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Operads

A (non-symmetric set-)operad is a triple (P, 0;,1) where:

P is a graded set of the form

P = tI-J P(n),

n>1

o; is a grafting application
oi : P(n) x P(m) = P(n+ m—1),

defined for all n,m > 1 and i € [n],
1 is an element of P(1), called unit.

This data has to satisfy some relations.
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For all x € P(n), y € P(m), and z € P(k), following relations must be
satisfied.

Associativity relation:
(x0jy)oiyj—1z=x0;(yojz),
for all i € [n] and j € [m].
Commutativity relation:
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logx=x=x0;1,

for all i € [n].
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Typical questions about operads

Let P be an operad. Usual questions about P consist in

1. computing the dimensions of P, that is the sequence
#P(1), #P(2), #P(3), ...

2. finding a set of generators of P;

3. giving a presentation of P by generators and relations.
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The associative operad
Let (Assoc, o;,a;) be the operad defined for all n > 1 by

Assoc(n) := {an},
and for all n,m > 1 and i € [n] by

ap Oj Am '= Antm—1-
Dimensions: 1,1,1,1,1,1, ...

Assoc is generated by aj:

a;, ap, agz=apojay, a4 = (azo;ay)o;ay,

The generator a; is subject to the relation

ap 01 @z = ap 02 ay.

Presentation by generators and relations:

Assoc = <a2 | ap 01 ap = ap O a2> .



The magmatic operad
Let (Mag, o;,&) be the operad defined for all n > 1 by

Mag(n) := {T : T binary tree with n leaves},
and for all n,m > 1 and i € [n] by

S o; T := tree obtained by grafting T on the jth leaf of S.

11/33



The magmatic operad
Let (Mag, o;,&) be the operad defined for all n > 1 by

Mag(n) := {T : T binary tree with n leaves},
and for all n,m > 1 and i € [n] by
S o; T := tree obtained by grafting T on the ith leaf of S.

Bemple ]
Pa, fp, o o

11/33



The magmatic operad
Let (Mag, o;,&) be the operad defined for all n > 1 by

Mag(n) := {T : T binary tree with n leaves},
and for all n,m > 1 and i € [n] by
S o; T := tree obtained by grafting T on the ith leaf of S.

5P, T = TR0

11/33



The magmatic operad
Let (Mag, o;,&) be the operad defined for all n > 1 by

Mag(n) := {T : T binary tree with n leaves},
and for all n,m > 1 and i € [n] by
S o; T := tree obtained by grafting T on the ith leaf of S.

5P, T = TR0

Dimensions : 1, 1, 2, 5, 14, 42, ... (Catalan numbers).

11/33



The magmatic operad
Let (Mag, o;,&) be the operad defined for all n > 1 by
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D/ \D = =} = =} =}
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Mag(n) := {T : T binary tree with n leaves},
and for all n,m > 1 and i € [n] by
S o; T := tree obtained by grafting T on the jth leaf of S.

Example
O

Dimensions : 1, 1, 2, 5, 14, 42, ... (Catalan numbers).
Mag is generated by .. (proof by induction on the arities).

There is no relation between the generator L. and itself (Mag is the free
operad on one generator of arity 2).

Presentation by generators and relations:

Mag = <D/O\: | ).
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The T construction

Let us start with a monoid (M, e, 1).

Let TM be the graded set TM := W,»1TM(n) where

TM(n) :={x1...x,:x; € Mfor all i € [n]}.

Let o; be a grafting application
oi : TM(n) x TM(m) - TM(n+ m —1),

defined for all x € TM(n), y € TM(m), and i € [n] by

xojy :=x1 ... xi—1 (xi®y1) ... (Xi®ym) Xit1 ... Xp.
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The T construction

Let M and N be two monoids and 6 : M — N be a monoid morphism.

Let TO be the application
TO:TM — TN,
defined for all x;1...x, € TM(n) by

TO(x1...x5) :=0(x1)...0(xp).
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Some examples of the T construction
M := (N, +). Elements of TM: words over the alphabet N.

2123 0, 30313 = 24142423

N := {a,b}*. Elements of TN: multiwords over the alphabet {a,b}.

b a a ¢ b b a a a a a ¢ b
€ a € b
b b o3 b= b a b b
a a b

Let 0 : N — M be the monoid morphism defined by 6(u) := |ul.
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Some examples of the T construction
M := (N, +). Elements of TM: words over the alphabet N.

2123 0, 30313 = 24142423

N := {a,b}*. Elements of TN: multiwords over the alphabet {a,b}.

b a a ¢ b b a a a a a ¢ b
€ a € b
b b o3 b= b a b b
a a b

To b a = 131021

15/33
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Properties of the T construction

Theorem
If M is a monoid, TM is an operad.
If0: M — N is a monoid morphism, T0 is an operad morphism.

Moreover, T preserves injections and surjections.
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Properties of the T construction

Theorem
If M is a monoid, TM is an operad.
If0: M — N is a monoid morphism, T0 is an operad morphism.

Moreover, T preserves injections and surjections.

