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Graded tensor products

The idea of grading

Tensor products of the 2-dimensional representation V (ω) ≃ C
2 of sl2:

V (ω)⊗ V (ω) ≃ V (0) ⊕ V (2ω)

⇓ Deform...
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Graded tensor products

The idea of graded tensor products

Grading on tensor products of g (simple Lie algebra) or Uq(g) (quantum algebra)
modules.

ch (V1 ⊗ V2 ⊗ · · · ⊗ Vn) =
X

V :irred

M{Vi},V chV

⇓ Introduce grading

cht (V1 ⋆ V2 ⋆ · · · ⋆ Vn) =
X

V :irred

M{Vi},V (t) chV

M{Vi},V (t): “graded multiplicity” of the irreducible component V in the graded
product.

What is a good definition of the grading?
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Graded tensor products

Algebraic source of grading

Finite-dimensional algebra ⊂ Infinite-dimensional algebra:

simple Lie algebra g ⊂ bg, Y (g) affine algebra, Yangian

quantum algebra Uq(g) ⊂ Uq(bg) quantum affine algebra

The infinite-dimensional algebra is graded: induce a grading on modules W .

Restrict the action to finite-dim subalgebra:

MW,V = dim Homg(W,V ),
W : finite-dim. bg-mod
V : irreducible g-mod.

Hilbert polynomial: g acts on the graded components W [n]

MW,V (t) :=
X

n≥0

tn dimHomg(W [n], V ), MW,V (1) = MW,V .

Graded characters:
cht(W ) =

X

V :irred

MW,V (t)ch(V )

R. Kedem (University of Illinois) Graded tensors and quantum cluster algebras FPSAC 2012, Nagoya 5 / 39



Graded tensor products

Algebraic source of grading

Finite-dimensional algebra ⊂ Infinite-dimensional algebra:

simple Lie algebra g ⊂ bg, Y (g) affine algebra, Yangian

quantum algebra Uq(g) ⊂ Uq(bg) quantum affine algebra

The infinite-dimensional algebra is graded: induce a grading on modules W .

Restrict the action to finite-dim subalgebra:

MW,V = dim Homg(W,V ),
W : finite-dim. bg-mod
V : irreducible g-mod.

Hilbert polynomial: g acts on the graded components W [n]

MW,V (t) :=
X

n≥0

tn dimHomg(W [n], V ), MW,V (1) = MW,V .

Graded characters:
cht(W ) =

X

V :irred

MW,V (t)ch(V )

R. Kedem (University of Illinois) Graded tensors and quantum cluster algebras FPSAC 2012, Nagoya 5 / 39



Graded tensor products

Algebraic source of grading

Finite-dimensional algebra ⊂ Infinite-dimensional algebra:

simple Lie algebra g ⊂ bg, Y (g) affine algebra, Yangian

quantum algebra Uq(g) ⊂ Uq(bg) quantum affine algebra

The infinite-dimensional algebra is graded: induce a grading on modules W .

Restrict the action to finite-dim subalgebra:

MW,V = dim Homg(W,V ),
W : finite-dim. bg-mod
V : irreducible g-mod.

Hilbert polynomial: g acts on the graded components W [n]

MW,V (t) :=
X

n≥0

tn dimHomg(W [n], V ), MW,V (1) = MW,V .

Graded characters:
cht(W ) =

X

V :irred

MW,V (t)ch(V )

R. Kedem (University of Illinois) Graded tensors and quantum cluster algebras FPSAC 2012, Nagoya 5 / 39



Graded tensor products

Algebraic source of grading

Finite-dimensional algebra ⊂ Infinite-dimensional algebra:

simple Lie algebra g ⊂ bg, Y (g) affine algebra, Yangian

quantum algebra Uq(g) ⊂ Uq(bg) quantum affine algebra

The infinite-dimensional algebra is graded: induce a grading on modules W .

Restrict the action to finite-dim subalgebra:

MW,V = dim Homg(W,V ),
W : finite-dim. bg-mod
V : irreducible g-mod.

Hilbert polynomial: g acts on the graded components W [n]

MW,V (t) :=
X

n≥0

tn dimHomg(W [n], V ), MW,V (1) = MW,V .

