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Riffle shuffles

Deck of n cards, labelled 1, 2, . . . , n. Identify the deck order with Sn.
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A ( 1
a
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distribution and cards are dropped proportional to packet size.
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Riffle shuffles

Deck of n cards, labelled 1, 2, . . . , n. Identify the deck order with Sn.

CUT with binomial probability DROP proportional to size

Pr(cut c cards) =
1

2n

(
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Pr(drop from Hi) =
#Hi

#H1 + #H2

Let P 1
2
(σ) be chance that σ results from a riffle shuffle of the deck.

Repeated shuffles are defined by convolution powers

P ∗k
1
2

(σ) =
∑

τ

P 1
2
(τ)P

∗(k−1)
1
2

(στ−1)

A ( 1
a
)-shuffle is where the deck is cut into a packets with multinomial

distribution and cards are dropped proportional to packet size.

Theorem. (Bayer–Diaconis) On Sn, we have P 1
a
∗ P 1

b
= P 1

ab
.
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Let U be the uniform distribution, i.e. U(σ) = 1
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Theorem. (Bayer–Diaconis) Let r(σ) be the number of rising sequences
in σ, equivalently r(σ) = des(σ−1) + 1.
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Cutoff phenomenon

For a deck of n cards, SEP(k) = 1 − 1
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Precisely, for an, bn → ∞ with bn/an → 0, the chains Pn, πn satisfy an
an, bn cutoff if for all real fixed θ with kn = ⌊an + θbn⌋

‖P kn
n − πn‖ −→ c(θ) where

{

c(θ) → 0 as θ → ∞

c(θ) → 1 as θ → −∞
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Consider the following one-parameter generalization of riffle shuffles:
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Biased cuts

Consider the following one-parameter generalization of riffle shuffles:

CUT with binomial (n, θ) probability DROP proportional to size

Pr(cut c cards) =

(
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Let Pθ(σ) be chance that σ results from a θ-shuffle of the deck.

For θ = (θ1, . . . , θa), a θ-shuffle is where the deck is cut into a packets

with multinomial distribution
(

n

c1, . . . , ca

)

θc1

1 · · · θca
a .

Repeated θ-shuffles convolve: θ = (θ1, . . . , θa) and η = (η1, . . . , ηb),

θ ∗ η = (θ1η1, . . . , θ1ηb, θ2η1, . . . , θaηb)

Theorem. (Diaconis–Fill–Pitman) On Sn, we have Pθ ∗ Pη = Pθ∗η.
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Quasisymmetric functions

Quasisymmetric functions form a vector space of dimension 2n−1.
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Quasisymmetric functions

Quasisymmetric functions form a vector space of dimension 2n−1.

The monomial quasisymmetric function basis is (compositions)

Mα(X) =
∑

i1<i2<···<ia

xα1
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· · ·xαa
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Quasisymmetric functions form a vector space of dimension 2n−1.

The monomial quasisymmetric function basis is (compositions)

Mα(X) =
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2
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2
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Gessel’s fundamental quasisymmetric function basis is (subsets)

QD(X) =
∑

i1≤···≤in

ij=ij+1⇒j 6∈D

xi1 · · ·xin

E.g., Q{1}(X) = M(1,3)(X) + M(1,2,1)(X) + M(1,1,2)(X) + M(1,1,1,1)(X).
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Quasisymmetric functions

Quasisymmetric functions form a vector space of dimension 2n−1.

The monomial quasisymmetric function basis is (compositions)

Mα(X) =
∑
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2
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2x4 + x1x

2
3x4 + x2x

2
3x4 + · · ·

Gessel’s fundamental quasisymmetric function basis is (subsets)

QD(X) =
∑

i1≤···≤in

ij=ij+1⇒j 6∈D

xi1 · · ·xin

E.g., Q{1}(X) = M(1,3)(X) + M(1,2,1)(X) + M(1,1,2)(X) + M(1,1,1,1)(X).

The fundamental basis is related to the monomial basis by

QD(β)(X) =
∑

α refines β

Mα(X)
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Biased distribution

Theorem. (Fulman,Stanley) For σ ∈ Sn and θ = (θ1, θ2, . . . , θa),

Pθ(σ) = QiDes(σ)(θ)

where iDes(σ) = Des(σ−1) is the inverse descent set of σ.
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Biased distribution

Theorem. (Fulman,Stanley) For σ ∈ Sn and θ = (θ1, θ2, . . . , θa),

Pθ(σ) = QiDes(σ)(θ)

where iDes(σ) = Des(σ−1) is the inverse descent set of σ.

