Constructing combinatorial operads from monoids

Samuele Giraudo

Université Paris-Est Marne-la-Vallée

The 24th Conference on Formal Power Series and Algebraic Combinatorics Nagoya, Japan

July 31, 2012

Contents

Non-symmetric set-operads

Definitions Examples of operads

From monoids to operads

The construction Properties of the construction

Applications of the construction

Survey of the constructed operads The operad of Motzkin paths The diassociative and triassociative operads

Contents

Non-symmetric set-operads
Definitions
Examples of operads

A (non-symmetric set-)operad is a triple $(\mathcal{P}, \circ_i, \mathbf{1})$ where:

A (non-symmetric set-)operad is a triple $(\mathcal{P}, \circ_i, \mathbf{1})$ where:

 \mathcal{P} is a graded set of the form

$$\mathcal{P}:=\biguplus_{n\geqslant 1}\mathcal{P}(n),$$

A (non-symmetric set-)operad is a triple $(\mathcal{P}, \circ_i, \mathbf{1})$ where:

 \mathcal{P} is a graded set of the form

$$\mathcal{P}:=\biguplus_{n\geqslant 1}\mathcal{P}(n),$$

o₁ is a grafting application

$$\circ_i: \mathcal{P}(n) \times \mathcal{P}(m) \to \mathcal{P}(n+m-1),$$

defined for all $n, m \ge 1$ and $i \in [n]$,

A (non-symmetric set-)operad is a triple $(\mathcal{P}, \circ_i, \mathbf{1})$ where:

 \mathcal{P} is a graded set of the form

$$\mathcal{P}:=\biguplus_{n\geqslant 1}\mathcal{P}(n),$$

 \circ_i is a grafting application

$$\circ_i: \mathcal{P}(n) \times \mathcal{P}(m) \to \mathcal{P}(n+m-1),$$

defined for all $n, m \geqslant 1$ and $i \in [n]$,

1 is an element of $\mathcal{P}(1)$, called unit.

A (non-symmetric set-)operad is a triple $(\mathcal{P}, \circ_i, \mathbf{1})$ where:

 \mathcal{P} is a graded set of the form

$$\mathcal{P}:=\biguplus_{n\geqslant 1}\mathcal{P}(n),$$

o₁ is a grafting application

$$\circ_i: \mathcal{P}(n) \times \mathcal{P}(m) \to \mathcal{P}(n+m-1),$$

defined for all $n, m \geqslant 1$ and $i \in [n]$,

1 is an element of $\mathcal{P}(1)$, called unit.

This data has to satisfy some relations.

For all $x \in \mathcal{P}(n)$, $y \in \mathcal{P}(m)$, and $z \in \mathcal{P}(k)$, following relations must be satisfied.

For all $x \in \mathcal{P}(n)$, $y \in \mathcal{P}(m)$, and $z \in \mathcal{P}(k)$, following relations must be satisfied.

Associativity relation:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z),$$

for all $i \in [n]$ and $j \in [m]$.

For all $x \in \mathcal{P}(n)$, $y \in \mathcal{P}(m)$, and $z \in \mathcal{P}(k)$, following relations must be satisfied.

Associativity relation:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z),$$

for all $i \in [n]$ and $j \in [m]$.

Commutativity relation:

$$(x \circ_i y) \circ_{j+m-1} z = (x \circ_j z) \circ_i y,$$

for all $1 \leqslant i < j \leqslant n$.

For all $x \in \mathcal{P}(n)$, $y \in \mathcal{P}(m)$, and $z \in \mathcal{P}(k)$, following relations must be satisfied.

Associativity relation:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z),$$

for all $i \in [n]$ and $j \in [m]$.

Commutativity relation:

$$(x \circ_i y) \circ_{j+m-1} z = (x \circ_j z) \circ_i y,$$

for all $1 \leqslant i < j \leqslant n$.

Unitarity relation:

$$1 \circ_1 x = x = x \circ_i 1$$
,

for all $i \in [n]$.

Element of $\mathcal{P}(n) \rightsquigarrow$ operator of arity n:

Element of $\mathcal{P}(n) \rightsquigarrow$ operator of arity n:

Operator of arity $n \rightsquigarrow \text{planar rooted tree}$ with n leaves:

Element of $\mathcal{P}(n) \rightsquigarrow$ operator of arity n:

Operator of arity $n \rightsquigarrow \text{planar rooted tree}$ with n leaves:

Grafting application → grafting of trees:

Element of $\mathcal{P}(n) \rightsquigarrow$ operator of arity n:

Operator of arity $n \rightsquigarrow \text{planar rooted tree}$ with n leaves:

Grafting application → grafting of trees:

Trees and relations of operads Associativity relation:

Commutativity relation:

Associativity relation:

$$(x \circ_i y)$$

Commutativity relation:

Associativity relation:

$$(x \circ_i y) \circ_{i+j-1} z$$

Commutativity relation:

Associativity relation:

$$(x \circ_i y) \circ_{i+j-1} \mathbf{z}$$
 $(y \circ_j \mathbf{z})$

Commutativity relation:

Associativity relation:

$$(x \circ_i y) \circ_{i+j-1} \mathbf{z} \quad \times \circ_i (y \circ_j \mathbf{z})$$

Commutativity relation:

Associativity relation:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$

Commutativity relation:

