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Outline of the talk

Vector configurations & orbits thereof.

Example: 4 vectors in C2.

Matroids.

Equations for [v ].

Algebraic invariants.



Vector configurations

A configuration is a list v = (v1, . . . , vn), where vi ∈ V ≈ Cr .

1              2                 3        4

The space of configurations is V × · · · × V ≈ Cr×n.

[
1 1 1 1
1 2 4 5

] 1 1 1 1 0
1 1 1 0 1

1 1 0 1 1





Projective equivalence

The space of r -by-n matrices comes with an action of

GLr ×
n∏

C×︸ ︷︷ ︸
=:T n

(GLr on the left, T n on the right.)

Here are two projectively equivalent Pappus configurations:
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Projective equivalence ctd.

The space of r -by-n matrices comes with an action of

GLr ×
n∏

C×︸ ︷︷ ︸
=:T n

(GLr on the left, T n on the right.)

Definition

The projective equivalence class of v is [v ] ⊆ Cr×n:

[v ] := the orbit of v under GLr × T n

This set is smooth and locally closed; its closure [v ] is an
irreducible affine variety.



Example. v ∈ (C2×4)o

Let v = 4 non-parallel vectors in C2. There is a unique µ such that[
1 0 1 1
0 1 1 µ

]
∈ [v ].

This µ is the cross ratio of v :

det(v1v4) det(v2v3)

det(v1v3) det(v2v4)
= µ.



Example. v ∈ (C2×4)o

v is fixed with cross ratio µ

and we may as well choose this v :

x =

[
x1 x2 x3 x4

y1 y2 y3 y4

]
and v =

[
1 0 1 1
0 1 1 µ

]
are equivalent if

det(x1x4) det(x2x3)

det(x1x3) det(x2x4)
= µ

(x1y4 − x4y1)(x2y3 − x3y2)− µ(x1y3 − x3y1)(x2y4 − x4y2) = 0

Easy: this single polynomial cuts out [v ].

(In fact [v ] has the largest possible dimension.)
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Matroids

On the Combinatorics of linear dependency, H. Whitney (1935).

1 1 1 1 0
1 1 1 0 1

1 1 0 1 1



Record which maximal minors are non-zero, as below:

M(v) = {123, 124,��HH125, 126, . . . , 567} =: the matroid of v

Points of [v ] share a matroid.



The ideal of [v ]

What is the ideal of polynomials in C[x11, . . . , xrn] that vanish on
[v ]?

What are its generators?

What is its Hilbert series?

The ring C[x11, . . . , xrn] is graded by Nr ×Nn,

deg xij = (ei , ej) ∈ Nr ×Nn

and the prime ideal Iv of [v ] is homogeneous.

Definition.

The multigraded Hilbert series Hilb(v) of [v ] is the generating
function for the dimensions of the Nr ×Nn-graded pieces of

C[x11, . . . , xrn]/Iv

It is a generating function in variables u1, . . . , ur and t1, . . . , tn.
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Why the Hilbert series?

Hilb(v) answers many questions of this form:

Take a subvariety X ⊆ Cr×n and ask

How many configurations in X are proj. equiv. to v?

For example: resume (r , n) = (2, 4).

How many configurations of the form[
8 + 12s 6 + 9s 9 + 6s 11 + 14s
−3s −3 + s −1− s −5s + 13

]
are in [v ]? Answer: 4. This only depends on the matroid
(i.e. on the non-parallel condition.)



Why the Hilbert series?

Hilb(v) answers many questions about counting X ∩ [v ].

It yields info on the irred. decomp. of the Sn-representation
spanned by

{vw(1) ⊗ vw(2) ⊗ · · · ⊗ vw(n) : w ∈ Sn}

=⇒ partitions into independent sets [Berget]

It gives the Tutte polynomial of the matroid. [F–Speyer]



Problems.

What are the generators of the ideal of [v ]?

What is its Hilbert series?

Can the answers be determined from M(v)?

Murphy’s law suggests “no”.

More convincingly, Mnev’s universality thm suggests this too.

The Grassmannian situation suggests “maybe”. . .



