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Riffle shuffles

Deck of n cards, labelled 1, 2, ..., n. Identify the deck order with &,,.

Assaf-Diaconis—Soundararajan Riffle shuffles with biased cuts — p.2/12



Riffle shuffles

Deck of n cards, labelled 1, 2, ..., n. Identify the deck order with &,,.
CUT with binomial probability

Pr(cut c cards) = 1 (n>

2" \ ¢
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Riffle shuffles

Deck of n cards, labelled 1, 2, ..., n. Identify the deck order with &,,.

CUT with binomial probability DROP proportional to size
1 # [ .
Pr(cut c cards) = — (n> Pr(drop from H;) =

2" \ ¢ N #Hl—l-#Hg
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Riffle shuffles

Deck of n cards, labelled 1, 2, ..., n. Identify the deck order with &,,.

CUT with binomial probability DROP proportional to size
1 (n # H .
Pr(cut ¢ cards) = — Pr(drop from H;) = :

Let P, (o) be chance that o results from a riffle shuffle of the deck.

Assaf-Diaconis—Soundararajan Riffle shuffles with biased cuts — p.2/12



Riffle shuffles

Deck of n cards, labelled 1, 2, ..., n. Identify the deck order with &,,.
CUT with binomial probability DROP proportional to size
1 # H,
Pr(cut ¢ cards) = on (Z) Pr(drop from H;) = 7 1 #10,

Let P, (o) be chance that o results from a riffle shuffle of the deck.
Repeated shuffles are defined by convolution powers

o)=Y Py(m) PV (or )

2
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Riffle shuffles

Deck of n cards, labelled 1, 2, ..., n. Identify the deck order with &,,.
CUT with binomial probability DROP proportional to size
1 # H,
Pr(cut ¢ cards) = on (Z) Pr(drop from H;) = 7 1 #10,

Let P, (o) be chance that o results from a riffle shuffle of the deck.
Repeated shuffles are defined by convolution powers
(o)=Y PP (or )

2

A (1)-shuffle is where the deck is cut into a packets with multinomial
distribution and cards are dropped proportional to packet size.
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Riffle shuffles

Deck of n cards, labelled 1, 2, ..., n. Identify the deck order with &,,.

CUT with binomial probability DROP proportional to size
1 (n # H .
Pr(cut ¢ cards) = — Pr(drop from H;) = :

Let P, (o) be chance that o results from a riffle shuffle of the deck.

Repeated shuffles are defined by convolution powers

o)=Y Py(m) PV (or )

2

A (1)-shuffle is where the deck is cut into a packets with multinomial
distribution and cards are dropped proportional to packet size.

Theorem. (Bayer—Diaconis) On &,,, we have P x Py =P..
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Separation distance

Let U be the uniform distribution, i.e. U(c) = - for a deck of n cards.
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Separation distance

Let U be the uniform distribution, i.e. U(c) = - for a deck of n cards.

The separation distance between P;* and U is given by:

Pi*(0)
SEP(K) = max 1 - 773
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Separation distance

Let U be the uniform distribution, i.e. U(c) = - for a deck of n cards.

The separation distance between P;* and U is given by:

2

Pi*(0)
SEP(K) = max 1 - 773

Separation bounds total variation: 0 < HP”ik — UH v < SEP(k) <1
2 T
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Separation distance

Let U be the uniform distribution, i.e. U(c) = - for a deck of n cards.

The separation distance between P;* and U is given by:

2

Pi*(0)
SEP(K) = max 1 - 773

Separation bounds total variation: 0 < HP”ik — UH v < SEP(k) <1
2 T

Theorem. (Bayer—Diaconis) Let r(o) be the number of rising sequences
in o, equivalently r(o) = des(o—!) + 1.
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Separation distance

Let U be the uniform distribution, i.e. U(c) = - for a deck of n cards.

