'(k) be the chain of roots:

((k,k+1), (k,k+2), ..., (k,n)),

@k+1), (2k+2), ... (2n),
(. k+1)., (1Lk+2). .. (1.n)).
Example
Letn=5k=2.
|
r2)={(2,3),(2,4),(2,5),(1,3),(1,4),(1,5)} .

|
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The quantum alcove model in type A,_1
Let I'(k) be the chain of roots:

((kk+1), (kk+2), ..., (k.n),
@k+1), (2k+2), ... (2n),
(.k+1), (Lk+2). ... (1.n)).
Example
Letn=5k=2.

r2) = {(2,3),(2,4),(2,5),(1,3),(1,4),(1,5)} .

Recall: u is a partition, 1/ is the height of column i.

A pi-chain T is constructed by concatenating I'(k)
chains for k =y, s, . . ..

(o[ o]e] [ro]-]
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Let J ={1,4,7,8}.
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Crystal operators

Example
Letn=3, u= [Tl r=r@rErrara) =

((2,3),(1,3)1(2,3),(1,3) [ (1,2),(1,3) [ (1,2),(1,3) [ (1,2), (1,3))

Let J ={1,4,7,8}.
Note: J is admissible: corresponds to a path in the quantum
Bruhat graph.

Step 1: Construct a “folded chain” by successively applying
reflections in positions J to the roots at the right of these
positions.

rJ)=1(23),(1,.2)[(3,2),(1,2) | (2,3),(2,1) | (2,3),(3,1) | (1,2),(1,3))
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Step 2. Bracketing.
J={1,4,7,8}.

r(J) =((2,3),(1,2)1(3,2), (1,2) | (2,3), (2, 1) | (2,3), (3, 1) [ (1,2), (1, 3))

v

For f; only look at (1,2), (2,1) in ['(J).

Concatenate first letters to make a word.

Ignore underlined letters. 1121
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Crystal operators (cont.)

Step 2. Bracketing.
J={1,4,7,8}.

MJ) =((2,3),(1,2)1(3,2), (1,2) | (2,3), (2, 1) | (2,3), (3, 1) [ (1,2), (1, 3))

» For f; only look at (1,2), (2,1) in T'(J).

» Concatenate first letters to make a word.

» Ignore underlined letters. 1121
» Cancel 21 pairs like before. 1
» Consider rightmost 1 like before.

» Add corresponding position to J, and remove
from J the position corresponding to
underlined 1 to its right (if any).



Crystal operators (cont.)

Step 2. Bracketing.
J={1,4,7,8}. fi(J)={1,2,7,8}.

r(J) =((2,3),(1,2)1(3,2), (1,2) | (2,3), (2, 1) | (2,3), (3, 1) [ (1,2), (1, 3))

» For f; only look at (1,2), (2,1) in T'(J).

» Concatenate first letters to make a word.

» Ignore underlined letters. 1121
» Cancel 21 pairs like before. 1
» Consider rightmost 1 like before.

» Add corresponding position to J, and remove
from J the position corresponding to
underlined 1 to its right (if any).
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Note: f; is similarly defined based on (i,i+ 1) in '(J) fori #0
and fy is similarly defined based on (n, 1).



Crystal operators (cont.)

Note: f; is similarly defined based on (i,i+ 1) in '(J) for i # 0
and fy is similarly defined based on (n, 1).

Similar procedure in arbitrary type, using the simple roots «; for
fi # fy and the longest root 6 for f; = f.
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Main results

Theorem (Lenart and L.)
A(p) is closed under the action of fy, fy, ..., fr.

Conjecture (Lenart and L.)

(A(p),{fo, fr,...,f}) in type X, is a model for B+ of type X,(,”,
in the sense that it gives all the classical arrows plus most of
the 0-arrows (except those at the end of a 0-string).

Theorem (Lenart and L.)
The above conjecture is true in type A and C.

A byproduct is a bijection between A(u) and the filling model for
B®" in type A and C, which is shown to preserve the
corresponding affine crystal structures (cf. Conjecture).



Quantum Lakshmibai-Seshadri paths

Note: Recent work by Lenart, Naito, Sagaki, Schilling and
Shimozono: B®* is realized in terms of a model which is related

to the quantum alcove model, namely the quantum
Lakshmibai-Seshadri paths.
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Applications of the quantum alcove model

» Computing the energy function on tensor products of KR
crystals. (Work of Lenart, Naito, Sagaki, Schilling,
Shimozono).

» Give an explicit construction of the combinatorial R-matrix,
that is, the affine crystal isomorphism between X ® Y and
Y®X.

Based on generalizing the so-called Yang-Baxter moves on
the alcove model (analogue of jeu de taquin on tableaux)
to the quantum alcove model. These are uniform across
Lie types.



Thank you



