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An inequality of Kostka numbers and Galois
groups of Schubert problems

Christopher J. Brooks†and Abraham Martı́n del Campo‡ and Frank Sottile§

Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA

Abstract. We show that the Galois group of any Schubert problem involving lines in projective space contains the
alternating group. Using a criterion of Vakil and a special position argument due to Schubert, this follows from a
particular inequality among Kostka numbers of two-rowed tableaux. In most cases, an easy combinatorial injection
proves the inequality. For the remaining cases, we use that these Kostka numbers appear in tensor product decom-
positions of sl2C-modules. Interpreting the tensor product as the action of certain commuting Toeplitz matrices and
using a spectral analysis and Fourier series rewrites the inequality as the positivity of an integral. We establish the
inequality by estimating this integral.

Résumé. On montre que le groupe de Galois de tout problème de Schubert concernant des droites dans l’espace
projective contient le groupe alterné. On utilisant un critère de Vakil et l’argument de position spéciale due à Schubert,
ce résultat se déduit d’une inégalité particulière des nombres de Kostka des tableaux ayant deux rangées. Dans la
plus part des cas, une injection combinatoriale facile montre l’inégalité. Pour les cas restant, on utilise le fait que
ces nombres de Kostka apparaissent dans la décomposition en produit tensoriel des sl2C-modules. En interprétant
le produit tensoriel comme l’action de certaines matrices de Toeplitz commutantent entre elles, et en utilisant de
l’analyse spectrale et les séries de Fourier, on reécrit l’inégalité comme la positivitée d’une intègrale. L’inégalité sera
établie en estimant cette intègrale.
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Introduction
The Schubert calculus of enumerative geometry [KL72] is a method to compute the number of solutions
to Schubert problems, a class of geometric problems involving linear subspaces. One can reduce the
enumeration to combinatorics; for example, the number of solutions to a Schubert problem involving
lines is a Kostka number for a rectangular partition with two parts.

A prototypical Schubert problem is the classical problem of four lines, which asks for the number of
lines in space that meet four given lines. To answer this, note that three general lines `1, `2, and `3 lie
on a unique doubly-ruled hyperboloid, shown in Figure 1. These three lines lie in one ruling, while the
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Fig. 1: The two lines meeting four lines in space.

second ruling consists of the lines meeting the given three lines. The fourth line `4 meets the hyperboloid
in two points. Through each of these points there is a line in the second ruling, and these are the two
lines m1 and m2 meeting our four given lines. In terms of Kostka numbers, the problem of four lines
reduces to counting the number of tableaux of shape λ = (2, 2) with content (1, 1, 1, 1). There are two
such tableaux:

1 2
3 4

1 3
2 4

Galois groups of enumerative problems are subtle invariants about which very little is known. While
they were introduced by Jordan in 1870 [Jor70], the modern theory began with Harris in 1979, who
showed that the algebraic Galois group is equal to a geometric monodromy group [Har79]. In general, we
expect the Galois group of an enumerative problem to be the full symmetric group and when it is not, the
geometric problem possesses some intrinsic structure. Harris’ result gives one approach to studying the
Galois group—by directly computing monodromy. For instance, the Galois group of the problem of four
lines is the group of permutations which are obtained by following the solutions over loops in the space
of lines `1, `2, `3, `4. Rotating `4 180 degrees about the point p (shown in Figure 1) gives a loop which
interchanges the two solution lines m1 and m2, showing that the Galois group is the full symmetric group
on two letters.

Leykin and Sottile [LS09] used numerical homotopy continuation [SW05] to compute monodromy
for many simple Schubert problems, showing that in each case the Galois group was the full symmetric
group. (The problem of four lines is simple.) Billey and Vakil [BV08] gave an algebraic approach based
on elimination theory to compute lower bounds for Galois groups. Vakil [Vak06b] gave a combinatorial
criterion, based on group theory, which can be used to show that a Galois group contains the alternating
group. He used this and his geometric Littlewood-Richardson rule [Vak06a] to show that the Galois group
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was at least alternating for every Schubert problem involving lines in projective space Pn for n ≤ 16.
Brooks implemented Vakil’s criterion and the geometric Littlewood-Richardson rule in python and used
it to show that for n ≤ 40, every Schubert problem involving lines in projective space Pn has at least
alternating Galois group. Our main result is the following.