The separation distance between P;* and U is given by:

2

Pi*(0)
SEP(K) = max 1 - 773

Separation bounds total variation: 0 < HP”ik — UH v < SEP(k) <1
2 T

Theorem. (Bayer—Diaconis) Let r(o) be the number of rising sequences
in o, equivalently r(¢) = des(o~!) +1. Then

P, (o) — i(n+a—r(a))

an n
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Separation distance

Let U be the uniform distribution, i.e. U(c) = - for a deck of n cards.

The separation distance between P;* and U is given by:
2

Pi*(0)
SEP(K) = max 1 - 773

Separation bounds total variation: 0 < HP”ik — UH v < SEP(k) <1
2 T

Theorem. (Bayer—Diaconis) Let r(o) be the number of rising sequences
in o, equivalently r(¢) = des(o~!) +1. Then

P, (o) — ain (n + an— r(a))

For a deck of n cards, SEP(k) =1 —nlP. (rev)
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Separation distance

Let U be the uniform distribution, i.e. U(c) = - for a deck of n cards.

The separation distance between P;* and U is given by:
2

Pi*(0)
SEP(K) = max 1 - 773

Separation bounds total variation: 0 < HP”ik — UH v < SEP(k) <1
2 T

Theorem. (Bayer—Diaconis) Let r(o) be the number of rising sequences
in o, equivalently r(¢) = des(o~!) +1. Then

P, (o) — i(n+a—r(a))

an n

For a deck of n cards, SEP(k)=1—n!P. (rev) =1 — 55 (2) .

n
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Cutoff phenomenon

For a deck of n cards, SEP(k) =1 — 5= (2¥), .

Assaf-Diaconis—Soundararajan Riffle shuffles with biased cuts — p.4/12



Cutoff phenomenon

For a deck of n cards, SEP(k) =1 — 5= (2¥) . Forn =52,

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
SEP | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .996 .931 .732 .479 .278 .150 .078 .040 .020
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Cutoff phenomenon

For a deck of n cards, SEP(k) =1 — 5= (2¥) . Forn =52,

k 1 2 3

4 5 6 7 8 9 10 11 12 13 14 15 16

SEP

1.00 1.00 1.00 1.00 1.00 1.00 1.00 .996 .931 .732 .479 .278 .150 .078 .040 .020
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Cutoff phenomenon

For a deck of n cards, SEP(k) =1 — 5= (2¥) . Forn =52,

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
SEP | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .996 .931 .732 .479 .278 .150 .078 .040 .020

cutoff

Precisely, for a,,, b,, — oo with b,,/a,, — 0, the chains P,, r,, satisfy an
an, by, cutoff if for all real fixed 6 with k,, = |a,, + 0b,, |

c(d) -0 asf— oo

| P — 7, — ¢(8) where
c() -1 asf — —oc
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Biased cuts

Consider the following one-parameter generalization of riffle shuffles:
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Biased cuts
Consider the following one-parameter generalization of riffle shuffles:

CUT with binomial (n, ) probability
)06(1 o 9)%—0

Pr(cut ¢ cards) = (n
C
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Biased cuts
Consider the following one-parameter generalization of riffle shuffles:

CUT with binomial (n, ) probability DROP proportional to size

#* H.
)Hc(l —0)"~¢ Pr(drop from H;) = Py ;EHQ

n

Pr(cut ¢ cards) = (
C
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Biased cuts
Consider the following one-parameter generalization of riffle shuffles:

CUT with binomial (n, ) probability DROP proportional to size

#* H.
)Hc(l —0)"~¢ Pr(drop from H;) = Py ;EHQ

n

Pr(cut ¢ cards) = (
C

Let Py(o) be chance that o results from a ¢-shuffle of the deck.
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Biased cuts
Consider the following one-parameter generalization of riffle shuffles:

CUT with binomial (n, ) probability DROP proportional to size

#H.
Pr(cut ¢ cards) = ( )06(1 —0)"~¢ Pr(drop from H;) = EH. 1 ;&H
1 2

n

C
Let Py(o) be chance that o results from a ¢-shuffle of the deck.