Hence, T is an exact functor from the category of monoids with monoid
morphisms to the category of operads with operad morphisms.
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Properties of the T construction

The sets TM(n) are finite iff M is finite. In this case, the dimensions of

TM are

m,m?,m3, m*, ...

where m := #M.
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Properties of the T construction

The sets TM(n) are finite iff M is finite. In this case, the dimensions of

TM are

m,m?,m3, m*, ...

where m := #M.

TM is generated by the set
G(M) w {11},
where G(M) is a set of generators of M and 1 is its unit.

Example
{1} W {00} is a generating set of T(N, +). For instance,

02001 = (((((00 o1 00) 01 00) o1 00)0p1) 05 1) o5 1.
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1. Give alternative constructions of some well-known operads;

2. Construct new operads.
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Objectives and goals

Main motivations for introducing the T construction:

1. Give alternative constructions of some well-known operads;

2. Construct new operads.

The general line is as following:

Choose a monoid

Monoid M >

Operad TM

Set G

Choose some elements of TM

Operad generated
[———

We then ask usual questions about operads on (G).

19/33
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Survey of some obtained operads

Here are the operads obtained using the T construction with some usual

monoids:
Monoid I Operad I Generators I First dimensions Combinatorial objects
End — 1,4, 27, 256, 3125 Endofunctions
PF = 1,3,16,125,1296 Parking functions
PW — 1,3,13,75,541 Packed words
™, +) Per — 1,2,6,24,120 Permutations
’ PRT 01 1,1,2,5,14,42 Planar rooted trees
FCat® 00, 01, ..., Ok FuB-Catalan num. Trees of arity k+1
Schr 00, 01, 10 1,3,11,45,197 Schréder trees
Motz 00, 010 1,1,2,4,9,21,51 Motzkin paths
(Z/2z,+) ‘ Comp 00, 01 1,2,4,8,16,32 Int. compo.
()52, +) DA 00, 01 1,2,5,13,35,96 Directed animals
% SComp 00, 01, 02 1,3,27,81,243 Segmented int. compo.
({0, 1}, x) Dias 01, 10 1,2,3,4,5,6 Words with exactly one 1
o Trias 01, 10, 11 1,3,7,15,31,63 Words with at least one 1

21/33
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Experimenting with Sage
Let Motz be the suboperad of T(N, +) generated by 00 and 010.

sage:
sage:
sage:
sage:
sage:
(1, 1,

sage:

[ol

sage:
[00]

sage:

M = AdditiveMonoid()

TM = TConstruction(M)

G = [Word(M, [0, 0]), Word(M, [0, 1, 01)]

Motz = SubOperad(TM, G)

print [Motz.dimension(n) for n in xrange(1l, 10)]
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Experimenting with Sage
Let Motz be the suboperad of T(N, +) generated by 00 and 010.

sage: M = AdditiveMonoid()

sage: TM = TConstruction(M)

sage: G = [Word(M, [0, 0]), Word(M, [0, 1, 01)]

sage: Motz = SubOperad(TM, G)

sage: print [Motz.dimension(n) for n in xrange(l, 10)]
[1, 1, 2, 4, 9, 21, 51, 127, 323]

sage: print Motz.elements(1)

[ol

sage: print Motz.elements(2)
[o0]

sage: print Motz.elements(3)
[000, 010]

sage: print Motz.elements(6)
(000000, 000010, 000100, 000110, 001000, 001010, 001100,

001110, 001210, 010000, 010010, 010100, 010110, 011000,
011010, 011100, 011110, 011210, 012100, 012110, 012210]
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Grafting of Motz

Proposition

Let u and v be two Motzkin paths. The grafting uo; v in Motz returns
to replace the ith point of u by v.

01123210 04 0122110 = 01123443323210

SZZAREN
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Grafting of Motz

Proposition

Let u and v be two Motzkin paths. The grafting uo; v in Motz returns

to replace the ith point of u by v.

01123210

4

4

0122110 =

A

01123443323210
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Presentation of Motz

Theorem

The operad Motz admits the following presentation

Motz = <04, Y | o0 O] o0 — o0 02 oo,
f\)ol oo = e O) J\o,
oo O] o/O\JZ f\)O?, oo,

c/)\Jolo/()\):c/)\)O3c/)\>>.

26
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The diassociative and triassociative operads

The diassociative operad Dias is the operad admitting the
following presentation:

Dias = <_|7|_ | _{Oll_ |—02 _|,
_{014:4024:402|_,
Fook =Fo bk =Fop ).
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The diassociative and triassociative operads

The diassociative operad Dias is the operad admitting the
following presentation:

Dias = <_|7|_ | _{Oll_ "OQ _|,
_{014:_{02_':402|_,
Fook =Fo bk =Fop ).