Graded characters:
cht(W ) =

X

V :irred

MW,V (t)ch(V )

R. Kedem (University of Illinois) Graded tensors and quantum cluster algebras FPSAC 2012, Nagoya 5 / 39



Graded tensor products

Algebraic source of grading

Finite-dimensional algebra ⊂ Infinite-dimensional algebra:

simple Lie algebra g ⊂ bg, Y (g) affine algebra, Yangian

quantum algebra Uq(g) ⊂ Uq(bg) quantum affine algebra

The infinite-dimensional algebra is graded: induce a grading on modules W .

Restrict the action to finite-dim subalgebra:

MW,V = dim Homg(W,V ),
W : finite-dim. bg-mod
V : irreducible g-mod.

Hilbert polynomial: g acts on the graded components W [n]

MW,V (t) :=
X

n≥0

tn dimHomg(W [n], V ), MW,V (1) = MW,V .

Graded characters:
cht(W ) =

X

V :irred

MW,V (t)ch(V )

R. Kedem (University of Illinois) Graded tensors and quantum cluster algebras FPSAC 2012, Nagoya 5 / 39



Graded tensor products

Algebraic source of grading

Finite-dimensional algebra ⊂ Infinite-dimensional algebra:

simple Lie algebra g ⊂ bg, Y (g) affine algebra, Yangian

quantum algebra Uq(g) ⊂ Uq(bg) quantum affine algebra

The infinite-dimensional algebra is graded: induce a grading on modules W .

Restrict the action to finite-dim subalgebra:

MW,V = dim Homg(W,V ),
W : finite-dim. bg-mod
V : irreducible g-mod.

Hilbert polynomial: g acts on the graded components W [n]

MW,V (t) :=
X

n≥0

tn dimHomg(W [n], V ), MW,V (1) = MW,V .

Graded characters:
cht(W ) =

X

V :irred

MW,V (t)ch(V )

R. Kedem (University of Illinois) Graded tensors and quantum cluster algebras FPSAC 2012, Nagoya 5 / 39



Graded tensor products

Grading on tensor products

Choose a set of finite-dimensional modules {V1, ..., Vn} of infinite-dim alg:

W ≃ V1 ⊗ · · · ⊗ VN .

Grading on W can be defined, for example:
1 Combinatorially From Bethe ansatz of generalized Heisenberg model (Yangian).

[Kerov, Kirillov, Reshetikhin, ‘86; Kuniba, Nakanishi, Okado ‘93]; Physical
interpretation from conformal field theory [K., McCoy ‘91].

2 Using crystal bases of quantum affine algebras [Okado, Schilling, Shimozono +].
3 Natural grading of bg = central extension of g⊗ C[t, t−1] by degree in t. [Feigin-Loktev

“fusion product”, ‘99].

Theorem

If the modules Vi are of sufficiently simple (KR-type) the three ways of defining gradings
on the tensor products give the same Hilbert polynomials.

This talk: A fourth source of the same grading: Quantum cluster algebras. [Joint
work with Di Francesco]

R. Kedem (University of Illinois) Graded tensors and quantum cluster algebras FPSAC 2012, Nagoya 6 / 39
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Graded tensor products

Feigin-Loktev fusion products

FL defined a (commutative) graded tensor product on bg-modules

F{Vi} = V1 ⋆ V2 ⋆ · · · ⋆ VN

The Hilbert polynomial M{Vi},λ(t) :=
X

n≥0

tndim Homg

`
F{Vi}[n], V (λ)

´

V (λ)=Irreducible g-module.

Example 1: If g = sln and Vi are symmetric power representations, M{Vi},λ(t) is a
Kostka polynomial (transition function between Hall-Littlewood polynomials and
Schur polynomials).

Example 2: If g = sln and Vi = V (mωj) (Kirillov-Reshetikhin modules), M{Vi},λ(t)
is a generalized Kostka polynomial [Lascoux, Leclerc, Thibon].

The Hilbert polynomials give Betti numbers of cohomology of Lagrangian quiver
varieties (Nakajima, Lusztig, Kodera-Naoi...)

