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Oriented Matroids

We want a similar theory in the tropical
world!

I arrangements of real hyperplanes
I covectors: describe position relative

to the hyperplanes
I oriented matroid (OM): combinatorial

model for the set of covectors
I non-realisable OMs

Theorem („Topological Representation
Theorem“, Folkman & Lawrence, 1978)
Every OM can be realised as an
arrangement of pseudohyperplanes.
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Tropical Geometry in a Nutshell

I named “tropical” in honour of Brazilian mathematician Imre Simon
I algebraic geometry over the tropical semiring (R ∪ {∞},⊕,�)

x ⊕ y := min{x , y}, x � y := x + y
I linear tropical polynomial: p(x) =⊕d

i=1 ai � xi = min1≤i≤d{ai + xi}
I vanishing locus / tropical hypersurface: minimum attained twice
I tropical hyperplane: vanishing locus of a linear tropical polynomial

12
3

1-dimensional tropical hyperplane

(tropical line)

2-dimensional tropical hyperplane
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Arrangements of Tropical Hyperplanes
(n, d)-types and tropical covectors
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Tropical Oriented Matroids (TOMs)
and Tropical Pseudohyperplanes

I Definition by Ardila and Develin via covector-axioms
I Ardila, Develin: The types in an arrangement of tropical

hyperplanes yield a TOM.
I There are non-realisable TOMs.
I Analogue to the Topological Representation Theorem?

Definition
A tropical pseudohyperplane (TROPHY) is the image of a
tropical hyperplane under a PL homeomorphism of TPd−1

that fixes the boundary.

Problem: Define tropical pseudohyperplane arrangements!
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TOMs and Mixed Subdivisions

The Minkowski sum of two sets X , Y is
X + Y := {x + y | x ∈ X , y ∈ Y}.

Definition
A polytopal subdivision of n4d−1 is mixed
if every face is a Minkowski sum of faces
of4d−1.

Theorem (Ardila, Develin, 2007)
Every TOM yields a mixed subdivision.

Conjecture (Ardila, Develin, 2007)
The converse also holds.

242 (n = 2, d = 3)
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“The Bigger Picture”

tropical oriented
matroids

mixed subdivisions
of n4d−1

tropical hyperplane
arrangements

tropical pseudohyperplane
arrangements ???

Ardila/Develin

Ardila/Develin
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Mixed Subdivisions and TROPHYs

Theorem (H., 2011)
The Poincaré dual of a
mixed subdivision of n4d−1

yields a family of tropical
pseudohyperplanes.
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Elimination and Convexity in TOMs

Let M be a TOM.

Elimination property: For A, B ∈ M, k ∈ [n]
there is C ∈ M such that

I Ck = Ak ∪ Bk ,
I Ci ∈ {Ai , Bi , Ai ∪ Bi}.

convex hull of A and B:
MAB := {C ∈ M | Ci ∈ {Ai , Bi , Ai ∪ Bi}}.
Contains every elimination of A and B.

Theorem (H., 2010)
A mixed subdivision S has the elimination
property ⇐⇒ SAB is path-connected for all
A, B ∈ S.

⇒ This is a topological problem!
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Arrangements of Tropical Pseudohyperplanes
(TROPHYs)

I = (2, 23, 1, 12, 3, 3)
AI : induced family of (linear)

pseudohyperplanes

IDEA: Represent convex hull as intersection of
affine pseudohalfspaces.

Definition (H., 2010/2011)
A finite family A of TROPHYs is an arrangement
if for every A′ ⊆ A and I

I
⋂
A′I is empty or

I A′I is an arrangement of linear
pseudohyperplanes.

Theorem (Topological Representation
Theorem, H., 2011)
A mixed subdivision of n4d−1 yields an
arrangement of TROPHYs.
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“The Bigger Picture” revisited

tropical oriented
matroids

mixed subdivisions
of n4d−1

tropical hyperplane
arrangements

tropical pseudohyperplane
arrangements ???

Ardila/Develin

???

Topological Representation Theorem ???

Ardila/Develin
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The Missing Arrow
The Elimination Property

Theorem (H., 2011)
Tropical pseudohyperplane arrangements satisfy the elimination property.

Sketch of proof.
I convex hull of types:

conv(A, B) := {C | Ci ∈ {Ai , Bi , Ai ∪ Bi}}
I Elimination is satisfied iff convex hull is

path-connected.
I Approximate conv(A, B) by affine

pseudohalfspaces.
I Constructed by “blowing up” tropical

pseudohyperplanes.
I Apply Topological Representation

Theorem.
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Thanks for your attention!
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