The triassociative operad Trias is the operad
admitting the following presentation:

Trias := (H, F | doik =FopH,

‘401":#024:402|7
}_02}_:}_01|_:}_01_| >
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The diassociative and triassociative operads

The diassociative operad Dias

following presentation:

Dias := (d4,+

The triassociative operad Trias
admitting the following presentation:

Trias:= (4, L, F

Ho1F =
1oy L
—o; L
1o
Lok
= o,
Foi k=

is the operad admitting the

|—02—|7
_|O2_| = _|02|_,
Foik = Fop ).

is the operad

oy,
1oy L,
Loy,
Loy h,
Foy L,
Hoo k= Ho0y 1,
Foy - =Fop L)
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Experimenting with Sage

Let D be the suboperad of T({0,1}, x) generated by 01 and 10.



Experimenting with Sage

Let D be the suboperad of T({0,1}, x) generated by 01 and 10.

sage:
sage:
sage:
sage:

M = MultiplicativeMonoid()

TM = TConstruction(M)

G = [Word(M, [0, 11), Word(M, [1, 01)]
D SubOperad(TM, G)
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Experimenting with Sage

Let D be the suboperad of T({0,1}, x) generated by 01 and 10.

sage:
sage:
sage:
sage:
sage:
2, 3,4,5,6, 7,8, 9]

(1,

M = MultiplicativeMonoid()

TM = TConstruction(M)

G = [Word(M, [0, 11), Word(M, [1, 01)]

D = SubOperad(TM, G)

print [D.dimension(n) for n in xrange(l, 10)]
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Experimenting with Sage

Let D be the suboperad of T({0,1}, x) generated by 01 and 10.

sage: M = MultiplicativeMonoid()

sage: TM = TConstruction(M)

sage: G = [Word(M, [0, 11), Word(M, [1, 0])]

sage: D = SubOperad(TM, G)

sage: print [D.dimension(n) for n in xrange(l, 10)]
(1, 2, 3, 4, 5, 6, 7, 8, 9]

sage: print D.elements(5)
[10000, 01000, 00100, 00010, 00001]



The operad D

Proposition

The elements of D are exactly the words on the alphabet {0,1} which
have exactly one occurrence of 1.
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The elements of D are exactly the words on the alphabet {0,1} which
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Proposition

The operad D is isomorphic to the operad Dias through the operad
isomorphism ¢ : Dias — D defined by

#(-) ;=10 and () :=01.



The operad D

Proposition

The elements of D are exactly the words on the alphabet {0,1} which
have exactly one occurrence of 1.

Proposition

The operad D is isomorphic to the operad Dias through the operad
isomorphism ¢ : Dias — D defined by

#(-) ;=10 and () :=01.

Hence, D is a realization of Dias.
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Experimenting with Sage

Let Tr be the suboperad of T({0,1}, x) generated by 01, 10, and 11.

sage: M = MultiplicativeMonoid()

sage: TM = TConstruction(M)

sage: G = [Word(M, [0, 1]), Word(M, [1, 01),
Word(M, [1, 11)]

sage: Tr = SubOperad(TM, G)
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Let Tr be the suboperad of T({0,1}, x) generated by 01, 10, and 11.

sage: M = MultiplicativeMonoid()

sage: TM = TConstruction(M)

sage: G = [Word(M, [0, 1]), Word(M, [1, 01),
Word(M, [1, 11)]

sage: Tr = SubOperad(TM, G)

sage: print [Tr.dimension(n) for n in xrange(l, 10)]
[t, 3, 7, 15, 31, 63, 127, 255, 511]
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Experimenting with Sage

Let Tr be the suboperad of T({0,1}, x) generated by 01, 10, and 11.

sage: M = MultiplicativeMonoid()

sage: TM = TConstruction(M)

sage: G = [Word(M, [0, 1]), Word(M, [1, 01),
Word(M, [1, 11)]

sage: Tr = SubOperad(TM, G)

sage: print [Tr.dimension(n) for n in xrange(l, 10)]
(1, 3, 7, 15, 31, 63, 127, 255, 511]

sage: print Tr.elements(3)
[0o01, 010, 011, 100, 101, 110, 111]
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The operad Tr

Proposition

The elements of Tr are exactly the words on the alphabet {0,1} which
have at least one occurrence of 1.



The operad Tr

Proposition

The elements of Tr are exactly the words on the alphabet {0,1} which
have at least one occurrence of 1.

Proposition

The operad Tr is isomorphic to the operad Trias through the operad
isomorphism ¢ : Trias — Tr defined by

o(H):=10, o¢(F):=01, and ¢(L):=11.



The operad Tr

Proposition

The elements of Tr are exactly the words on the alphabet {0,1} which
have at least one occurrence of 1.

Proposition

The operad Tr is isomorphic to the operad Trias through the operad
isomorphism ¢ : Trias — Tr defined by

o(H):=10, o¢(F):=01, and ¢(L):=11.

Hence, Tr is a realization of Trias.



Survey of some obtained operads
These operads fit into following diagram.

— (resp. —) stands for an injective (resp. surjective) operad morphism.

T(N, +)
T(Z/»z,+) End | T(Z/3z,+)
[ |
PF } T({0,1}, x)
I ) I
PW FCat®
ZX I Trias
Per Schr FCat(? I
AN
FCat( SComp Dias
g// "\\»
Comp Motz DA

\\M

FCat(©
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