For 0 = (64,...,0,), a 0-shuffle is where the deck is cut into a packets

with multinomial distribution ( " )6? e
C1,...,Cq
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Biased cuts
Consider the following one-parameter generalization of riffle shuffles:

CUT with binomial (n, ) probability DROP proportional to size

#H.
Pr(cut ¢ cards) = ( )06(1 —0)"~¢ Pr(drop from H;) = EH. 1 ;&H
1 2

n

C
Let Py(o) be chance that o results from a ¢-shuffle of the deck.
For 0 = (64,...,0,), a 0-shuffle is where the deck is cut into a packets

with multinomial distribution ( " )9;1 e
C1,...,Cq

Repeated #-shuffles convolve: 8 = (61,...,0,) and n = (n1,...,m),
Oxm=(01m1,.--,01m0,02m1,...,0am)
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Biased cuts
Consider the following one-parameter generalization of riffle shuffles:

CUT with binomial (n, ) probability DROP proportional to size

#* H.
)00(1 —0)"~¢ Pr(drop from H;) = Py ;EHQ

n

Pr(cut ¢ cards) = (
C

Let Py(o) be chance that o results from a ¢-shuffle of the deck.

For 0 = (64,...,0,), a 0-shuffle is where the deck is cut into a packets

with multinomial distribution ( " )9;1 e
C1,...,Cq

Repeated #-shuffles convolve: 8 = (61,...,0,) and n = (n1,...,m),
Oxm=(01m1,.--,01m0,02m1,...,0am)

Theorem. (Diaconis—Fill-Pitman) On G,,, we have Py * P, = Pp.p,.
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Quasisymmetric functions

Quasisymmetric functions form a vector space of dimension 2”1,
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Quasisymmetric functions

Quasisymmetric functions form a vector space of dimension 2”1,

The monomial quasisymmetric function basis is (compositions)

My(X) = Z I R

’il ig 1a
11 <t2<--<iq
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Quasisymmetric functions

Quasisymmetric functions form a vector space of dimension 2”1,

The monomial quasisymmetric function basis is (compositions)

_ E : ar, Q2 0
MQ(X) — le :E’LQ ‘ -CE,LCL
11 <2< <lq

E.Q., M121)(X) = z12323 + 212524 + T120304 + Tox324 + - - -
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Quasisymmetric functions

Quasisymmetric functions form a vector space of dimension 2”1,

The monomial quasisymmetric function basis is (compositions)

—_ E a1 O (o)
MQ(X) — szl :E’LQ ° ':E,l:a
i1 <ig<-<ig
E M X) = 2 2 204 + 2 e
9., (1,2,1)( ) = 212523 + 12524 + L1254 + T2X524 +

Gessel’'s fundamental quasisymmetric function basis is (subsets)

X)) = Y @y,

i1 < <ip,
ij=tj+1=>J¢D
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Quasisymmetric functions

Quasisymmetric functions form a vector space of dimension 2”1,

The monomial quasisymmetric function basis is (compositions)

Mo (X)= >  afaiz...ae

la
11 <2< <1lgq

E.Q., M121)(X) = z12323 + 212524 + T120304 + Tox324 + - - -

Gessel’'s fundamental quasisymmetric function basis is (subsets)

X)) = Y @y,

i1 < <ip,
ij=tj+1=>J¢D

E.g., Q{l}(X) — M(1,3)(X) + M(1,2,1)(X) =+ M(1,1,2) (X) =+ M(1,1,1,1)(X)-
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Quasisymmetric functions

Quasisymmetric functions form a vector space of dimension 2”1,

The monomial quasisymmetric function basis is (compositions)

—_ E a1 O (o)
Ma(X) — szl :E’LQ ° ':E,l:a
i1 <ig<-<ig
E M X) = 2 2 204 + 2 e
9., (1,2,1)( ) = 212523 + 12524 + L1254 + T2X524 +

Gessel’'s fundamental quasisymmetric function basis is (subsets)

Qp(X)= 3 wem,

i1 < <ip,
ij=tj+1=>J¢D

E.g., Q1 (X) = Mgy 3)(X) +Maq21)(X)+Maqi12(X)+Maq111)(X).

