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Let mon(q) = 3. (%) where M(2n) is the set of matchings
oeM(2n)

on {1,...,2n} and cr(o) counts the pairs ((/,), (k,/)) with

< k<j<l

Example

SO0 e N

m2(q) = 17
m4(q) =2 +q,
me(q) =5+ 6q +3q° + ¢°.

myp(1) =1x3x5x---x(2n—1), myp(0) = C, (Catalan).
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mp(q) is the nth moment of the g-semicircular law.
The cumulants k,(q) are defined by:

> k(g '0g<Zmn >

n>1 n>0

For example:

k(q)=1 k(q)=q—1,  ke(q)=(q—1)*(q+5),

ks(q) = (g9 —1)*(¢° + 7° + 28q + 56).

We observe that (qlf”l()‘,’,),l has positive coefficients.
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mp(q) is the nth moment of the g-semicircular probability law
w(x)dx, i.e. mp(q) = [ x"w(x)dx.
It interpolates between

> the standard gaussian \/%—We_%/zdx at g =1,

> the semicircular (“free Gaussian”) law 5=v/4 — x2dx at g = 0.

The “free cumulants” of the g-semicircular are

on(@= 3 ™.
ogEeM(2n)
o connected
We will show that the classical cumulants k,(q) are also related
with connected matchings, in a different way involving Tutte
polynomials.



Let G = (V,E) a graph.
The Tutte polynomial T¢(x, y) is defined by:

xTge(x,y) if e is a bridge,
Te(x,y) = yTe\e(x,y) if e is a loop,

Tgre(x,¥) + Te\e(x,y) otherwise,
when e is an edge, and Tg(x,y) = 1if G has no edge.

Example

To(x,y) = x""1if G is a tree with n vertices.
To(x,y) =x" 14+ - -+ x>+ x+ yif G is a cycle with n vertices.



Definition
Let o be a matching, its crossing graph G(o) is as follows:
vertices are the pairs of o, edges are the crossings.

{1,6}
{10, 12}
{2,8}
{4,11}

9 10 11 12 {7,9}
{3,5}



Definition
Let M*°""(2n) C M(2n) be the set of connected matchings,
i.e. such that the graph G(o) is connected.

Theorem

ol > Tew(1,9).

_ 1\n—1
(q 1) oeMeon(2n)

Remark
The “free cumulants” cp,(q) of the g-semicircular law are:

(@)= S .

oEMEom(2n)



Proof
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Let P(n) the lattice of set partitions on {1,...,n} ordered by
refinement, and p its Mobius function.

Lemma
We have:
k(@)= D p(m 1) [ mie(a)-
weP(n) berm
Proof.

Z2n

From )’ m2,,(q)(22—i;! =exp(d k2n(q)m) we have:

ma(q)= > [ kei(9),

weP(n) bem

Then we can use Mobius inversion.
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Lemma
Let 0 € M(2n) and 7 € P(2n) with o <, let cr(o, ) the
number of crossings ((i,j), (k,!1)) of o with {i,j, k,I} C b for some

b e w. Then:
[Tms@=" > ¢
bem oEM(2n)
o<t
Proof.

To choose a matching o finer than a set partition 7, we can choose
a matching o, of b for each block b of w, and take o = Uay,.
This means there is a bijection

{c e M(2n) : o <7} — H/Vl(b)

bew

sothat > ¢“(®7) can be factorized. O
oE€M(2n)

o<t
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With the previous two lemmas, we have

kon(q) = Z u(w,i)Hm‘b‘(q) — Z (m, 1) Z (o)

weP(2n) bem w€P(2n) UE/\2(2n)
— Z Z cr o) Z W
oceM(2n) 7€P(2n) oceEM(2n)
>0

where we denote

11
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W(o) only depends on the crossing graph G(o).
If G(o) =(V, E) we have:

W)= > aEMu(r1).

TeP(V)

where i(E, ) counts edges in E such that both endpoints are in
the same block of 7.
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Lemma
Let G = (V,E) be a graph. If m € P(V), let i(E, ) the number of
edges in G such that both endpoints are in a same block of w. Let

1 . ~
U =71 Z g E™p(m, 1)
(q N ]_)” TEP(V)
Then we have
Ont if#V =nand E =0,
Uc = 4 qUg\e ife € E is a loop,

Ugje + Ug\e Ife€ E isnota loop.

Corollary
Us = T¢(1,q) if G connected, 0 otherwise.
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Hence

L W(o) = {TG(U)(L q) if o connected,

W 0 otherwise.

and

Ty hen(a) = Y. Tew(la).

(g —1)—1
(g—1) V=
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The case g =2
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In this case:

S k()% = log (Zmn(z)j—T)

n>1 n>0

kon(2) is a positive integer.

kon(2) = > T6(0)(1,2) can be proved with the
UEMC"""(Zn)
exponential formula using:

Proposition (Gioan, 2010)

Let G be connected graph with a root r, then Tg(1,2) counts the
orientations such that for any vertex v, there is an oriented path
from r to v (i.e. root-accessible orientations).

16 /24



my,(2) counts pairs (o, r) where 0 € M(2n) and r is an
orientation of G(o).

{1,6} —
{10, 12} \
(AN
{11} RN WERWEARN
{7,9} 1 2 3 4 5 6 7 8 9 10 11 12

{3,5}

17
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The block decomposition is as follows: take the leftmost arch,
“push” it, it takes others arches with it, and this defines the first
block. (Then do the same thing with what remains.)

=

TR

1 2 3 4 5 6 7 8 9 10 11 12

TN 2 Van A

1 2 6 8 3 4 5 10 11 12 7 9

This defines a decomposition (o, r) — ((o1, 1), -, (0k, rk))-
For each o;, the leftmost arch is considered as the root of the
crossing graph G(coj). Then r; is an orientation such that each
vertex is accessible from the root.
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The case g = 0 (details omitted)
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In the case g = 0, letting C, denote the Catalan numbers, we have:

2n

- |Og <Z(_1)HC’7 (;n)|> = Z(_l)n—lkzn(o) (;n)'

n>0 n>1

The integers (—1)""1kp,(0) form an increasing sequence of
positive numbers [Lassalle, 2010].

(—1)" Yk, (0) =5 T6()(1,0) can be proved via Viennot's theory
of “heaps of pieces”, using:
Proposition (Greene-Zaslavsky)

If G is connected and has a root r, Tg(1,0) counts acyclic
orientations such that for each vertex v there is a directed path
fromr to v.
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The case g = 0 can be generalized
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Let m, be any sequence of moments, k, (resp. c,) the
corresponding cumulants (resp. free cumulants). The relations
mp, <> k, (resp. m, <> c,) are ruled by Mobius inversion on the
lattice of set partitions (resp. noncrossing set partitions).

What about the relations k, <> ¢, ?
Theorem (Lehner)

cw="> [k

weP(n) berm
7 connected

This is invertible, but we cannot use the Mobius inversion here.
Our method show that:

k=Y (DT (1,0) [T qu-

weP(n) berm
7 connected
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Two (hopefully related) questions:

> |s there a generalization for something that interpolates
between the cumulants and free cumulants 7

> Is there a generalization involving TG(U)(p7 g) and not just
TG(O’)(17 q) ?
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thanks for your attention
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