Associativity relation:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$

Commutativity relation:

$$(x \circ_i y)$$

Associativity relation:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$

Commutativity relation:

$$(x \circ_i y) \circ_{j+m-1} z$$

Associativity relation:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$

Commutativity relation:

$$(x \circ_i y) \circ_{j+m-1} z \quad (x \circ_j z)$$

Associativity relation:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$

Commutativity relation:

$$(x \circ_i y) \circ_{j+m-1} z \quad (x \circ_j z) \circ_i y$$

Associativity relation:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$

Commutativity relation:

$$(x \circ_i y) \circ_{j+m-1} z = (x \circ_j z) \circ_i y$$

Associativity relation:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$

Commutativity relation:

$$(x \circ_i y) \circ_{j+m-1} z = (x \circ_j z) \circ_i y$$

Associativity relation:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$

Commutativity relation:

$$(x \circ_i y) \circ_{j+m-1} z = (x \circ_j z) \circ_i y$$

$$\mathbf{1} \circ_1 x \quad x$$

Associativity relation:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$

Commutativity relation:

$$(x \circ_i y) \circ_{j+m-1} z = (x \circ_j z) \circ_i y$$

$$\mathbf{1} \circ_1 x \quad x \quad x \circ_i \mathbf{1}$$

Associativity relation:

$$(x \circ_i y) \circ_{i+j-1} z = x \circ_i (y \circ_j z)$$

Commutativity relation:

$$(x \circ_i y) \circ_{j+m-1} z = (x \circ_j z) \circ_i y$$

$$\mathbf{1} \circ_1 x = x = x \circ_i \mathbf{1}$$

Let ${\mathcal P}$ be an operad. Usual questions about ${\mathcal P}$ consist in

Let \mathcal{P} be an operad. Usual questions about \mathcal{P} consist in

1. computing the dimensions of \mathcal{P} , that is the sequence

$$\#\mathcal{P}(1), \ \#\mathcal{P}(2), \ \#\mathcal{P}(3), \ \ldots;$$

Let \mathcal{P} be an operad. Usual questions about \mathcal{P} consist in

1. computing the dimensions of \mathcal{P} , that is the sequence

$$\#\mathcal{P}(1), \ \#\mathcal{P}(2), \ \#\mathcal{P}(3), \ \ldots;$$

2. finding a set of generators of \mathcal{P} ;

Let $\mathcal P$ be an operad. Usual questions about $\mathcal P$ consist in

1. computing the dimensions of \mathcal{P} , that is the sequence

$$\#\mathcal{P}(1), \ \#\mathcal{P}(2), \ \#\mathcal{P}(3), \ \ldots;$$

- 2. finding a set of generators of \mathcal{P} ;
- 3. giving a presentation of \mathcal{P} by generators and relations.

Contents

Non-symmetric set-operads

Definitions

Examples of operads

Let $(\mathsf{Assoc}, \circ_i, \mathtt{a}_1)$ be the operad defined for all $n \geqslant 1$ by

$$\mathsf{Assoc}(n) := \{ \mathbf{a}_n \},\,$$

and for all $n, m \geqslant 1$ and $i \in [n]$ by

$$\mathbf{a}_n \circ_i \mathbf{a}_m := \mathbf{a}_{n+m-1}.$$

Let $(\mathsf{Assoc}, \circ_i, \mathtt{a}_1)$ be the operad defined for all $n \geqslant 1$ by

$$\mathsf{Assoc}(n) := \{\mathbf{a}_n\},\,$$

and for all $n, m \geqslant 1$ and $i \in [n]$ by

$$\mathbf{a}_n \circ_i \mathbf{a}_m := \mathbf{a}_{n+m-1}.$$

Dimensions: 1, 1, 1, 1, 1, 1, ...

Let $(Assoc, \circ_i, \mathbf{a}_1)$ be the operad defined for all $n \ge 1$ by

$$\mathsf{Assoc}(n) := \{\mathbf{a}_n\},\,$$

and for all $n, m \geqslant 1$ and $i \in [n]$ by

$$\mathbf{a}_n \circ_i \mathbf{a}_m := \mathbf{a}_{n+m-1}.$$

Dimensions: 1, 1, 1, 1, 1, 1, ...

Let $(Assoc, \circ_i, \mathbf{a}_1)$ be the operad defined for all $n \ge 1$ by

$$\mathsf{Assoc}(n) := \{\mathbf{a}_n\},\,$$

and for all $n, m \geqslant 1$ and $i \in [n]$ by

$$\mathbf{a}_n \circ_i \mathbf{a}_m := \mathbf{a}_{n+m-1}.$$

Dimensions: 1, 1, 1, 1, 1, 1, ...