The fundamental basis is related to the monomial basis by

Qpe(X)= ) My (X)

« refines (3
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Biased distribution

Theorem. (Fulman,Stanley) Foroc € &,, and 6 = (01,0-,...,0,),
Po (O> — QiDes(a) (0)

where iDes(o) = Des(o 1) is the inverse descent set of o.
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Biased distribution

Theorem. (Fulman,Stanley) Foroc € &,, and 6 = (01,0-,...,0,),
Po (O> — QiDes(U) (0)

where iDes(o) = Des(o 1) is the inverse descent set of o.

Proposition. (A-D-S) We have iDes(o) D iDes(7) = Pr(o) < Pr(7)
with equality if and only if iDes(o) = iDes(7).
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Biased distribution

Theorem. (Fulman,Stanley) Foroc € &,, and 6 = (01,0-,...,0,),
Po (O> — QiDes(U) (0)

where iDes(o) = Des(o 1) is the inverse descent set of o.

Proposition. (A-D-S) We have iDes(o) D iDes(7) = Pr(o) < Pr(7)
with equality if and only if iDes(o) = iDes(7).

Proof: Since « refines g if and only if D(«) 2 D(0),
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Biased distribution
Theorem. (Fulman,Stanley) Foroc € &,, and 6 = (01,0-,...,0,),

Py (J> — QiDes(U) (0)

where iDes(o) = Des(o 1) is the inverse descent set of o.

Proposition. (A-D-S) We have iDes(o) D iDes(7) = Pr(o) < Pr(7)
with equality if and only if iDes(o) = iDes(7).

Proof: Since « refines g if and only if D(«) D D(3), we have

Qpe)(X)=Qpw)(X)+ Y  MuX)

~/! refines (3
v/ not refine «
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Biased distribution

Theorem. (Fulman,Stanley) Foroc € &,, and 6 = (01,0-,...,0,),
Po (O> — QiDes(U) (0)

where iDes(o) = Des(o 1) is the inverse descent set of o.

Proposition. (A-D-S) We have iDes(o) D iDes(7) = Pr(o) < Pr(7)
with equality if and only if iDes(o) = iDes(7).

Proof: Since « refines g if and only if D(«) D D(3), we have

Qpe)(X)=Qpw)(X)+ Y  MuX)

~/! refines (3
v/ not refine «

Corollary. On &,,, we have SEP(Pp) = 1 — n!Q,—1)(0).
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Biased separation

Theorem. (A-D-S) On G,,, the separation distance for Py is

SEP(k) =1—nl <Z( )=t , 1Hp k:ni(A)>

AFn

where £()) is the number of parts of X and z, = [[. i"Mn;(\)!.
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Biased separation

Theorem. (A-D-S) On G,,, the separation distance for Py is

SEP(k) =1—n! (Z( )= () -1 Hp k:ni(A)>

AFn

where £()) is the number of parts of X and z, = [[. i"Mn;(\)!.

Proof: e, (X) = Qp,—1)(X) ,
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Biased separation

Theorem. (A-D-S) On G,,, the separation distance for Py is

SEP(k) =1—n! (Z( )= () -1 Hp k:ni(A)>

AFn

where £()) is the number of parts of X and z, = [[. i"Mn;(\)!.

Proof: e,(X) = Qp_11(X) , pn(X*F) = (pn(X))",
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Biased separation

Theorem. (A-D-S) On G,,, the separation distance for Py is

SEP(k) =1—n! (Z( )= () -1 Hp k:ni(A)>

AFn

where £()) is the number of parts of X and z, = [[. i"Mn;(\)!.