Proposition. (A-D-S) We have iDes(σ) ⊇ iDes(τ) ⇒ Pr(σ) ≤ Pr(τ)
with equality if and only if iDes(σ) = iDes(τ).
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Theorem. (Fulman,Stanley) For σ ∈ Sn and θ = (θ1, θ2, . . . , θa),

Pθ(σ) = QiDes(σ)(θ)

where iDes(σ) = Des(σ−1) is the inverse descent set of σ.

Proposition. (A-D-S) We have iDes(σ) ⊇ iDes(τ) ⇒ Pr(σ) ≤ Pr(τ)
with equality if and only if iDes(σ) = iDes(τ).

Proof: Since α refines β if and only if D(α) ⊇ D(β),
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Biased distribution

Theorem. (Fulman,Stanley) For σ ∈ Sn and θ = (θ1, θ2, . . . , θa),

Pθ(σ) = QiDes(σ)(θ)

where iDes(σ) = Des(σ−1) is the inverse descent set of σ.

Proposition. (A-D-S) We have iDes(σ) ⊇ iDes(τ) ⇒ Pr(σ) ≤ Pr(τ)
with equality if and only if iDes(σ) = iDes(τ).

Proof: Since α refines β if and only if D(α) ⊇ D(β), we have

QD(β)(X) = QD(α)(X) +
∑

γ′ refines β
γ′ not refine α

Mγ′(X)
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Biased distribution

Theorem. (Fulman,Stanley) For σ ∈ Sn and θ = (θ1, θ2, . . . , θa),

Pθ(σ) = QiDes(σ)(θ)

where iDes(σ) = Des(σ−1) is the inverse descent set of σ.

Proposition. (A-D-S) We have iDes(σ) ⊇ iDes(τ) ⇒ Pr(σ) ≤ Pr(τ)
with equality if and only if iDes(σ) = iDes(τ).

Proof: Since α refines β if and only if D(α) ⊇ D(β), we have

QD(β)(X) = QD(α)(X) +
∑

γ′ refines β
γ′ not refine α

Mγ′(X)

Corollary. On Sn, we have SEP(Pθ) = 1 − n!Q[n−1](θ).
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Biased separation

Theorem. (A-D-S) On Sn, the separation distance for Pθ is

SEP(k) = 1 − n!

(

∑

λ⊢n

(−1)n−ℓ(λ)z−1
λ

n
∏

i=1

pi(θ)kni(λ)

)

where ℓ(λ) is the number of parts of λ and zλ =
∏

i ini(λ)ni(λ)!.
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Proof: en(X) = Q[n−1](X) ,

Assaf–Diaconis–Soundararajan Riffle shuffles with biased cuts – p.8/12



Biased separation
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Biased separation

Theorem. (A-D-S) On Sn, the separation distance for Pθ is
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∏
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Biased separation

Theorem. (A-D-S) On Sn, the separation distance for Pθ is

SEP(k) = 1 − n!

(

∑

λ⊢n

(−1)n−ℓ(λ)z−1
λ

n
∏

i=1

pi(θ)kni(λ)

)

where ℓ(λ) is the number of parts of λ and zλ =
∏

i ini(λ)ni(λ)!.

Proof: en(X) = Q[n−1](X) , pn(X∗k) = (pn(X))
k , en =

∑

λ ǫλz−1
λ pλ

Theorem. (A-D-S) For the θ-biased riffle shuffle measure on Sn, let

k =
⌊

2 log n−log 2+c
− log(θ2+(1−θ)2)

⌋

.
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Biased separation

Theorem. (A-D-S) On Sn, the separation distance for Pθ is

SEP(k) = 1 − n!

(

∑

λ⊢n

(−1)n−ℓ(λ)z−1
λ

n
∏

i=1

pi(θ)kni(λ)

)

where ℓ(λ) is the number of parts of λ and zλ =
∏

i ini(λ)ni(λ)!.