Assoc is generated by a_2 :

 $a_1,$

Let $(Assoc, \circ_i, \mathbf{a}_1)$ be the operad defined for all $n \ge 1$ by

$$\mathsf{Assoc}(n) := \{\mathbf{a}_n\},\,$$

and for all $n, m \geqslant 1$ and $i \in [n]$ by

$$\mathbf{a}_n \circ_i \mathbf{a}_m := \mathbf{a}_{n+m-1}.$$

Dimensions: 1, 1, 1, 1, 1, 1, ...

$$\mathbf{a}_1, \quad \mathbf{a}_2,$$

Let $(Assoc, \circ_i, \mathbf{a}_1)$ be the operad defined for all $n \ge 1$ by

$$\mathsf{Assoc}(n) := \{\mathbf{a}_n\},\,$$

and for all $n, m \geqslant 1$ and $i \in [n]$ by

$$\mathbf{a}_n \circ_i \mathbf{a}_m := \mathbf{a}_{n+m-1}.$$

Dimensions: 1, 1, 1, 1, 1, 1, . . .

$$\mathtt{a}_1,\quad \mathtt{a}_2,\quad \mathtt{a}_3=\mathtt{a}_2\circ_1\mathtt{a}_2,$$

Let $(Assoc, \circ_i, a_1)$ be the operad defined for all $n \ge 1$ by

$$\mathsf{Assoc}(n) := \{\mathbf{a}_n\},\,$$

and for all $n, m \geqslant 1$ and $i \in [n]$ by

$$\mathbf{a}_n \circ_i \mathbf{a}_m := \mathbf{a}_{n+m-1}.$$

Dimensions: 1, 1, 1, 1, 1, 1, . . .

$$a_1, a_2, a_3 = a_2 \circ_1 a_2, a_4 = (a_2 \circ_1 a_2) \circ_1 a_2, \dots$$

Let $(Assoc, \circ_i, \mathbf{a}_1)$ be the operad defined for all $n \ge 1$ by

$$\mathsf{Assoc}(n) := \{\mathbf{a}_n\},\,$$

and for all $n, m \geqslant 1$ and $i \in [n]$ by

$$\mathbf{a}_n \circ_i \mathbf{a}_m := \mathbf{a}_{n+m-1}$$
.

Dimensions: 1, 1, 1, 1, 1, 1, . . .

Assoc is generated by a_2 :

$$a_1, a_2, a_3 = a_2 \circ_1 a_2, a_4 = (a_2 \circ_1 a_2) \circ_1 a_2, \dots$$

The generator a_2 is subject to the relation

$$\mathbf{a}_2 \circ_1 \mathbf{a}_2 = \mathbf{a}_2 \circ_2 \mathbf{a}_2.$$

Let $(Assoc, \circ_i, a_1)$ be the operad defined for all $n \ge 1$ by

$$\mathsf{Assoc}(n) := \{\mathbf{a}_n\},\$$

and for all $n, m \geqslant 1$ and $i \in [n]$ by

$$\mathbf{a}_n \circ_i \mathbf{a}_m := \mathbf{a}_{n+m-1}.$$

Dimensions: 1, 1, 1, 1, 1, 1, ...

Assoc is generated by a_2 :

$$a_1, a_2, a_3 = a_2 \circ_1 a_2, a_4 = (a_2 \circ_1 a_2) \circ_1 a_2, \dots$$

The generator a_2 is subject to the relation

$$\mathbf{a}_2 \circ_1 \mathbf{a}_2 = \mathbf{a}_2 \circ_2 \mathbf{a}_2$$
.

Presentation by generators and relations:

$$\mathsf{Assoc} = \langle \mathsf{a}_2 \quad | \quad \mathsf{a}_2 \circ_1 \mathsf{a}_2 = \mathsf{a}_2 \circ_2 \mathsf{a}_2 \rangle \,.$$

```
Let (\mathsf{Mag}, \circ_i, \not\models) be the operad defined for all n \geqslant 1 by \mathsf{Mag}(n) := \{T : T \text{ binary tree with } n \text{ leaves}\}, and for all n, m \geqslant 1 and i \in [n] by S \circ_i T := \text{tree obtained by grafting } T \text{ on the } i \text{th leaf of } S.
```

Let $(Mag, \circ_i, \mathbb{I})$ be the operad defined for all $n \ge 1$ by

 $Mag(n) := \{T : T \text{ binary tree with } n \text{ leaves}\},\$

and for all $n, m \geqslant 1$ and $i \in [n]$ by

 $S \circ_i T := \text{tree obtained by grafting } T \text{ on the } i \text{th leaf of } S.$

Example

Let $(Mag, \circ_i, \blacksquare)$ be the operad defined for all $n \ge 1$ by

 $Mag(n) := \{T : T \text{ binary tree with } n \text{ leaves}\},\$

and for all $n, m \geqslant 1$ and $i \in [n]$ by

 $S \circ_i T := \text{tree obtained by grafting } T \text{ on the } i \text{th leaf of } S.$

Example

Let $(Mag, \circ_i, \mathbb{I})$ be the operad defined for all $n \ge 1$ by

 $Mag(n) := \{T : T \text{ binary tree with } n \text{ leaves}\},\$

and for all $n, m \geqslant 1$ and $i \in [n]$ by

 $S \circ_i T := \text{tree obtained by grafting } T \text{ on the } i \text{th leaf of } S.$

Example

Dimensions: 1, 1, 2, 5, 14, 42, ... (Catalan numbers).

Let $(Mag, \circ_i, \blacksquare)$ be the operad defined for all $n \ge 1$ by

 $Mag(n) := \{T : T \text{ binary tree with } n \text{ leaves}\},\$

and for all $n, m \geqslant 1$ and $i \in [n]$ by

 $S \circ_i T := \text{tree obtained by grafting } T \text{ on the } i \text{th leaf of } S.$

Example

Dimensions: 1, 1, 2, 5, 14, 42, ... (Catalan numbers).

Mag is generated by \square^{Q_n} (proof by induction on the arities).

