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The Isoperimetric Inequality

The Isoperimetric Inequality: The solid of volume V that
minimizes the surface area in Euclidean 3-space is the ball.

A sleeping, curled-up sphynx cat called Uthello. Author : Sunny
Ripert. Idea: Soul physics blog.
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Combinatorial Isoperimetric Relations - some examples

I (Erdős-Hanani:) A simple graph with m edges that minimizes
the number of vertices is obtained from a complete graph by
adding a vertex and some edges.

I The Kruskal-Katona Theorem.

I Macaulay’s theorem.

I Harper’s theorem.

I A theorem of Descartes: A simple planar graph with m edges
has at least m/3 + 2 vertices.
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Prelude: Baby Harper and canonical paths

Theorem: For a subset A of the discrete n-cube with |A| ≤ 2n−1

there are at least |A| edges from A to its complement.

Proof (hint): Consider a canonical path between two 0-1 vectors
x and y by flipping the disagreeing-coordinates from left to right.
Then look at all canonical paths from all x ∈ A and y /∈ A. There
are |A|(2n − |A|) such paths and each of them must contain an
edge from A to its compliment.

On the other hand, every edge is contained in at most 2n−1

canonical paths.
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Part I: Isoperimetry, harmonic analysis, and probability

The first part of this lecture is about harmonic analysis applied to
discrete isoperimetry. We have several application and potential
applications in mind mainly to problems in probability. I will start
by mentioning one potential application. It deals with the theory of
random graphs initiated by Erdős and Rényi, and the model

G (n.p). In the picture we see a
random graph with n = 12 and p = 1/3.

Gil Kalai Discrete Isoperimetry



Threshold and Expectation threshold

Consider a random graph G in G (n, p) and the graph property: G
contains a copy of a specific graph H. (Note: H depends on n; a
motivating example: H is a Hamiltonian cycle.) Let q be the
minimal value for which the expected number of copies of H ′ in G
is at least 1/2 for every subgraph H ′ of H. Let p be the value for
which the probability that G contains a copy of H is 1/2.

Conjecture: [Kahn, K. 2006]

p/q = O(log n).

The conjecture can be vastly extended to general Boolean
functions, and we will hint on possible connection with harmonic
analysis and discrete isoperimetry. (Sneak preview: it will require a
far-reaching extension of results by Friedgut, Bourgain and
Hatami.)
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The discrete n-dimensional cube and Boolean functions

The discrete n-dimensional cube Ωn is the set of 0-1 vectors of
length n.

A Boolean function f is a map from Ωn to {0, 1}.

A boolean function f is monotone if f cannot decrease when you
switch a coordinate from 0 to 1.
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The Bernoulli measure

Let p, 0 < p < 1, be a real number. The probability measure µp is
the product probability distribution whose marginals are given by
µp(xk = 1) = p. Let f : Ωn → {0, 1} be a Boolean function.

µp(f ) =
∑
x∈Ωn

µp(x)f (x) = µp{x : f (x) = 1}.
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The total influence

Two vectors in Ωn are neighbors if they differ in one coordinate.

For x ∈ Ωn let h(x) be the number of neighbors y of x such that
f (y) 6= f (x).
The total influence of f is defined by

I p(f ) =
∑
x∈Ωn

µp(x)h(x).

If p = 1/2 we will omit p as a subscript or superscript.
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Russo’s lemma

Russo’s lemma: For a monotone Boolean function f ,

dµp(f )/dp = I p(f ).

Very useful in percolation theory and other areas.

The threshold interval for a monotone Boolean function f is
those values of p so that µp(f ) is bounded away from 0 and 1.
(Say 0.01 ≤ µp(f ) ≤ 0.99.)

A typical application of Russo’s lemma: If for every value p in the
threshold interval I p(f ) is large, then the threshold interval itself is
short. This is called a sharp threshold phenomenon.
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(A version of) Harper’s theorem

Harper’s theorem: If µp(f ) = t then

I p(f ) ≥ 2t · logp t.