Have an interpretation as parabolic Kazhdan-Lusztig polynomials...
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Graded tensor products

Example of Feigin-Loktev product for g = sl2

sl2 = 〈f, h, e〉, esl2 = 〈x[m] = xtm〉x∈sl2,m∈Z, sl2 ≃ 〈x[0]〉 ⊂ esl2

Define Action of esl2 on the tensor product of two representations

x[m]v1 ⊗ v2 = zm
1 (xv1)⊗ v2 + zm

2 v1 ⊗ (xv2), v1 ⊗ v2 ∈ V1 ⊗ V2.

Filtration of F = U(f [i]i≥0)v1 ⊗ v2:

F[m] := spanC[z1,z2]{f [i1] · · · f [ik]v1 ⊗ v2 :
X

j

ij = m}

Graded components: Fm := F[m]/F[m− 1].

Hilbert polynomial: M{V1,V2},λ(t) =
X

n≥0

tndim Homg(Fm, V (λ)).

Grading inherited from homogeneous degree in t.

R. Kedem (University of Illinois) Graded tensors and quantum cluster algebras FPSAC 2012, Nagoya 8 / 39
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Graded tensor products

Example of graded product V (ω1) ⋆ V (ω1):

v ⊗ v fv ⊗ v + v ⊗ fv 2fv ⊗ fv

z1fv ⊗ v + z2v ⊗ fv (z1 + z2)fv ⊗ fv
≃ 0

z2
1fv ⊗ v + z2

2v ⊗ fv = (z1 + z2)(z1fv ⊗ v + z2v ⊗ fv)

−z1z2(fv ⊗ v + v ⊗ fv) ≃ 0

f [2]

f [1]

f [0] f [0]

f [0]
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MV 2,2ω1
(t) = 1
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Graded tensor products

Example of graded tensor product for sl2

Triple tensor product V1 ⋆ V2 ⋆ V3 with V1 = V2 = V3 = V (ω1).

MV 3,ω1
(t) = t + t2; MV 3,3ω1

(t) = 1
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Graded tensor products

Explicit formula for graded multiplicities: ŝl2

Choose a collection of irreducible sl2-modules:

{Vi} = {V (ω1), . . . , V (ω1)| {z }
n1 times

, V (2ω1), . . . , V (2ω1)| {z }
n2 times

, . . . , V (jω1), . . . , V (jω1)| {z }
nj times

, . . .}

Theorem: There is a formula for the multiplicity of irreducible components:

dim Homg(V1 ⊗ · · · ⊗ Vn, V (λ)) = M{Vi},λ =
X

m1,m2,...∈Z+

Y

i≥1

 
pi + mi

mi

!

Sum
P

is restricted:
P

j j(nj − 2mj)ω1 = λ

Integers pi: pi =
P

j min(i, j)(nj − 2mj) ≥ 0.

“Fermionic formula”

Theorem: Hilbert polynomials of the FL product are Kostka polynomials

M{Vi},λ(t) =
X

mi

tm
tAm

Y

i

»
pi + mi

mi

–

t

, [A]i,j = min(i, j).
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Graded tensor products

Explicit formula generalizes to other g

For g simply-laced with Cartan matrix C, choose {Vi}: Collection of KR-modules:
na,j modules with highest weight jωa.

Theorem: The FL graded tensor product multiplicities are

Mn,λ(t) =
X

{ma,j}

t
1
2
m

t(C⊗A)m
Y

a,j

»
pa,j + ma,j

ma,j

–

t

p = (I ⊗ A)n − (C ⊗ A)m, Aij = min(i, j)

»
p + m

m

–

t

:=
(tp+1; t)∞(tm+1; t)∞

(t; t)∞(tp+m+1; t)∞
, (a, t)∞ :=

Y

j≥0

(1 − atj ).