Proof: e,(X) = Qu-1)(X) , pn(X**) = pn(X))", en =3, ex25 P2
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Biased separation

Theorem. (A-D-S) On G,,, the separation distance for Py is

SEP(k) =1—n! (Z( )= () -1 Hp k:ni(A)>

AFn

where £()) is the number of parts of X and z, = [[. i"Mn;(\)!.
Proof: e, (X) = Q[n—l] (X), pn(X*k) = (pn(X))k y En = ZA eAzglpA

Theorem. (A-D-S) For the #-biased riffle shuffle measure on &,,, let
L — \‘ 2logn—log 2+c J

—log(02+(1-0)2) |
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Biased separation

Theorem. (A-D-S) On G,,, the separation distance for Py is

SEP(k) =1—n! (Z( )= () -1 Hp k:ni(A)>

AFn

where £()) is the number of parts of X and z, = [[. i"Mn;(\)!.
Proof: e, (X) = Q[n—l] (X), pn(X*k) = (pn(X))k y En = ZA eAzglpA

Theorem. (A-D-S) For the #-biased riffle shuffle measure on &,,, let

. 2logn—log 2+c .
k= {_1ogg(92+(1g_9)2)J- Then, for any fixed real ¢,

SEP (k) ~ exp(e™©) — 1
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Biased separation

Theorem. (A-D-S) On G,,, the separation distance for Py is

SEP(k) =1—n! (Z( )= () -1 Hp k:ni(A)>

AFn

where £()) is the number of parts of X and z, = [[. i"Mn;(\)!.
Proof: e, (X) = Q[n—l] (X), pn(X*k) = (pn(X))k y En = ZA eAzglpA

Theorem. (A-D-S) For the #-biased riffle shuffle measure on &,,, let
k= {_2 log n—log 2+c J Then, for any fixed real c,

log(62+(1-0)2)

SEP (k) ~ exp(e™©) — 1

This gives a tight upper bound on separation,
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Biased separation

Theorem. (A-D-S) On G,,, the separation distance for Py is

SEP(k) =1—n! (Z( )= () -1 Hp k:ni(A)>

AFn

where £()) is the number of parts of X and z, = [[. i"Mn;(\)!.
Proof: e, (X) = Q[n—l] (X), pn(X*k) = (pn(X))k y En = ZA eAzglpA

Theorem. (A-D-S) For the #-biased riffle shuffle measure on &,,, let
k= {_2 log n—log 2+c J Then, for any fixed real c,

log(62+(1-0)2)

SEP (k) ~ exp(e™©) — 1

This gives a tight upper bound on separation, establishes the cutoff
phenomenon,
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Biased separation

Theorem. (A-D-S) On G,,, the separation distance for Py is

SEP(k) =1—n! (Z( )= () -1 Hp k:ni(A)>

AFn

where £()) is the number of parts of X and z, = [[. i"Mn;(\)!.
Proof: e, (X) = Q[n—l] (X), pn(X*k) = (pn(X))k y En = ZA eAzglpA

Theorem. (A-D-S) For the #-biased riffle shuffle measure on &,,, let
k= {_2 log n—log 2+c J Then, for any fixed real c,

log(62+(1-0)2)

SEP (k) ~ exp(e™©) — 1

This gives a tight upper bound on separation, establishes the cutoff
phenomenon, and shows that unbiased cuts lead to fastest mixing.
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Strong stationary times

Repeated shuffles form a Markov chain id = 0g,01,02,... 0N G,,.
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Strong stationary times

Repeated shuffles form a Markov chain id = 0g,01,02,... 0N G,,.
An SST T is a stopping time such thatforall k > 0and o € G,,

Pr{or =0 |T <k} =U(0o)
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Strong stationary times

Repeated shuffles form a Markov chain id = 0g,01,02,... 0N G,,.
An SST T is a stopping time such thatforall k > 0and o € G,,

Pr{or =0 |T <k} =U(0o)

A basic proposition of this theory is SEP(k) < Pr{T > k} for all £ > 0.
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Strong stationary times

Repeated shuffles form a Markov chain id = 0g,01,02,... 0N G,,.
An SST T is a stopping time such thatforall k > 0and o € G,,

Pr{or =0 |T <k} =U(0o)
A basic proposition of this theory is SEP(k) < Pr{T > k} for all £ > 0.