Theorem 1 The Galois group of any Schubert problem involving lines in Pn contains the alternating
group.

We prove this theorem by applying Vakil’s criterion to a special position argument of Schubert, which
reduces Theorem 1 to proving a certain inequality among Kostka numbers of two-rowed tableaux. For
most problems, the inequality follows from a combinatorial injection of Young tableaux. For the remain-
ing problems, we work in the representation ring of sl2C, where these Kostka numbers also occur. We
interpret the tensor product of irreducible sl2C-modules in terms of commuting Toeplitz matrices. Us-
ing the eigenvector decomposition of the Toeplitz matrices, we express these Kostka numbers as certain
trigonometric integrals. In this way, the inequalities of Kostka numbers become inequalities of integrals,
which we establish by estimation.

Note that the generalization of Theorem 1 to arbitrary Grassmannians is false. Derksen found Schubert
problems in the Grassmannian of 3-planes in P7 whose Galois groups are significantly smaller than the
full symmetric group, and Vakil generalized this to problems in the Grassmannians of 2k−1 planes in
P2n−1 whose Galois groups are not the full symmetric group for every k ≥ 2 and n ≥ 2k [Vak06b,
§3.13].

1 Preliminaries
1.1 Schubert problems of lines
Let G(1, n) be the Grassmannian of lines in n-dimensional projective space Pn, which is an algebraic
manifold of dimension 2n−2. A (special) Schubert subvariety is the set of lines XL that meet a linear
subspace L ⊂ Pn; that is,

XL := {` ∈ G(1, n) | ` ∩ L 6= ∅} . (1.1)

If dimL = n−1−a, then XL has codimension a in G(1, n). A Schubert problem asks for the lines that
meet fixed linear subspaces L1, . . . , Lm in general position, where dimLi = n−1−ai for i = 1, . . . ,m
and a1 + · · ·+ am = 2n−2. These are the points in the intersection

XL1 ∩XL2 ∩ · · · ∩XLm . (1.2)

As the Li are in general position, the intersection (1.2) is transverse and therefore zero-dimensional.
(Over fields of characteristic zero, transversality follows from Kleiman’s Transversality Theorem [Kle74]
while in positive characteristic, it is Theorem E in [Sot97].) We define the Schubert intersection number
K(a1, . . . , am) to be the number of points in the intersection (1.2), which does not depend upon the choice
of general L1, . . . , Lm. We call a• := (a1, . . . , am) the type of the Schubert problem (1.2).

Note that given positive positive integers a• = (a1, . . . , am) whose sum is even, K(a•) is a Schubert
intersection number in G(1, n(a•)), where n(a•) := 1

2 (a1 + · · · + am + 2). Henceforth, a Schubert
problem will be a list a• of positive integers with even sum. It is valid if ai ≤ n(a•)−1 (this is forced by
dimLi ≥ 0).
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The intersection number K(a•) is a Kostka number, which is the number of Young tableaux of shape
(n(a•)−1, n(a•)−1) and content (a1, . . . , am) [Ful97, p.25]. Let K(a•) be the set of such tableaux.
These are two-rowed arrays of integers, each row of length n(a•)−1, such that the integers increase
weakly across each row and strictly down each column, and there are ai occurrences of i for each
i = 1, . . . ,m. For example, here are the five Young tableaux in K(2, 2, 1, 2, 3), demonstrating that
K(2, 2, 1, 2, 3) = 5.