The restrictions on the sum are:
(a) positive integers pi,j ≥ 0

(b) weight
X

a,j

jωa

 
na,j −

X

b

Cabmb,j

!
= λ
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Graded tensor products

Summary: Theorem about the Feigin-Loktev graded product

Theorem (Ardonne-K. ‘06, Di Francesco-K. ‘08)

1 For any set of Kirillov-Reshetikhin modules {Vi} of any simple Lie algebra bg,

dim Homg(V1 ⋆ · · · ⋆ VN , Vλ) = dim Homg(V1 ⊗ · · · ⊗ VN , Vλ)

2 The graded fusion multiplicities are given by the generalizations of the sums over
binomial product formulas. (Fermionic formulas)

Next: A cluster algebra source for the same grading.
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Cluster algebras and quantum cluster algebras

Cluster algebras and quantum cluster algebras

A class of discrete dynamical evolutions with particularly “good” behavior.
Introduced by S. Fomin and A. Zelevinsky around 2000 in the context of the
factorization problem of totally positive matrices.

Cluster algebras have applications to:

-Factorization of totally positive matrices
-Combinatorics of Lusztig’s canonical bases
-Triangulated categories
-Geometry of Teichmüller spaces
-Donaldson Thomas motivic invariant theory
-Somos-type recursion relations
-(Quantum) dilogarithm identities
-...
Quantized version: Fock-Goncharov, Berenstein-Zelevinsky.

Here: Coefficient-free Cluster Algebras of geometric type with skew-symmetric exchange
matrix.
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Cluster algebras and quantum cluster algebras

Cluster algebras: quiver dynamics

Start with a quiver Γ with no one-cycles or two cycles:

b

b

b

b

1

2

3
4

Corresponds to a skew-symmetric matrix B
rows and columns labeled by vertices
The (i, j) entry = number of arrows from i to j.

B =

0
B@

0 −2 0 1
2 0 −2 −1
0 2 0 0

−1 1 0 0

1
CA

Dynamics of quiver: For each vertex label v, mutation µv acts on the quiver:
µv(Γ) = Γ′
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r
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s t
µk
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k
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s

r + st

t
-Reverse incident arrows on node k
-create a shortcut for path of length 2 through k
-cancel 2-cycles.
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Cluster algebras and quantum cluster algebras

Example of quiver mutations

b b

b
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Cluster algebras and quantum cluster algebras

Cluster variable mutation

To each node v in Γ associate a variable xv. Collection x = {xv : v ∈ Γ}.

Mutation µv acts on xv according to the number of incoming and outgoing arrows
from vertex v:

µv(xv) =

Y

w:w→v

xw +
Y

w:w←v

xw

xv
, µv(xw) = xw otherwise.

Repeat application of mutations to cluster variables iteratively to get rational
functions in {xv}.
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Cluster algebras and quantum cluster algebras

Evolution tree

A quiver Γ with n nodes =⇒ a complete n-tree Tn. Labeled edges.

b

b

b

b

b

b

b

b
b

b

b

At each node • of the tree:
data (x = {xv}v∈Γ, Γ)•= (n cluster variables, quiver).

Data on vertices connected by an
edge related by a mutation µ

(x, Γ)t′ = µ(x,Γ)t = (µ(x), µ(Γ))

Initial data: (x,Γ) at a single node on the evolution tree. All other data are
determined via the evolution.

The mutation of variables along the tree Tn is a discrete dynamical system on the
cluster variables, with initial data given by (x,Γ) at one of the vertices.

Cluster algebra: Commutative algebra generated by collection of cluster variables.
The rank is n.
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Cluster algebras and quantum cluster algebras

Example of a simple evolution: Rank 2

Choose Γ =

b

b

Initial data (x0, x1)

Evolution tree:
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Laurent polynomials with coefficients in Z+ in initial data.
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Cluster algebras and quantum cluster algebras

Some facts about cluster algebras

Finite cluster algebras classified by finite simple Lie algebra Dynkin diagrams.
[Fomin-Zelevinsky].

Quiver-finite cluster algebras classified by Felikson, Shapiro, Tumarkin.

Laurent property Theorem: In terms of any choice of initial data, cluster variables
are Laurent polynomials (not just rational functions!).