Proof: en(X) = Q[n−1](X) , pn(X∗k) = (pn(X))
k , en =

∑

λ ǫλz−1
λ pλ

Theorem. (A-D-S) For the θ-biased riffle shuffle measure on Sn, let

k =
⌊

2 log n−log 2+c
− log(θ2+(1−θ)2)

⌋

. Then, for any fixed real c,

SEP(k) ∼ exp(e−c) − 1
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2 log n−log 2+c
− log(θ2+(1−θ)2)
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. Then, for any fixed real c,

SEP(k) ∼ exp(e−c) − 1

This gives a tight upper bound on separation,
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SEP(k) ∼ exp(e−c) − 1

This gives a tight upper bound on separation, establishes the cutoff
phenomenon,
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Proof: en(X) = Q[n−1](X) , pn(X∗k) = (pn(X))
k , en =

∑

λ ǫλz−1
λ pλ

Theorem. (A-D-S) For the θ-biased riffle shuffle measure on Sn, let

k =
⌊

2 log n−log 2+c
− log(θ2+(1−θ)2)

⌋

. Then, for any fixed real c,

SEP(k) ∼ exp(e−c) − 1

This gives a tight upper bound on separation, establishes the cutoff
phenomenon, and shows that unbiased cuts lead to fastest mixing.
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Strong stationary times

Repeated shuffles form a Markov chain id = σ0, σ1, σ2, . . . on Sn.
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An SST T is a stopping time such that for all k ≥ 0 and σ ∈ Sn,

Pr{σk = σ | T ≤ k} = U(σ)
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An SST T is a stopping time such that for all k ≥ 0 and σ ∈ Sn,

Pr{σk = σ | T ≤ k} = U(σ)

A basic proposition of this theory is SEP(k) ≤ Pr{T > k} for all k ≥ 0.

Assaf–Diaconis–Soundararajan Riffle shuffles with biased cuts – p.9/12



Strong stationary times

Repeated shuffles form a Markov chain id = σ0, σ1, σ2, . . . on Sn.
An SST T is a stopping time such that for all k ≥ 0 and σ ∈ Sn,

Pr{σk = σ | T ≤ k} = U(σ)

A basic proposition of this theory is SEP(k) ≤ Pr{T > k} for all k ≥ 0.

An inverse θ-shuffle is where cards are labeled i with probability θi

independently, then removed one label at a time keeping their same
relative order.
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Repeated shuffles form a Markov chain id = σ0, σ1, σ2, . . . on Sn.
An SST T is a stopping time such that for all k ≥ 0 and σ ∈ Sn,

Pr{σk = σ | T ≤ k} = U(σ)

A basic proposition of this theory is SEP(k) ≤ Pr{T > k} for all k ≥ 0.

An inverse θ-shuffle is where cards are labeled i with probability θi

independently, then removed one label at a time keeping their same
relative order. The first time T that the first T coordinates of the n
cards are distinct is an SST, since n n−1 . . . 1 is a halting state.

Assaf–Diaconis–Soundararajan Riffle shuffles with biased cuts – p.9/12



Strong stationary times

Repeated shuffles form a Markov chain id = σ0, σ1, σ2, . . . on Sn.
An SST T is a stopping time such that for all k ≥ 0 and σ ∈ Sn,

Pr{σk = σ | T ≤ k} = U(σ)

A basic proposition of this theory is SEP(k) ≤ Pr{T > k} for all k ≥ 0.

An inverse θ-shuffle is where cards are labeled i with probability θi

independently, then removed one label at a time keeping their same
relative order. The first time T that the first T coordinates of the n
cards are distinct is an SST, since n n−1 . . . 1 is a halting state.

SEP(k) = Pr{T > k} = Pr{
⋃

i<j

{

first k coordinates of
cards i and j are equal

}

}
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Strong stationary times

Repeated shuffles form a Markov chain id = σ0, σ1, σ2, . . . on Sn.
An SST T is a stopping time such that for all k ≥ 0 and σ ∈ Sn,

Pr{σk = σ | T ≤ k} = U(σ)

A basic proposition of this theory is SEP(k) ≤ Pr{T > k} for all k ≥ 0.

An inverse θ-shuffle is where cards are labeled i with probability θi

independently, then removed one label at a time keeping their same
relative order. The first time T that the first T coordinates of the n
cards are distinct is an SST, since n n−1 . . . 1 is a halting state.

SEP(k) = Pr{T > k} = Pr{
⋃

i<j

{

first k coordinates of
cards i and j are equal

}

}

≤
∑

i<j

Pr{ first k coordinates of
cards i and j are equal

} =

(

n

2

)

(

∑

i

θ2
i

)k
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Birthday problem

Drop n balls independently, chance of dropping into box i is θi.
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Birthday problem

Drop n balls independently, chance of dropping into box i is θi.

Pr(success) = Pr(
⋃

1≤i<j≤n

{balls i and j in same box})
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Birthday problem

Drop n balls independently, chance of dropping into box i is θi.