1 1 2 2 3
4 4 5 5 5

1 1 2 2 4
3 4 5 5 5

1 1 2 3 4
2 3 5 5 5

1 1 2 4 4
2 3 5 5 5

1 1 3 4 4
2 2 5 5 5

(1.3)

1.2 Vakil’s Criterion for Galois groups of Schubert problems
In §3.4 of [Vak06b], Vakil explains how to associate a Galois group to a dominant map W → X of
equidimensional irreducible varieties and establishes his criterion for the Galois group to contain the
alternating group. We discuss this for a Schubert problem a• = (a1, . . . , am). Define

X := {(L1, . . . , Lm) | Li ⊂ Pn is a linear space of dimension n−1−ai} ,

where n := n(a•). Consider the incidence variety,

W := {(`, L1, . . . , Lm) | (L1, . . . , Lm) ∈ X and ` ∩ Li 6= ∅ , i = 1, . . . ,m} .

The projection map W → G(1, n) realizes W as a fiber bundle over G(1, n) with irreducible fibers. As
G(1, n) is irreducible, W is irreducible.

Let π : W → X be the other projection; its fiber over a point (L1, . . . , Lm) ∈ X is

π−1(L1, L2, . . . , Lm) = XL1
∩XL2

∩ · · · ∩XLm . (1.4)

Thus the map π : W → X contains all Schubert problems of type a•. As the general Schubert problem
is a transverse intersection containing K(a•) points, π is a dominant map of degree K(a•). Under π, the
field K(X) of rational functions on X pulls back to a subfield of K(W ), the field of rational functions on
W , and the extension K(W )/K(X) has degree K(a•).

Definition 2 The Galois group of the Schubert problem of type a•, G(a•), is the Galois group of the
Galois closure of the field extension K(W )/K(X).

This Galois group G(a•) is a subgroup of the symmetric group SK(a•) on K(a•) letters. We say that
G(a•) is at least alternating if it contains the alternating group AK(a•). Vakil’s Criterion is adapted to
classical special position arguments in enumerative geometry. First, if Z ⊂ X is a subvariety such that
Y = π−1(Z) ⊂W is irreducible and the map Y → Z has degreeK(a•), then Y → Z has a Galois group
which is a subgroup of G(a•). This enables us to restrict the original Schubert problem to one derived
from it through certain standard reductions.

More interesting is when Z ⊂ X is a subvariety such that Y = π−1(Z) decomposes into two smaller
problems, Y = Y1 ∪ Y2, where Yi → Z is a Schubert problem of type a(i)• for i = 1, 2. In this situation,
monodromy of Y → Z gives a subgroup H of the product G(a

(1)
• ) × G(a

(2)
• ) which projects onto each

factor and includes into G(a•). Then purely group-theoretic arguments imply the following.

Vakil’s Criterion. If G(a
(1)
• ) and G(a

(2)
• ) are at least alternating, and either K(a

(1)
• ) 6= K(a

(2)
• ) or

K(a
(1)
• ) = K(a

(2)
• ) = 1; then G(a•) is at least alternating.
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2 Inequalities
A Schubert problem a• = (a1, . . . , am) is reduced if it is valid and if ai+aj ≤ n(a•)−1 for any i < j.
Any Schubert problem is equivalent to a reduced one: If a• is valid, but am−1 + am > n(a•)−1, then

K(a1, . . . , am) = K(a1, . . . , am−2, am−1−1, am−1) ,

as the intersection (1.2) for a• is equal to an intersection for (a1, . . . , am−2, am−1−1, am−1). Iterating
this procedure gives an equivalent reduced Schubert problem.

Schubert [Sch86] observed that if the linear spaces are in a special position, then the Schubert prob-
lem decomposes into two smaller problems, which gives a (familiar) recursion for these Kostka numbers.
Given a reduced Schubert problem a• = (a1, . . . , am), set n := n(a•). Let L1, . . . , Lm be linear sub-
spaces which are in general position in Pn, except that Lm−1 and Lm span a hyperplane Λ := Lm−1, Lm.
If a line ` meets both Lm−1 and Lm, then either it meets Lm−1 ∩ Lm or it lies in their linear span (while
also meeting both Lm−1 and Lm). This implies Schubert’s recursion for Kostka numbers

K(a1, . . . , am) = K(a1, . . . , am−2, am−1+am) + K(a1, . . . , am−2, am−1−1, am−1) . (2.1)

Observe that if a• is reduced, then both smaller problems in (2.1) are valid. An induction shows that if a•
is valid, then K(a•) > 0.