Positivity conjecture: with coefficients in Z+. Proof in special cases.
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Cluster algebras and quantum cluster algebras

Quantum cluster algebras

Compatible Poisson structure on cluster algebras [Gekhtman, Shapiro, Vainshtein]
[Fock and Goncharov] =⇒ quantum deformation [Berenstein, Zelevinsky].

A non-commutative algebra with
Generators {X1, ...,Xn}: variables associated to node of Tn;
Data Γ ∼ skew symmetric matrix B (same as in commutative case).
New matrix: Λ ∝ B−1 an integer matrix.

Cluster variables at the same node satisfy XiXj = qΛi,j XjXi (q central).

Cluster variables in neighboring nodes related by a quantum mutation

µi(Xj) =

(
X

b
+

i + X
b
−
i , i = j

Xj , i 6= j.

b
±
i = ith column of [±B]+ − I.

X
a := q

1
2

P

i>j Λi,jaiaj Xa1

1 · · ·X
an
n .

Laurent property: Any cluster variable is a Laurent polynomial with coefficients in
Z[q, q−1] when expressed in terms of any of cluster seed variables. [Theorem].

Positivity conjecture: Coefficients expected to be in Z+[q, q−1].

R. Kedem (University of Illinois) Graded tensors and quantum cluster algebras FPSAC 2012, Nagoya 21 / 39



Cluster algebras and quantum cluster algebras

Quantum cluster algebras

Compatible Poisson structure on cluster algebras [Gekhtman, Shapiro, Vainshtein]
[Fock and Goncharov] =⇒ quantum deformation [Berenstein, Zelevinsky].

A non-commutative algebra with
Generators {X1, ...,Xn}: variables associated to node of Tn;
Data Γ ∼ skew symmetric matrix B (same as in commutative case).
New matrix: Λ ∝ B−1 an integer matrix.

Cluster variables at the same node satisfy XiXj = qΛi,j XjXi (q central).

Cluster variables in neighboring nodes related by a quantum mutation

µi(Xj) =

(
X

b
+

i + X
b
−
i , i = j

Xj , i 6= j.

b
±
i = ith column of [±B]+ − I.

X
a := q

1
2

P

i>j Λi,jaiaj Xa1

1 · · ·X
an
n .

Laurent property: Any cluster variable is a Laurent polynomial with coefficients in
Z[q, q−1] when expressed in terms of any of cluster seed variables. [Theorem].

Positivity conjecture: Coefficients expected to be in Z+[q, q−1].

R. Kedem (University of Illinois) Graded tensors and quantum cluster algebras FPSAC 2012, Nagoya 21 / 39



Cluster algebras and quantum cluster algebras

Quantum cluster algebras

Compatible Poisson structure on cluster algebras [Gekhtman, Shapiro, Vainshtein]
[Fock and Goncharov] =⇒ quantum deformation [Berenstein, Zelevinsky].

A non-commutative algebra with
Generators {X1, ...,Xn}: variables associated to node of Tn;
Data Γ ∼ skew symmetric matrix B (same as in commutative case).
New matrix: Λ ∝ B−1 an integer matrix.

Cluster variables at the same node satisfy XiXj = qΛi,j XjXi (q central).

Cluster variables in neighboring nodes related by a quantum mutation

µi(Xj) =

(
X

b
+

i + X
b
−
i , i = j

Xj , i 6= j.

b
±
i = ith column of [±B]+ − I.

X
a := q

1
2

P

i>j Λi,jaiaj Xa1

1 · · ·X
an
n .

Laurent property: Any cluster variable is a Laurent polynomial with coefficients in
Z[q, q−1] when expressed in terms of any of cluster seed variables. [Theorem].

Positivity conjecture: Coefficients expected to be in Z+[q, q−1].

R. Kedem (University of Illinois) Graded tensors and quantum cluster algebras FPSAC 2012, Nagoya 21 / 39



Cluster algebras and quantum cluster algebras

Quantum cluster algebras

Compatible Poisson structure on cluster algebras [Gekhtman, Shapiro, Vainshtein]
[Fock and Goncharov] =⇒ quantum deformation [Berenstein, Zelevinsky].