An inverse 0-shuffle is where cards are labeled i with probability 6;
iIndependently, then removed one label at a time keeping their same
relative order.
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Strong stationary times

Repeated shuffles form a Markov chain id = 0g,01,02,... 0N G,,.
An SST T is a stopping time such thatforall k > 0and o € G,,

Pr{or =0 |T <k} =U(0o)
A basic proposition of this theory is SEP(k) < Pr{T > k} for all £ > 0.

An inverse 0-shuffle is where cards are labeled i with probability 6;
iIndependently, then removed one label at a time keeping their same
relative order. The first time T that the first 1" coordinates of the n
cards are distinct is an SST, since nn—1...1 IS a halting state.
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Strong stationary times

Repeated shuffles form a Markov chain id = 0g,01,02,... 0N G,,.
An SST T is a stopping time such thatforall k > 0and o € G,,

Pr{or =0 |T <k} =U(0o)
A basic proposition of this theory is SEP(k) < Pr{T > k} for all £ > 0.

An inverse 0-shuffle is where cards are labeled i with probability 6;
iIndependently, then removed one label at a time keeping their same
relative order. The first time T that the first 1" coordinates of the n
cards are distinct is an SST, since nn—1...1 IS a halting state.

_ _ first k£ coordinates of
SEP(k) - Pr{T > k} - Pr{U { cards ¢ and 5 are equal }}
1<J
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Strong stationary times

Repeated shuffles form a Markov chain id = 0g,01,02,... 0N G,,.
An SST T is a stopping time such thatforall k > 0and o € G,,

Pr{or =0 |T <k} =U(0o)
A basic proposition of this theory is SEP(k) < Pr{T > k} for all £ > 0.

An inverse 0-shuffle is where cards are labeled i with probability 6;
iIndependently, then removed one label at a time keeping their same
relative order. The first time T that the first 1" coordinates of the n
cards are distinct is an SST, since nn—1...1 IS a halting state.

SEP(k) = Pr{T >k} = pr{U { first k coordinates of }}

cards ¢ and 5 are equal
1<J

IA

k
first k coordinates of _[(n 2
Z Pr{ cards ¢ and j are equal } - (2) (Z 973)
1

1<J
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Birthday problem
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Birthday problem

Drop n balls independently, chance of dropping into box i is 6,.
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Birthday problem

Drop n balls independently, chance of dropping into box i is 6,.

Pr(success) = Pr( U {balls i and j in same box })
1<i<y<n
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Birthday problem

Drop n balls independently, chance of dropping into box i is 6,.

Pr(success) = Pr( U {balls i and j in same box })
1<i<y<n

Chance of failure is expressible as 1 — Pr(success) = nle, (61, ...,0p),
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Birthday problem

Drop n balls independently, chance of dropping into box i is 6,.

Pr(success) = Pr( U {balls i and j in same box })
1<i<y<n

Chance of failure is expressible as 1 — Pr(success) = nle, (61, ...,0p),

Pr(success) =1 — )  sgn(o)py)(0) =1—n! > (=1)"""Nz1p\(6)
ceS, AFn
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Birthday problem

Drop n balls independently, chance of dropping into box i is 6,.

Pr(success) = Pr( U {balls i and j in same box })
1<i<y<n

Chance of failure is expressible as 1 — Pr(success) = nle, (61, ...,0p),

Pr(success) =1 — )  sgn(o)py)(0) =1—n! > (=1)"""Nz1p\(6)
ceS, AFn

For example, for n = 3 we have

Pr(success) = 3Pr(Bj2)—3Pr(B12NBss)+ Pr(Bi2NBisN Bss)

= 30 _p)—20_1r))
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Birthday problem

Drop n balls independently, chance of dropping into box i is 6,.