For example, consider K(2, 2, 1, 2, 3). The first tableau in (1.3) has both 4s in its second row (along
with its 5s), while the remaining four tableaux have last column consisting of a 4 on top of a 5. If we
replace the 5s by 4s in the first tableau and erase the last column in the remaining four tableaux, we obtain

1 1 2 2 3
4 4 4 4 4

1 1 2 2
3 4 5 5

1 1 2 3
2 3 5 5

1 1 2 4
2 3 5 5

1 1 3 4
2 2 5 5

which shows thatK(2, 2, 1, 2, 3) = K(2, 2, 1, 5)+K(2, 2, 1, 1, 2). We state our key lemma. A rearrange-
ment of a Schubert problem a1, . . . , am is simply a listing of the integers a1, . . . , am in some order.

Lemma 3 Every reduced Schubert problem has a rearrangement (a1, . . . , am) such that either

K(a1, . . . , am−2, am−1+am) 6= K(a1, . . . , am−2, am−1−1, am−1) , (2.2)

and both are nonzero, or else both are equal to 1.

We use Lemma 3 below to prove Theorem 1, then we devote the rest of the extended abstract to the
proof of this Lemma.

Proof of Theorem 1: We use the notation of Subsection 1.2 and argue by induction on m and n(a•).
Assume that a• is reduced and let Z be the set of those (L1, . . . , Lm) ∈ X such that Lm−1 and Lm span
a hyperplane. Then the geometric arguments given before (2.1) imply that the pullback π−1(Z) → Z
decomposes as the union of two Schubert problems, one for (a1, . . . , am−2, am−1+am) and the other
for (a1, . . . , am−2, am−1−1, am−1). Therefore, Lemma 3 and our induction hypothesis, together with
Vakil’s criterion, imply that G(a•) is at least alternating. 2

While an induction shows that the only reduced Schubert problem where the two terms in (2.2) are both
1 is (1, 1, 1, 1), the inequality of Lemma 3 is not easy to prove. This is in part because there are no closed
formulas for the numbers K(a•), except for the case a1 = · · · = am−1 = 1 (in which case K(a•) is
given by the hook-length formula).
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2.1 Inequality of Lemma 3 in most cases
We give an injection of sets of Young tableaux to establish Lemma 3 when ai 6= aj for some i, j.

Lemma 4 Suppose that (b1, . . . , bm, α, β, γ) is a reduced Schubert problem where α ≤ β ≤ γ with
α < γ. Then

K(b1, . . . , bm, α, β + γ) < K(b1, . . . , bm, γ, β + α) . (2.3)

To see that this implies Lemma 3 in the case when ai 6= aj , for some i, j, we apply Schubert’s recursion
to obtain two different expressions for K(b1, . . . , bm, α, β, γ),

K(b1, . . . , bm, α, β+γ) + K(b1, . . . , bm, α, β−1, γ−1)

= K(b1, . . . , bm, γ, β + α) + K(b1, . . . , bm, γ, β−1, α−1) .

By the inequality (2.3), at least one of these expressions involves unequal terms. Since all four terms are
from valid Schubert problems, none is zero, and this implies Lemma 3 when not all ai are identical. 2

Proof of Lemma 4: We establish the inequality (2.3) via a combinatorial injection

ι : K(b1, . . . , bm, α, β + γ) ↪−→ K(b1, . . . , bm, γ, β + α) ,

which is not surjective.
Let T be a tableau in K(b1, . . . , bm, α, β + γ) and let A be its sub-tableau consisting of the entries

1, . . . ,m. Then the skew tableau T \A has a bloc of (m+1)’s of length a at the end of its first row, and its
second row consists of a bloc of (m+1)’s of length α−a, followed by a bloc of (m+2)’s of length β+γ.
Form the tableau ι(T ) by changing the last row of T \ A to a bloc of (m + 1)’s of length γ−a followed
by a bloc of (m+ 2)’s of length β+α. Since a ≤ α < γ, this map is well-defined.