There is a 3 line proof by induction.
Harmonic analysis proof: without the log(1/t) factor it follows
from Parseval.
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Influence of variables on Boolean functions

Let

σk(x1, . . . , xk−1, xk , xk+1, . . . , xn) = (x1, . . . , xk−1, 1−xk , xk+1, . . . , xn).

The influence of the kth variable on a Boolean function f is
defined by:

I p
k (f ) = µp(x ∈ Ωn, f (x) 6= f (σk(x))).
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KKL’s theorem

Theorem (Kahn, K, Linial, 1988; Bourgain Katznelson KKL 1992;
Talagrand 1994 Friedgut K. 1996) There exist a variable k such
that

I p
k (f ) ≥ Cµp(f )(1− µp(f )) log n/n.

A sharp version (due to Talagrand)∑
I p
k (f )/ log(e + I p

k (f )) ≥ C (p)µp(f )(1− µp(f )).
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Discrete Fourier analysis

We assume now p = 1/2. Let f : Ωn → R be a real function.

Let f =
∑

f̂ (S)WS be the Fourier-Walsh expansion of f .

Here
WS(x1, x2, . . . , xn) = (−1)

P
{xi :i∈S}.
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Hypercontructivity and Harper’s theorem:

We assume now p = 1/2. f =
∑

f̂ (S)WS is the Fourier-Walsh
expansion of f . Key ideas:

0 Parseval gives I (f ) = 4
∑

f̂ 2(S)|S |.
1 Bonami-Gross-Beckner hypercontractive inequality.

||
∑

f̂ (S)(1/2)|S | || 2 ≤ || f || 5/4.

2 For Boolean functions the qth power of the q norm is the
measure of the support and does not depend on q. If the
support is small this means that the q-norm is very different
from the r -norm if r 6= q.

(See also : Ledoux’ book on concentration of measure phenomena)
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Part II: Harper’s theorem: Stability and Symmetry
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Low Influence and Juntas

A dictatorship is a Boolean function depending on one variable. A
K -junta is a Boolean function depending on K variables.

Theorem: (Friedgut, follows easily from KKL) If p is bounded
away from 0 and 1 and I p(f ) < C then f is close to a K (C )-Junta.

This works if log p/ log n = o(1) the most interesting applications
would be when p is a power of n. There the theorem is not true.

Early stability results for Harper’s theorem were obtained in the
70s by Peter Frankl.
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The works of Friedgut and Bourgain (1999)

Suppose that f is a Boolean function and

I p(f ) < pC ,

then
Friedgut’s theorem (1999): If f represent a monotone graph
property then f is close to a a “locally defined” function g .

Bourgain’s theorem (1999): Unconditionally, f has a substantial
“locally defined” ingredient.
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Hatami’s theorem: Pseudo-juntas

Suppose that for every subset of variables S , we have a function
JS : {0, 1}S → {0, 1} which can be viewed as a constraint over the
variables with indices in S . Now there are two conditions:
A Boolean function is a K -psudo-junta if
(1) the expected number of variables in satisfied constraints is
bounded by a constant K .
(2) f (x) = f (y) if the variables in satisfied constraints and also
their values are the same for x and y .

Hatami’s theorem: For every C there is K (C ), such that if

I p(f ) < pC ,

then f is close to a K (C )-pseudo-junta.
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A conjectural extension of Hatami’s theorem

Conjecture: Suppose that µp(f ) = t and

I (f ) ≤ C log(1/t)t

then f is close to a O(log(1/t))-pseudo-junta.
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Stability versions of Harper’s theorems
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Symmetry: invariance under transitive group

Theorem: If a monotone Boolean function f with n variables is
invariant under a transitive group of permutation of the variables,
then

I p(f ) ≥ Cµp(f )(1− µp(f )) log n.