Let $(Mag, \circ_i, \stackrel{\perp}{\mathbb{I}})$ be the operad defined for all $n \geqslant 1$ by

 $Mag(n) := \{T : T \text{ binary tree with } n \text{ leaves}\},\$

and for all $n, m \geqslant 1$ and $i \in [n]$ by

 $S \circ_i T := \text{tree obtained by grafting } T \text{ on the } i \text{th leaf of } S.$

Example

Dimensions: 1, 1, 2, 5, 14, 42, ... (Catalan numbers).

Mag is generated by \square^{\bigcirc} (proof by induction on the arities).

There is no relation between the generator $_{n}^{Q_{n}}$ and itself (Mag is the free operad on one generator of arity 2).

Let $(Mag, \circ_i, \underline{\blacksquare})$ be the operad defined for all $n \ge 1$ by

 $Mag(n) := \{T : T \text{ binary tree with } n \text{ leaves}\},\$

and for all $n, m \geqslant 1$ and $i \in [n]$ by

 $S \circ_i T := \text{tree obtained by grafting } T \text{ on the } i \text{th leaf of } S.$

Example

Dimensions: 1, 1, 2, 5, 14, 42, ... (Catalan numbers).

Mag is generated by \square^{\bigcirc} (proof by induction on the arities).

There is no relation between the generator \mathbb{R}^{Q_n} and itself (Mag is the free operad on one generator of arity 2).

Presentation by generators and relations:

$$\mathsf{Mag} = \langle \square \square \mid \rangle$$
.

Contents

From monoids to operads
The construction

Properties of the construction

Let us start with a monoid $(M, \bullet, 1)$.

Let us start with a monoid $(M, \bullet, 1)$.

Let TM be the graded set $TM := \displaystyle \uplus_{n\geqslant 1} TM(n)$ where

$$TM(n) := \{x_1 \dots x_n : x_i \in M \text{ for all } i \in [n]\}.$$

Let us start with a monoid $(M, \bullet, 1)$.

Let TM be the graded set $TM := \bigcup_{n \geqslant 1} TM(n)$ where

$$TM(n) := \{x_1 \dots x_n : x_i \in M \text{ for all } i \in [n]\}.$$

Let \circ_i be a grafting application

$$\circ_i: \mathsf{T} M(n) \times \mathsf{T} M(m) \to \mathsf{T} M(n+m-1),$$

Let us start with a monoid $(M, \bullet, 1)$.

Let TM be the graded set $TM := \bigcup_{n \geqslant 1} TM(n)$ where

$$TM(n) := \{x_1 \dots x_n : x_i \in M \text{ for all } i \in [n]\}.$$

Let \circ_i be a grafting application

$$\circ_i : \mathsf{T}M(n) \times \mathsf{T}M(m) \to \mathsf{T}M(n+m-1),$$

defined for all $x \in TM(n)$, $y \in TM(m)$, and $i \in [n]$ by

$$x \circ_i y := x_1 \ldots x_{i-1}$$
 $x_{i+1} \ldots x_n$

Let us start with a monoid $(M, \bullet, 1)$.

Let TM be the graded set $TM := \bigcup_{n \geqslant 1} TM(n)$ where

$$TM(n) := \{x_1 \dots x_n : x_i \in M \text{ for all } i \in [n]\}.$$

Let \circ_i be a grafting application

$$\circ_i : \mathsf{T}M(n) \times \mathsf{T}M(m) \to \mathsf{T}M(n+m-1),$$

defined for all $x \in TM(n)$, $y \in TM(m)$, and $i \in [n]$ by

$$x \circ_i y := x_1 \ldots x_{i-1} \quad (x_i \bullet y_1) \ldots (x_i \bullet y_m) \quad x_{i+1} \ldots x_n.$$

Let M and N be two monoids and $\theta: M \to N$ be a monoid morphism.

Let M and N be two monoids and $\theta: M \to N$ be a monoid morphism.

Let $T\theta$ be the application

$$\mathsf{T}\theta:\mathsf{T}M\to\mathsf{T}N,$$

defined for all $x_1 \dots x_n \in TM(n)$ by

$$T\theta(x_1...x_n) := \theta(x_1)...\theta(x_n).$$

 $M := (\mathbb{N}, +)$. Elements of TM: words over the alphabet \mathbb{N} .

 $M:=(\mathbb{N},+)$. Elements of TM: words over the alphabet \mathbb{N} .

Example

2**1**23 ∘₂ 30313

 $M:=(\mathbb{N},+)$. Elements of TM: words over the alphabet \mathbb{N} .

Example

$$2\mathbf{1}23 \circ_2 30313 = 24142423$$

 $M := (\mathbb{N}, +)$. Elements of TM: words over the alphabet \mathbb{N} .

Example

$$2\mathbf{1}23 \circ_2 30313 = 24142423$$

 $\mathcal{N}:=\{\mathtt{a},\mathtt{b}\}^*.$ Elements of $T\mathcal{N}:$ multiwords over the alphabet $\{\mathtt{a},\mathtt{b}\}.$

 $M := (\mathbb{N}, +)$. Elements of TM: words over the alphabet \mathbb{N} .

Example

$$2\mathbf{1}23 \circ_2 30313 = 24142423$$

 $N := \{a, b\}^*$. Elements of TN: multiwords over the alphabet $\{a, b\}$.