Pr(success) = Pr( U {balls i and j in same box })
1<i<y<n

Chance of failure is expressible as 1 — Pr(success) = nle, (61, ...,0p),

Pr(success) =1 — )  sgn(o)py)(0) =1—n! > (=1)"""Nz1p\(6)
ceS, AFn

For example, for n = 3 we have

Pr(success) = 3Pr(Bj2)—3Pr(B12NBss)+ Pr(Bi2NBisN Bss)
= 30> _p) 20> _p))
1 1

= 6<_§p(2,1)<9) + §p3(9))
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Further directions
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Further directions

e The connection between inclusion-exclusion, birthday problems, and
symmetric functions appears to be generally useful.
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e The connection between inclusion-exclusion, birthday problems, and
symmetric functions appears to be generally useful.

e The projection walk on hyperplane arrangements:
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Further directions

e The connection between inclusion-exclusion, birthday problems, and
symmetric functions appears to be generally useful.

e The projection walk on hyperplane arrangements. Divide R"™ into
chambers and faces using (;) hyperplanes H, ; = {z € R" | z; = z,}.
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Further directions

e The connection between inclusion-exclusion, birthday problems, and
symmetric functions appears to be generally useful.

e The projection walk on hyperplane arrangements. Divide R"™ into
chambers and faces using (;) hyperplanes H, ; = {z € R" | z; = z,}.
The projection operator sending a chamber C' and a face F' to the

chamber C x F adjacent to I’ and closest to ' operates as an inverse
0-shuffle with probability measure on faces of form S, .S5¢, each with

probability 61°1(1 — 9)»~ 151,
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Further directions

e The connection between inclusion-exclusion, birthday problems, and
symmetric functions appears to be generally useful.

e The projection walk on hyperplane arrangements. Divide R"™ into
chambers and faces using (;) hyperplanes H, ; = {z € R" | z; = z,}.
The projection operator sending a chamber C' and a face F' to the

chamber C x F adjacent to I’ and closest to ' operates as an inverse
0-shuffle with probability measure on faces of form S, .S5¢, each with

probability 81°1(1 — §)»~15I, The rate of convergence after k-steps is

||Kk —Ul|lry < (Z) (92 + (1 — 9)2)k
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Further directions

e The connection between inclusion-exclusion, birthday problems, and
symmetric functions appears to be generally useful.

e The projection walk on hyperplane arrangements. Divide R"™ into
chambers and faces using (;) hyperplanes H, ; = {z € R" | z; = z,}.
The projection operator sending a chamber C' and a face F' to the

chamber C x F adjacent to I’ and closest to ' operates as an inverse
0-shuffle with probability measure on faces of form S, .S5¢, each with

probability 81°1(1 — §)»~15I, The rate of convergence after k-steps is

||Kk —Ul|lry < (Z) (92 + (1 — 9)2)k

e Similar analysis works for the /., metric,

P*k(0.>
U(o)

lso (k) = max

o)

1 —
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Further directions

e The connection between inclusion-exclusion, birthday problems, and
symmetric functions appears to be generally useful.

e The projection walk on hyperplane arrangements. Divide R"™ into
chambers and faces using (;) hyperplanes H, ; = {z € R" | z; = z,}.

The projection operator sending a chamber C' and a face F' to the
chamber C x F adjacent to I’ and closest to ' operates as an inverse
0-shuffle with probability measure on faces of form S, .S5¢, each with

probability 81°1(1 — §)»~15I, The rate of convergence after k-steps is

K" —UHTV<()(92 (1-02)"

e Similar analysis works for the /., metric,

Z H 9@ )kni(a) _q

ces,, 1=1

P*k

lso (k) = max

o)

1 —
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Further directions

e The connection between inclusion-exclusion, birthday problems, and
symmetric functions appears to be generally useful.

e The projection walk on hyperplane arrangements. Divide R"™ into
chambers and faces using (;) hyperplanes H, ; = {z € R" | z; = z,}.

The projection operator sending a chamber C' and a face F' to the
chamber C x F adjacent to I’ and closest to ' operates as an inverse
0-shuffle with probability measure on faces of form S, .S5¢, each with

probability 81°1(1 — §)»~15I, The rate of convergence after k-steps is

K" —UHTV<()(92 (1-02)"

e Similar analysis works for the /., metric,

Z H 9@ )kni(a) _q

ces,, 1=1

P*k

lso (k) = max

o)

1 —

A similarly sharp analysis for total variation remains open for 6 # %
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TEREHONE YD TINWE LT,

Thank you for listening.
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