Proof: Follows from KKL’s theorem since all individual influences
are the same.
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Total influence under symmetry of primitive groups

For a transitive group of permutations Γ ⊂ Sn, let I (Γ) be the
minimum influence for a Γ-invariant function Boolean function
with n variables.
Theorem: [Bourgain and K. 1998] If Γ is primitive then one of the
following possibilities hold.

I

I (Γ) = θ(
√

n),

I

(logn)(k+1)/k−o(1) ≤ I (Γ) ≤ C (log n)(k+1)/k ,

I I (Γ) behaves like (log n)µ(n), where µ(n) ≤ log log n is
growing in an arbitrary way.
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Short Interlude: Kruskal-Katona for colorful (completely
balanced) and flag complexes

Frankl-Füredi-K.(88); Frohmader (2008)
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An important consequence of Frankl-Furedi-K. Theorem

I have Frankl number 1!
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An important consequence of Frankl-Furedi-K. Theorem
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Part III: Kruskal-Katona for embedded complexes

Conjecture [high-dimensional crossing conjecture] (Karnabir
Sarkaria and K. late 80s) Let K be a d-dimensional simplicial
complexes that can be embedded into 2d-dimensional space. Then

fd(K ) ≤ C (d)fd−1(K ).

Euler’s theorem asserts that C (1) = 3 it is conjectured that
C (d) = d + 2.
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The high-dimensional crossing conjecture - a known case

Theorem (K. early 90) Let K be a d-dimensional simplicial
complexes that can be embedded as a subcomplex into the
boundary complex of a 2d + 1-dimensional polytope. Then

fd(K ) ≤ (d + 2)fd−1(K ).
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Shifting

A combinatorial method initiated by Erdős Ko Rado to move from
a general set system (or abstract simplicial complex) to a “shifted”
one.

A shifted family of subsets of {1, 2, . . . , n} is shifted if whenever
you start with a set S in the family and replace an element j ∈ S
with an element i 6= S with i < j , then the set R you obtained also
belongs to the family.

Example: Give i a real weight wi . Suppose that
w1 > w2 > · · · > wn. Let F be the family of all sets where the
sum of weights is positive. Then F is shifted.

Shifting is an operation that replace a family of sets by a shifted
family of the same cardinality such that various combinatorial
properties are preserved.
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Symmetrization

The role of shifting in discrete isoperimetry is similar to the role of
symmetrization in classical isoperimetry.
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Algebraic shifting

Algebraic shifting is an algebraic version of the Erdős-Ko-Rado
shifting operation that I developed in my Ph. D. thesis and it was
studied by Anders Björner and me in the late 80s and early 90s. It
allows to consider homological and algebraic properties of K .

Algebraic shifting maps a general simplicial complex K to a shifted
simplicial complex ∆(K ), with the same f -vector.
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The high dimensional crossing conjecture - shifting version

Conjecture: Let K be a d dimensional simplicial complex which
cannot be embedded into R2d . Then ∆(K ) does not contain the
d-skeleton of a 2d + 2-dimensional simplex.
For d = 1 the conjecture asserts that ∆(K ) does not contain K5 a
complete graph on 5 vertices. This is known.
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Recent approach: (Wegner - Nevo)

Theorem (Uli Wagner): The weak version of the high-dimensional
crossing conjecture holds for random simplicial complexes (in the
Linial-Meshulam model).
Moreover, the result holds if we exclude any subcomplex as a
“minor” for a suitable definition of a term “minor”.
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Another related recent approach: Balanced complexes and
balanced shifting

This is an attack on the problem by restriction our attention to
completely balanced complexes: d-complexes whose vertices can
be colored by (d+1) colors so that all simplices are rainbow
simplices. (Nevo, Novik, K., Babson, Wegner..)
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Conclusion

Isoperimetric relations are important in several areas of
combinatorics, extremal; probabilistic, geometric and algebraic, and
are relevant to connections between combinatorics and other areas.

Thank You!
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