Example

 $M := (\mathbb{N}, +)$. Elements of TM: words over the alphabet \mathbb{N} .

Example

$$2\mathbf{1}23 \circ_2 30313 = 24142423$$

 $N := \{a, b\}^*$. Elements of TN: multiwords over the alphabet $\{a, b\}$.

Example

 $M := (\mathbb{N}, +)$. Elements of TM: words over the alphabet \mathbb{N} .

Example

$$2\mathbf{1}23 \circ_2 30313 = 24142423$$

 $N := \{a, b\}^*$. Elements of TN: multiwords over the alphabet $\{a, b\}$.

Example

Let $\theta: N \to M$ be the monoid morphism defined by $\theta(u) := |u|$.

 $M := (\mathbb{N}, +)$. Elements of TM: words over the alphabet \mathbb{N} .

Example

$$2123 \circ_2 30313 = 24142423$$

 $N := \{a, b\}^*$. Elements of TN: multiwords over the alphabet $\{a, b\}$.

Example

Let $\theta: N \to M$ be the monoid morphism defined by $\theta(u) := |u|$.

Example

$$T\theta \begin{pmatrix} b & a & a & \epsilon & a & a \\ & b & & & a \\ & a & & & \end{pmatrix}$$

 $M := (\mathbb{N}, +)$. Elements of TM: words over the alphabet \mathbb{N} .

Example

$$2\mathbf{1}23 \circ_2 30313 = 24142423$$

 $N := \{a, b\}^*$. Elements of TN: multiwords over the alphabet $\{a, b\}$.

Example

Let $\theta: N \to M$ be the monoid morphism defined by $\theta(u) := |u|$.

Example

$$T\theta \begin{pmatrix} b & a & a & \epsilon & a & a \\ & b & & & a \\ & a & & & \end{pmatrix} = 131021$$

Contents

From monoids to operads

The construction

Properties of the construction

Properties of the T construction

Theorem

If M is a monoid, TM is an operad.

If $\theta: M \to N$ is a monoid morphism, $T\theta$ is an operad morphism.

Moreover, T preserves injections and surjections.

Properties of the T construction

Theorem

If M is a monoid, TM is an operad.

If $\theta: M \to N$ is a monoid morphism, $T\theta$ is an operad morphism.

Moreover, T preserves injections and surjections.

Hence, T is an exact functor from the category of monoids with monoid morphisms to the category of operads with operad morphisms.

Properties of the T construction

The sets TM(n) are finite iff M is finite. In this case, the dimensions of TM are

$$m, m^2, m^3, m^4, \ldots$$

where m := #M.

Properties of the T construction

The sets TM(n) are finite iff M is finite. In this case, the dimensions of TM are

$$m, m^2, m^3, m^4, \dots$$

where m := #M.

TM is generated by the set

$$G(M) \uplus \{11\},$$

where G(M) is a set of generators of M and 1 is its unit.

Properties of the T construction

The sets TM(n) are finite iff M is finite. In this case, the dimensions of TM are

$$m, m^2, m^3, m^4, \dots$$

where m := #M.

TM is generated by the set

$$G(M) \uplus \{11\},$$

where G(M) is a set of generators of M and 1 is its unit.

Example

$$\{1\} \uplus \{00\}$$
 is a generating set of $T(\mathbb{N},+)$. For instance,

$$02001 = (((((00 \circ_1 00) \circ_1 00) \circ_1 00) \circ_2 1) \circ_2 1) \circ_5 1.$$

Main motivations for introducing the T construction:

- 1. Give alternative constructions of some well-known operads;
- 2. Construct new operads.

Main motivations for introducing the T construction:

- 1. Give alternative constructions of some well-known operads;
- 2. Construct new operads.

Main motivations for introducing the T construction:

- 1. Give alternative constructions of some well-known operads;
- 2. Construct new operads.

Main motivations for introducing the T construction:

- 1. Give alternative constructions of some well-known operads;
- 2. Construct new operads.

Main motivations for introducing the T construction:

- 1. Give alternative constructions of some well-known operads;
- 2. Construct new operads.

Main motivations for introducing the T construction:

- 1. Give alternative constructions of some well-known operads;
- 2. Construct new operads.

The general line is as following:

We then ask usual questions about operads on $\langle G \rangle$.

Contents

Applications of the construction Survey of the constructed operads

The operad of Motzkin paths
The diassociative and triassociative operad

Survey of some obtained operads

Here are the operads obtained using the $\ensuremath{\mathsf{T}}$ construction with some usual monoids:

Monoid	Operad	Generators	First dimensions	Combinatorial objects
	End	_	1, 4, 27, 256, 3125	Endofunctions
	PF	_	1, 3, 16, 125, 1296	Parking functions
	PW	_	1, 3, 13, 75, 541	Packed words
(ℕ, +)	Per	_	1, 2, 6, 24, 120	Permutations
	PRT	01	1, 1, 2, 5, 14, 42	Planar rooted trees
	FCat ^(k)	00, 01,, 0 <i>k</i>	Fuß-Catalan num.	Trees of arity $k+1$
	Schr	00, 01, 10	1, 3, 11, 45, 197	Schröder trees
	Motz	00, 010	1, 1, 2, 4, 9, 21, 51	Motzkin paths
$(\mathbb{Z}/_{2\mathbb{Z}},+)$	Comp	00, 01	1, 2, 4, 8, 16, 32	Int. compo.
$(\mathbb{Z}/_{3\mathbb{Z}},+)$	DA	00, 01	1, 2, 5, 13, 35, 96	Directed animals
	SComp	00, 01, 02	1, 3, 27, 81, 243	Segmented int. compo.
$(\{0,1\},\times)$	Dias	01, 10	1, 2, 3, 4, 5, 6	Words with exactly one 1
	Trias	01, 10, 11	1, 3, 7, 15, 31, 63	Words with at least one 1