A non-commutative algebra with
Generators {X1, ...,Xn}: variables associated to node of Tn;
Data Γ ∼ skew symmetric matrix B (same as in commutative case).
New matrix: Λ ∝ B−1 an integer matrix.

Cluster variables at the same node satisfy XiXj = qΛi,j XjXi (q central).

Cluster variables in neighboring nodes related by a quantum mutation

µi(Xj) =

(
X

b
+

i + X
b
−
i , i = j

Xj , i 6= j.

b
±
i = ith column of [±B]+ − I.

X
a := q

1
2

P

i>j Λi,jaiaj Xa1

1 · · ·X
an
n .

Laurent property: Any cluster variable is a Laurent polynomial with coefficients in
Z[q, q−1] when expressed in terms of any of cluster seed variables. [Theorem].

Positivity conjecture: Coefficients expected to be in Z+[q, q−1].

R. Kedem (University of Illinois) Graded tensors and quantum cluster algebras FPSAC 2012, Nagoya 21 / 39



Cluster algebras and quantum cluster algebras

Quantum cluster algebras

Compatible Poisson structure on cluster algebras [Gekhtman, Shapiro, Vainshtein]
[Fock and Goncharov] =⇒ quantum deformation [Berenstein, Zelevinsky].

A non-commutative algebra with
Generators {X1, ...,Xn}: variables associated to node of Tn;
Data Γ ∼ skew symmetric matrix B (same as in commutative case).
New matrix: Λ ∝ B−1 an integer matrix.

Cluster variables at the same node satisfy XiXj = qΛi,j XjXi (q central).

Cluster variables in neighboring nodes related by a quantum mutation

µi(Xj) =

(
X

b
+

i + X
b
−
i , i = j

Xj , i 6= j.

b
±
i = ith column of [±B]+ − I.

X
a := q

1
2

P

i>j Λi,jaiaj Xa1

1 · · ·X
an
n .

Laurent property: Any cluster variable is a Laurent polynomial with coefficients in
Z[q, q−1] when expressed in terms of any of cluster seed variables. [Theorem].

Positivity conjecture: Coefficients expected to be in Z+[q, q−1].
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Cluster algebras and quantum cluster algebras

Example of quantum evolution: Rank 2

Choose Γ =

b

b

Initial data (X0, X1)

Evolution tree:
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Laurent polynomials with coefficients in Z+[q, q−1] in initial data.
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Grading from quantization

Next: Grading from Quantization

There is a cluster algebra associated with the explicit formulas for tensor product
multiplicities

The graded tensor product multiplicities are associated with the quantization of this
cluster algebra.
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Grading from quantization

Tensor product multiplicities

Mn,ℓ(1) =
X

mi≥0
2

P

imi=
P

i ni−ℓ

pi≥0

Y

i≥1

 
pi + mi

mi

!
Multiplicity formula for sl2 tensors
pi =

P
min(i, j)(nj − 2mj)

⇓

Nn,ℓ(1) =
X

{mi}
2

P

imi=
P

i ni−ℓ

Y

i≥1

 
pi + mi

mi

!
Relax restrictions on the sum:
This is not a manifestly non-negative
sum!

⇓

Zn,ℓ(y) =
X

{mi}

yp
Y

i≥1

 
pi − p + mi

mi

!
No restrictions on the sum.
p

def
=
P

i(ni − 2mi)− ℓ

The sum Nn,ℓ(1) is the constant term of Zn,ℓ(y).

(Repeat for the other Lie algebras g.)
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Grading from quantization

Theorem for generating functions

Theorem (Di Francesco, K.)

1 The generating function factorizes:

Zn,ℓ(y) = χ1

Y

i≥0

χni
i

„
χk

χk+1

«ℓ+1

, k ≫ 0

where χi are solutions of χi+1 =
χ2

i − 1

χi−1
, χ0 = 1, χ1 = y.

2 The modified sum Nn,ℓ(1) is equal to the multiplicity Mn,ℓ(1) because the solutions
of the recursion χi are polynomials in the initial data χ1.

This recursion relation is known as the Q-system. (Solutions are Chebyshev polynomials
of second type).