Pr(success) = Pr(
⋃

1≤i<j≤n

{balls i and j in same box})

Chance of failure is expressible as 1 − Pr(success) = n!en(θ1, . . . , θB),

Assaf–Diaconis–Soundararajan Riffle shuffles with biased cuts – p.10/12



Birthday problem

Drop n balls independently, chance of dropping into box i is θi.

Pr(success) = Pr(
⋃

1≤i<j≤n

{balls i and j in same box})

Chance of failure is expressible as 1 − Pr(success) = n!en(θ1, . . . , θB),

Pr(success) = 1 −
∑

σ∈Sn

sgn(σ)pλ(σ)(θ) = 1 − n!
∑

λ⊢n

(−1)n−ℓ(λ)z−1
λ pλ(θ)
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Birthday problem

Drop n balls independently, chance of dropping into box i is θi.

Pr(success) = Pr(
⋃

1≤i<j≤n

{balls i and j in same box})

Chance of failure is expressible as 1 − Pr(success) = n!en(θ1, . . . , θB),

Pr(success) = 1 −
∑

σ∈Sn

sgn(σ)pλ(σ)(θ) = 1 − n!
∑

λ⊢n

(−1)n−ℓ(λ)z−1
λ pλ(θ)

For example, for n = 3 we have

Pr(success) = 3Pr(B1,2) − 3Pr(B1,2 ∩ B2,3) + Pr(B1,2 ∩ B1,3 ∩ B2,3)

= 3(
∑

p2
j ) − 2(

∑

p3
j )
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⋃
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{balls i and j in same box})

Chance of failure is expressible as 1 − Pr(success) = n!en(θ1, . . . , θB),

Pr(success) = 1 −
∑

σ∈Sn

sgn(σ)pλ(σ)(θ) = 1 − n!
∑

λ⊢n

(−1)n−ℓ(λ)z−1
λ pλ(θ)

For example, for n = 3 we have

Pr(success) = 3Pr(B1,2) − 3Pr(B1,2 ∩ B2,3) + Pr(B1,2 ∩ B1,3 ∩ B2,3)

= 3(
∑

p2
j ) − 2(

∑

p3
j )

= 6(−
1

2
p(2,1)(θ) +

1

3
p3(θ))
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Further directions

• The connection between inclusion-exclusion, birthday problems, and
symmetric functions appears to be generally useful.
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• The projection walk on hyperplane arrangements:
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Further directions

• The connection between inclusion-exclusion, birthday problems, and
symmetric functions appears to be generally useful.

• The projection walk on hyperplane arrangements: Divide R
n into

chambers and faces using
(

n
2

)

hyperplanes Hi,j = {x ∈ R
n | xi = xj}.
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• The connection between inclusion-exclusion, birthday problems, and
symmetric functions appears to be generally useful.

• The projection walk on hyperplane arrangements: Divide R
n into

chambers and faces using
(

n
2

)

hyperplanes Hi,j = {x ∈ R
n | xi = xj}.

The projection operator sending a chamber C and a face F to the
chamber C ∗ F adjacent to F and closest to C operates as an inverse
θ-shuffle with probability measure on faces of form S, Sc, each with
probability θ|S|(1 − θ)n−|S|.
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Further directions

• The connection between inclusion-exclusion, birthday problems, and
symmetric functions appears to be generally useful.

• The projection walk on hyperplane arrangements: Divide R
n into

chambers and faces using
(

n
2

)

hyperplanes Hi,j = {x ∈ R
n | xi = xj}.

The projection operator sending a chamber C and a face F to the
chamber C ∗ F adjacent to F and closest to C operates as an inverse
θ-shuffle with probability measure on faces of form S, Sc, each with
probability θ|S|(1 − θ)n−|S|. The rate of convergence after k-steps is

‖Kk − U‖TV ≤

(

n

2

)

(

θ2 + (1 − θ)2
)k
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chamber C ∗ F adjacent to F and closest to C operates as an inverse
θ-shuffle with probability measure on faces of form S, Sc, each with
probability θ|S|(1 − θ)n−|S|. The rate of convergence after k-steps is

‖Kk − U‖TV ≤

(

n

2

)

(

θ2 + (1 − θ)2
)k

• Similar analysis works for the ℓ∞ metric,

ℓ∞(k) = max
σ

∣

∣

∣

∣

1 −
P ∗k(σ)

U(σ)

∣

∣

∣

∣
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∣

∣

∣

∣

1 −
P ∗k(σ)

U(σ)

∣

∣

∣

∣

=
∑

σ∈Sn

n
∏

i=1

(

θi + (1 − θ)i
)kni(σ)

− 1
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A similarly sharp analysis for total variation remains open for θ 6= 1
2 .
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