Contents

Applications of the construction

Survey of the constructed operads

The operad of Motzkin paths

The diassociative and triassociative operads

Let Motz be the suboperad of $T(\mathbb{N},+)$ generated by 00 and 010.

sage: M = AdditiveMonoid()

```
sage: M = AdditiveMonoid()
sage: TM = TConstruction(M)
```

```
sage: M = AdditiveMonoid()
sage: TM = TConstruction(M)
sage: G = [Word(M, [0, 0]), Word(M, [0, 1, 0])]
```

```
sage: M = AdditiveMonoid()
sage: TM = TConstruction(M)
sage: G = [Word(M, [0, 0]), Word(M, [0, 1, 0])]
sage: Motz = SubOperad(TM, G)
```

```
sage: M = AdditiveMonoid()
sage: TM = TConstruction(M)
sage: G = [Word(M, [0, 0]), Word(M, [0, 1, 0])]
sage: Motz = SubOperad(TM, G)
sage: print [Motz.dimension(n) for n in xrange(1, 10)]
[1, 1, 2, 4, 9, 21, 51, 127, 323]
```

```
sage: M = AdditiveMonoid()
sage: TM = TConstruction(M)
sage: G = [Word(M, [0, 0]), Word(M, [0, 1, 0])]
sage: Motz = SubOperad(TM, G)
sage: print [Motz.dimension(n) for n in xrange(1, 10)]
[1, 1, 2, 4, 9, 21, 51, 127, 323]
sage: print Motz.elements(1)
[0]
```

```
sage: M = AdditiveMonoid()
sage: TM = TConstruction(M)
sage: G = [Word(M, [0, 0]), Word(M, [0, 1, 0])]
sage: Motz = SubOperad(TM, G)
sage: print [Motz.dimension(n) for n in xrange(1, 10)]
[1, 1, 2, 4, 9, 21, 51, 127, 323]
sage: print Motz.elements(1)
[0]
sage: print Motz.elements(2)
```

```
sage: M = AdditiveMonoid()
sage: TM = TConstruction(M)
sage: G = [Word(M, [0, 0]), Word(M, [0, 1, 0])]
sage: Motz = SubOperad(TM, G)
sage: print [Motz.dimension(n) for n in xrange(1, 10)]
[1, 1, 2, 4, 9, 21, 51, 127, 323]
sage: print Motz.elements(1)
[0]
sage: print Motz.elements(2)
[00]
sage: print Motz.elements(3)
[000, 010]
```

```
sage: M = AdditiveMonoid()
sage: TM = TConstruction(M)
sage: G = [Word(M, [0, 0]), Word(M, [0, 1, 0])]
sage: Motz = SubOperad(TM, G)
sage: print [Motz.dimension(n) for n in xrange(1, 10)]
[1, 1, 2, 4, 9, 21, 51, 127, 323]
sage: print Motz.elements(1)
[0]
sage: print Motz.elements(2)
[00]
sage: print Motz.elements(3)
[000, 010]
sage: print Motz.elements(6)
[000000, 000010, 000100, 000110, 001000, 001010, 001100,
001110, 001210, 010000, 010010, 010100, 010110, 011000,
011010, 011100, 011110, 011210, 012100, 012110, 012210]
```

Proposition

The elements of Motz are exactly the words x on the alphabet $\mathbb N$ beginning and ending by 0 and such that, for any factor ab of x, $|a-b|\leqslant 1$.

Proposition

The elements of Motz are exactly the words x on the alphabet $\mathbb N$ beginning and ending by 0 and such that, for any factor ab of x, $|a-b|\leqslant 1$.

Bijection between elements of Motz and Motzkin paths:

$$ab\mapsto \begin{cases} \ \ \, \text{if } b-a=-1,\\ \ \ \, \text{if } b-a=0,\\ \ \ \, \text{if } b-a=1. \end{cases}$$

Proposition

The elements of Motz are exactly the words x on the alphabet $\mathbb N$ beginning and ending by 0 and such that, for any factor ab of x, $|a-b|\leqslant 1$.

Bijection between elements of Motz and Motzkin paths:

$$ab\mapsto \begin{cases} \ \ \, \text{if } b-a=-1,\\ \ \ \, \text{if } b-a=0,\\ \ \ \, \text{if } b-a=1. \end{cases}$$

Example

 ${\color{red}001123221010} \quad \mapsto \quad$

Proposition

The elements of Motz are exactly the words x on the alphabet $\mathbb N$ beginning and ending by 0 and such that, for any factor ab of x, $|a-b|\leqslant 1$.

Bijection between elements of Motz and Motzkin paths:

$$ab\mapsto \begin{cases} \ \ \, \text{if } b-a=-1,\\ \ \ \, \text{if } b-a=0,\\ \ \ \, \text{if } b-a=1. \end{cases}$$

Example

 $001123221010 \quad \mapsto \quad$

Proposition

The elements of Motz are exactly the words x on the alphabet $\mathbb N$ beginning and ending by 0 and such that, for any factor ab of x, $|a-b|\leqslant 1$.