In general, the fact that solutions to Q-systems are polynomials follows from two facts:

The equations are mutations in a cluster algebra.

Laurentness implies polynomiality for these equations.
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Grading from quantization

Cluster algebra for the Q-system

The Q-system for A1

χn+1χn−1 = χ2
n − 1

For other simply-laced Lie algebras with Cartan matrix C:

Qα,n+1Qα,n−1 = Q2
α,n +

Y

β∼α

Qβ,n

Associated with the quiver Γ ∼exchange matrix B:

B =

„
0 −C
C 0

«

Theorem (K.)

Each of the Q-system relations is a mutation of cluster variables in the mutation tree
with initial data ((Qα,0; Qα,1)1≤α≤r, B).

Application: Solutions are polynomials in the initial data Qα,1 if RHS=0 at n = 0.
(Follows from Laurent polynomiality)
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Grading from quantization

Example of quiver mutations for A6 Q-system
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Grading from quantization

Graded multiplicities from quantum cluster algebra

Quantum Q-system: The quantum deformation of the Q-system cluster algebra is

qλa,aQa,j+1Qa,j−1 = Q2
a,j +

Y

a∼b

Qb,j , λ = DetC C−1,

Commutation relations: Qa,jQb,j+1 = qλabQb,j+1Qa,j .

Theorem: The Polynomiality property for the quantum Q-system

Write the ordered expression χa,j =
X

mb,nb

am,n

Y

b

χmb
b,1 χnb

b,0. Then

χa,j(χb,0 = 1) ∈ Z[q, q−1][χ1,1, ..., χr,1] a polynomial!

follows from Laurent polynomiality for quantum cluster algebras.

Warning: Apply only to normal-ordered expressions!
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Grading from quantization

Graded tensor product multiplicities

Recall: For the ungraded multiplicities:

Mn,ℓ(1) =
X

{mi}
2

P

imi=
P

i ni−ℓ

pi≥0

Y

i≥1

 
pi + mi

mi

!
Multiplicity formula for sl2 tensors

⇓

Nn,ℓ(1) =
X

{mi}
2

P

imi=
P

i ni−ℓ

Y

i≥1

 
pi + mi

mi

!
Relax restrictions on the sum

⇓

Zn,ℓ(y) =
X

{mi}

yp
Y

i≥1

 
pi − p + mi

mi

!
No restrictions on the sum.
p

def
=
P

i(ni − 2mi)− ℓ

The sum Nn,ℓ(1) is the constant term of Zn,ℓ(y).
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Grading from quantization

Graded tensor product multiplicities

For the graded multiplicities:

Mn,ℓ(t) =
X

{mi}
2

P

imi=
P

i ni−ℓ

pi≥0

tm
tAm

Y

i≥1

»
pi + mi

mi

–

t

, Aij = min(i, j)

⇓

Nn,ℓ(t) =
X

{mi}
2

P

imi=
P

i ni−ℓ

tm
tAm

Y

i≥1

»
pi + mi

mi

–

t

Relax restrictions on the sum

⇓

Zn,ℓ(t; X, Y ) =
X

mi≥0

tQ̃(m,n)Y pXp1−p
Y

j≥1

»
pj − p + mj

mj

–

t

, p
def
=

P
i(ni − 2mi) − ℓ

XY = t1/2Y X
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pj − p + mj

mj

–

t

, p
def
=

P
i(ni − 2mi) − ℓ

XY = t1/2Y X

Zn,ℓ(t; X, Y ) is constructed so that the p = 0 term gives Nn,ℓ(t) whenX = 1.
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Grading from quantization

Constant term formula

Theorem

When χj satisfy the quantum Q-system with q2 = t the generating function

Zn,ℓ(t; χ0, χ1) = tf(n)χ1χ
−1
0

 
→Y

χ
nj

j

!
(χkχ−1

k+1)
ℓ+1 =

X
ai,j(t)χ

i
1χ

j
0

gives Nn,ℓ(t) =
P

j a0,j(t).

The polynomiality property for the quantum Q-system cluster algebra implies
Mn,ℓ(t) = Nn,ℓ(t).

Remark: This is a good thing: M -sum is a subtraction-free expression for a
multiplicity.