Gale duality

To get at the ideal of [v ] we need Gale duality.

v =

1 1 1 1 0
1 1 1 0 1

1 1 0 1 1

 v⊥ =


−1 −1 −1 1
−1 −1 0 1
−1 0 −1 1
0 −1 −1 1


v⊥ = any matrix whose row space forms a basis for ker(v).



Theorem (Berget–F, 2011)

v =

1 1 1 1 0
1 1 1 0 1

1 1 0 1 1

 x =

x1 x2 x3 x4 x3 x6 x7

y1 y2 y3 y4 y5 y6 y7

z1 z2 z3 z4 z5 z6 z7


Theorem (by example)

The common vanishing locus of the following polynomials is [v ]:

Take the 7-by-7 minors of the 12-by-7 matrix [Kapranov ’91]

v⊥ ⊗ x =



−1
(

x1
y1
z1

)
−1

(
x2
y2
z2

)
−1

(
x3
y3
z3

) (
x4
y4
z4

)
−1

(
x1
y1
z1

)
−1

(
x2
y2
z2

)
0

(
x5
y5
z5

)
−1

(
x1
y1
z1

)
0 −1

(
x3
y3
z3

) (
x6
y6
z6

)
0 −1

(
x2
y2
z2

)
−1

(
x3
y3
z3

) (
x7
y7
z7

)


AND . . .
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theorem ctd.

AND . . . for all subconfigurations vS ⊆ v , e.g.,

v⊥123567 =

1 1 1 0
1 1 0 1

1 0 1 1


take the |S |-by-|S | minors of

vS ⊗ xS =


−1

(
x1
y1
z1

)
−1

(
x2
y2
z2

)
0

(
x5
y5
z5

)
−1

(
x1
y1
z1

)
0 −1

(
x3
y3
z3

) (
x6
y6
z6

)
0 −1

(
x2
y2
z2

)
−1

(
x3
y3
z3

) (
x7
y7
z7

)




Comments on the theorem.

Conjecture (Berget–F). The ideal these polynomials
generate is prime.

Theorem (Berget–F, 2011). If r = 2 or n = r + 2 and v
has a connected matroid then the conj is true.
In this case, the ideals come out determinantal.

If v is rank 2 configuration of 4 vectors, recover cross ratio.

det(x1x4) det(x2x3)− µ det(x1x3) det(x2x4) = 0

Dependence on the matroid: the size of v⊥S reflects rank vS .
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Back to the Hilbert series

Details in progress:

The matroid of v determines Hilb(v), the multigraded Hilbert
series of the quotient ring

C[x11, . . . , xrn]/Iv .

Our approach: Compare the variety [v ] with a torus orbit on the
Grassmannian, where we have [F–Speyer].

With Weyman’s geometric technique, the comparison is a
cohomology computation on toric vector bundles.

=⇒ [v ] has rational singularities.
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Known cases

r = 2. For the uniform matroid, by our last theorem:

Hilb(v) = 1− s(2,2)(u)e4(t) + s(3,2)(u)e5(t)

− (2s(4,2)(u) + s(3,3)(u))e5(t) + . . .

Parallel extensions suffice for every rank 2 configuration.
In equivariant cohomology:

class of [v ] =

n/2∑
k=1

max{0, µ′1 + · · ·+ µ′k − 2k} s(n−k−1,k)(u)

where µ′k is the number of parallelism classes of ≥ k points.



Known cases

r = 2. For the uniform matroid, by our last theorem:

Hilb(v) = 1− s(2,2)(u)e4(t) + s(3,2)(u)e5(t)

− (2s(4,2)(u) + s(3,3)(u))e5(t) + . . .

Parallel extensions suffice for every rank 2 configuration.
In equivariant cohomology:

class of [v ] =

n/2∑
k=1

max{0, µ′1 + · · ·+ µ′k − 2k} s(n−k−1,k)(u)

where µ′k is the number of parallelism classes of ≥ k points.



Known cases ctd.

r = 2.

The uniform matroid, at least in eqvt. cohomology.

Certain coefficients in an arbitrary configuration:

Hilb(v) ≡ 1−
∑

D∈D(M)

s(|D|−rk(D),1rk(D))(u)
∏
j∈D

tj

mod 〈sλ(u) : λ not a hook〉+ 〈t2
1 , . . . , t2

n〉,

where D(M) denotes the dependent sets of the matroid of v .



Thanks for listening!