Bijection between elements of Motz and Motzkin paths:

Example

 $00\textcolor{red}{\mathbf{1}123221010} \quad \mapsto \quad$

Proposition

The elements of Motz are exactly the words x on the alphabet $\mathbb N$ beginning and ending by 0 and such that, for any factor ab of x, $|a-b|\leqslant 1$.

Bijection between elements of Motz and Motzkin paths:

$$ab\mapsto \begin{cases} \ \ \, \text{if } b-a=-1,\\ \ \ \, \text{if } b-a=0,\\ \ \ \, \text{if } b-a=1. \end{cases}$$

Example

 $001123221010 \mapsto$

Proposition

The elements of Motz are exactly the words x on the alphabet $\mathbb N$ beginning and ending by 0 and such that, for any factor ab of x, $|a-b|\leqslant 1$.

Bijection between elements of Motz and Motzkin paths:

Example

Proposition

The elements of Motz are exactly the words x on the alphabet $\mathbb N$ beginning and ending by 0 and such that, for any factor ab of x, $|a-b|\leqslant 1$.

Bijection between elements of Motz and Motzkin paths:

Example

Proposition

The elements of Motz are exactly the words x on the alphabet $\mathbb N$ beginning and ending by 0 and such that, for any factor ab of x, $|a-b|\leqslant 1$.

Bijection between elements of Motz and Motzkin paths:

Example

Proposition

The elements of Motz are exactly the words x on the alphabet $\mathbb N$ beginning and ending by 0 and such that, for any factor ab of x, $|a-b|\leqslant 1$.

Bijection between elements of Motz and Motzkin paths:

Example

 $0011232\underline{2}1010 \quad \mapsto \quad$

Proposition

The elements of Motz are exactly the words x on the alphabet $\mathbb N$ beginning and ending by 0 and such that, for any factor ab of x, $|a-b|\leqslant 1$.

Bijection between elements of Motz and Motzkin paths:

Example

Proposition

The elements of Motz are exactly the words x on the alphabet $\mathbb N$ beginning and ending by 0 and such that, for any factor ab of x, $|a-b|\leqslant 1$.

Bijection between elements of Motz and Motzkin paths:

Example

Proposition

The elements of Motz are exactly the words x on the alphabet $\mathbb N$ beginning and ending by 0 and such that, for any factor ab of x, $|a-b|\leqslant 1$.

Bijection between elements of Motz and Motzkin paths:

Example

 $001123221010 \quad \mapsto \quad$

Grafting of Motz

Proposition

Let u and v be two Motzkin paths. The grafting $u \circ_i v$ in Motz returns to replace the ith point of u by v.

Proposition

Let u and v be two Motzkin paths. The grafting $u \circ_i v$ in Motz returns to replace the ith point of u by v.

Example

01123210

Proposition

Let u and v be two Motzkin paths. The grafting $u \circ_i v$ in Motz returns to replace the ith point of u by v.

Example

01123210

Proposition

Let u and v be two Motzkin paths. The grafting $u \circ_i v$ in Motz returns to replace the ith point of u by v.

Example

 $01123210 \circ_4 0122110$

Proposition

Let u and v be two Motzkin paths. The grafting $u \circ_i v$ in Motz returns to replace the ith point of u by v.

Proposition

Let u and v be two Motzkin paths. The grafting $u \circ_i v$ in Motz returns to replace the ith point of u by v.

Proposition

Let u and v be two Motzkin paths. The grafting $u \circ_i v$ in Motz returns to replace the ith point of u by v.

Presentation of Motz

Theorem

The operad Motz admits the following presentation

$$\mathsf{Motz} = \langle \bullet \bullet, \, \wedge \bullet \, \mid \, \bullet \bullet \circ_1 \bullet \bullet = \bullet \bullet \circ_2 \bullet \bullet, \\ \bullet \circ_1 \bullet \bullet = \bullet \bullet \circ_2 \bullet \bullet, \\ \bullet \circ_1 \bullet \bullet = \bullet \bullet \circ_3 \bullet \bullet, \\ \bullet \circ_1 \bullet \bullet = \bullet \bullet \circ_3 \bullet \bullet \rangle.$$

Contents

Applications of the construction

Survey of the constructed operads The operad of Motzkin paths

The diassociative and triassociative operads

The diassociative and triassociative operads

The diassociative operad Dias [Loday, 2001] is the operad admitting the following presentation:

The diassociative and triassociative operads

The diassociative operad Dias [Loday, 2001] is the operad admitting the following presentation:

Dias :=
$$\langle \dashv, \vdash \mid \dashv \circ_1 \vdash = \vdash \circ_2 \dashv,$$

 $\dashv \circ_1 \dashv = \dashv \circ_2 \dashv = \dashv \circ_2 \vdash,$
 $\vdash \circ_2 \vdash = \vdash \circ_1 \vdash = \vdash \circ_1 \dashv \rangle.$

The triassociative operad Trias [Loday, Ronco, 2004] is the operad admitting the following presentation:

$$\mathsf{Trias} := \langle \dashv, \qquad \vdash \quad | \quad \dashv \circ_1 \vdash = \vdash \circ_2 \dashv,$$