Remark 2: We have a new, compatible source for our grading.

R. Kedem (University of Illinois) Graded tensors and quantum cluster algebras FPSAC 2012, Nagoya 38 / 39



Grading from quantization

Constant term formula

Theorem

When χj satisfy the quantum Q-system with q2 = t the generating function

Zn,ℓ(t; χ0, χ1) = tf(n)χ1χ
−1
0

 
→Y

χ
nj

j

!
(χkχ−1

k+1)
ℓ+1 =

X
ai,j(t)χ

i
1χ

j
0

gives Nn,ℓ(t) =
P

j a0,j(t).

The polynomiality property for the quantum Q-system cluster algebra implies
Mn,ℓ(t) = Nn,ℓ(t).

Remark: This is a good thing: M -sum is a subtraction-free expression for a
multiplicity.

Remark 2: We have a new, compatible source for our grading.

R. Kedem (University of Illinois) Graded tensors and quantum cluster algebras FPSAC 2012, Nagoya 38 / 39



Grading from quantization

Constant term formula

Theorem

When χj satisfy the quantum Q-system with q2 = t the generating function

Zn,ℓ(t; χ0, χ1) = tf(n)χ1χ
−1
0

 
→Y

χ
nj

j

!
(χkχ−1

k+1)
ℓ+1 =

X
ai,j(t)χ

i
1χ

j
0

gives Nn,ℓ(t) =
P

j a0,j(t).

The polynomiality property for the quantum Q-system cluster algebra implies
Mn,ℓ(t) = Nn,ℓ(t).

Remark: This is a good thing: M -sum is a subtraction-free expression for a
multiplicity.

Remark 2: We have a new, compatible source for our grading.

R. Kedem (University of Illinois) Graded tensors and quantum cluster algebras FPSAC 2012, Nagoya 38 / 39



Grading from quantization

Constant term formula

Theorem

When χj satisfy the quantum Q-system with q2 = t the generating function

Zn,ℓ(t; χ0, χ1) = tf(n)χ1χ
−1
0

 
→Y

χ
nj

j

!
(χkχ−1

k+1)
ℓ+1 =

X
ai,j(t)χ

i
1χ

j
0

gives Nn,ℓ(t) =
P

j a0,j(t).

The polynomiality property for the quantum Q-system cluster algebra implies
Mn,ℓ(t) = Nn,ℓ(t).

Remark: This is a good thing: M -sum is a subtraction-free expression for a
multiplicity.

Remark 2: We have a new, compatible source for our grading.

R. Kedem (University of Illinois) Graded tensors and quantum cluster algebras FPSAC 2012, Nagoya 38 / 39



Grading from quantization

Constant term formula

Theorem

When χj satisfy the quantum Q-system with q2 = t the generating function

Zn,ℓ(t; χ0, χ1) = tf(n)χ1χ
−1
0

 
→Y

χ
nj

j

!
(χkχ−1

k+1)
ℓ+1 =

X
ai,j(t)χ

i
1χ

j
0

gives Nn,ℓ(t) =
P

j a0,j(t).

The polynomiality property for the quantum Q-system cluster algebra implies
Mn,ℓ(t) = Nn,ℓ(t).

Remark: This is a good thing: M -sum is a subtraction-free expression for a
multiplicity.

Remark 2: We have a new, compatible source for our grading.

R. Kedem (University of Illinois) Graded tensors and quantum cluster algebras FPSAC 2012, Nagoya 38 / 39



Grading from quantization

Summary

We have established the connections:

Fermionic multiplicity
formulas

←→ Q-systems −→ Cluster algebras

↓ ↓

Graded multiplicities ←−
Quantum
Q-system

←−
Quantum

cluster algebras

The grading coming from quantization of cluster algebras is the same as the Bethe
ansatz physical/combinatorial grading, crystal grading for the quantum algebra, and
the Feigin-Loktev grading for the affine algebra.

Remark: The same quantum Q-system is related to the problem of finding canonical
bases. The sums MW,V (t) appear as Betti numbers in the cohomology of quiver
varieties.

Thank you!
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