The diassociative and triassociative operads

The diassociative operad Dias [Loday, 2001] is the operad admitting the following presentation:

The triassociative operad Trias [Loday, Ronco, 2004] is the operad admitting the following presentation:

Trias :=
$$\langle \dashv, \perp, \vdash \mid \dashv \circ_1 \vdash = \vdash \circ_2 \dashv,$$

$$\perp \circ_1 \perp = \perp \circ_2 \perp,$$

$$\dashv \circ_1 \perp = \perp \circ_2 \dashv,$$

$$\perp \circ_1 \dashv = \perp \circ_2 \vdash,$$

$$\perp \circ_1 \vdash = \vdash \circ_2 \perp,$$

$$\dashv \circ_1 \dashv = \dashv \circ_2 \dashv = \dashv \circ_2 \vdash = \dashv \circ_2 \perp,$$

$$\vdash \circ_2 \vdash = \vdash \circ_1 \vdash = \vdash \circ_1 \dashv = \vdash \circ_1 \perp \rangle.$$

Let D be the suboperad of $\mathsf{T}(\{0,1\},\times)$ generated by 01 and 10.

```
sage: M = MultiplicativeMonoid()
sage: TM = TConstruction(M)
sage: G = [Word(M, [0, 1]), Word(M, [1, 0])]
sage: D = SubOperad(TM, G)
```

```
sage: M = MultiplicativeMonoid()
sage: TM = TConstruction(M)
sage: G = [Word(M, [0, 1]), Word(M, [1, 0])]
sage: D = SubOperad(TM, G)
sage: print [D.dimension(n) for n in xrange(1, 10)]
[1, 2, 3, 4, 5, 6, 7, 8, 9]
```

```
sage: M = MultiplicativeMonoid()
sage: TM = TConstruction(M)
sage: G = [Word(M, [0, 1]), Word(M, [1, 0])]
sage: D = SubOperad(TM, G)
sage: print [D.dimension(n) for n in xrange(1, 10)]
[1, 2, 3, 4, 5, 6, 7, 8, 9]
sage: print D.elements(5)
[10000, 01000, 00100, 00010, 00001]
```

The operad D

Proposition

The elements of D are exactly the words on the alphabet $\{0,1\}$ which have exactly one occurrence of 1.

The operad D

Proposition

The elements of D are exactly the words on the alphabet $\{0,1\}$ which have exactly one occurrence of 1.

Proposition

The operad D is isomorphic to the operad Dias through the operad isomorphism $\phi: {\sf Dias} \to {\sf D}$ defined by

$$\phi(\dashv) := 10$$
 and $\phi(\vdash) := 01$.

The operad D

Proposition

The elements of D are exactly the words on the alphabet $\{0,1\}$ which have exactly one occurrence of 1.

Proposition

The operad D is isomorphic to the operad Dias through the operad isomorphism $\phi: {\sf Dias} \to {\sf D}$ defined by

$$\phi(\dashv) := 10$$
 and $\phi(\vdash) := 01$.

Hence, D is a realization of Dias.

```
sage: M = MultiplicativeMonoid()
sage: TM = TConstruction(M)
sage: G = [Word(M, [0, 1]), Word(M, [1, 0]),
Word(M, [1, 1])]
sage: Tr = SubOperad(TM, G)
```

```
sage: M = MultiplicativeMonoid()
sage: TM = TConstruction(M)
sage: G = [Word(M, [0, 1]), Word(M, [1, 0]),
Word(M, [1, 1])]
sage: Tr = SubOperad(TM, G)
sage: print [Tr.dimension(n) for n in xrange(1, 10)]
[1, 3, 7, 15, 31, 63, 127, 255, 511]
```

```
sage: M = MultiplicativeMonoid()
sage: TM = TConstruction(M)
sage: G = [Word(M, [0, 1]), Word(M, [1, 0]),
Word(M, [1, 1])]
sage: Tr = SubOperad(TM, G)
sage: print [Tr.dimension(n) for n in xrange(1, 10)]
[1, 3, 7, 15, 31, 63, 127, 255, 511]
sage: print Tr.elements(3)
[001, 010, 011, 100, 101, 110, 111]
```

The operad Tr

Proposition

The elements of Tr are exactly the words on the alphabet $\{0,1\}$ which have at least one occurrence of 1.

The operad Tr

Proposition

The elements of Tr are exactly the words on the alphabet $\{0,1\}$ which have at least one occurrence of 1.

Proposition

The operad Tr is isomorphic to the operad Trias through the operad isomorphism $\phi:\operatorname{Trias}\to\operatorname{Tr}$ defined by

$$\phi(\dashv) := 10, \quad \phi(\vdash) := 01, \quad \textit{and} \quad \phi(\perp) := 11.$$

The operad Tr

Proposition

The elements of Tr are exactly the words on the alphabet $\{0,1\}$ which have at least one occurrence of 1.

Proposition

The operad Tr is isomorphic to the operad Trias through the operad isomorphism $\phi: {\sf Trias} \to {\sf Tr}$ defined by

$$\phi(\dashv) := 10, \quad \phi(\vdash) := 01, \quad \textit{and} \quad \phi(\perp) := 11.$$

Hence, Tr is a realization of Trias.

Survey of some obtained operads

These operads fit into following diagram.

 \rightarrowtail (resp. $\twoheadrightarrow)$ stands for an injective (resp. surjective) operad morphism.