T =
a

α−a β+γ
A 7−→

a

γ−a β+α
A = ι(T ) .

To see that ι is not surjective, set b• := (b1, . . . , bm, γ−α−1, β−1), which is a valid Schubert problem.
HenceK(b•) 6= 0 andK(b•) 6= ∅. For any T ∈ K(b•), we may add α+1 columns to its end consisting of
a m+1 above a m+2 to obtain a tableau T ′ ∈ K(b1, . . . , bm, γ, β + α). As T ′ has more than α (m+1)s
in its first row, it cannot be in the image of the injection ι, which completes the proof of the lemma. 2

3 Kostka numbers as integrals
Kostka numbers of two-rowed tableaux appear as the coefficients in the decomposition of the tensor
products of irreducible sl2C-modules. Let Va be the irreducible module of sl2C with highest weight a.
Given a Schubert problem a• = (a1, . . . , am), the Kostka number K(a•) is the multiplicity of the trivial
sl2C-module V0 in the tensor product Va1 ⊗ · · · ⊗ Vam .

The representation ring R of sl2C is the free abelian group on the isomorphism classes [Va] of irre-
ducible modules, modulo the relations [Va] + [Vb]− [Va ⊕ Vb]. Setting [Va] · [Vb] := [Va ⊗ Vb] makes R
into a ring. Writing ea := [Va], multiplication by ea is a linear operator Ma on R,

Ma(eb) := ea · eb = eb+a+eb+a−2 + · · ·+ e|b−a| , (3.1)
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by the Clebsch-Gordan formula. In the basis {ea}, the operator Ma is represented by an infinite Toeplitz
matrix with entries 0 and 1 given by the formula (3.1). For instance, we have

M2 =



0 0 1 0 0 0 0
0 1 0 1 0 0 0
1 0 1 0 1 0 0 · · ·
0 1 0 1 0 1 0
0 0 1 0 1 0 1

...
. . .


, M3 =



0 0 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 1 0 1 0 1 0 0 · · ·
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

...
. . .


.

Since R is a commutative ring, the operators {Ma | a ≥ 0} commute. They have an easily described
system of joint eigenvectors and eigenvalues, which may be verified using the identity 2 sinα · sinβ =
cos(α−β)− cos(α+β), and noting that the resulting sums are telescoping.

Proposition 5 For each 0 ≤ θ ≤ π and integer a ≥ 0, set

v(θ) := (sin θ, sin 2θ, . . . , sin(j+1)θ, . . .)> =
∑
j

sin(j+1)θ · ej ,

λa(θ) :=
sin(a+1)θ

sin θ
.

Then v(θ) is an eigenvector of Ma with eigenvalue λa(θ).

These eigenvectors form a complete system of eigenvectors.

Proposition 6 For any a = 0, 1, 2, . . ., we have

ej =
2

π

∫ π

0

sin (j+1)θ v(θ) dθ .

It follows that for any a ≥ 1, we have

Ma(e0) =
2

π

∫ π

0

λa(θ) sin θ v(θ) dθ .

A consequence of Proposition 6 is an integral formula for the Kostka numbers.

Theorem 7 Let a• = (a1, . . . , am) be any valid Schubert problem. Then

K(a•) =
2

π

∫ π

0

(
m∏
i=1

λai(θ)

)
sin2 θ dθ . (3.2)

3.1 Inequality of Lemma 3 in the remaining case
We complete the proof of Theorem 1 by establishing the inequality in Lemma 3 for those Schubert prob-
lems not covered in Lemma 4. For these, every condition is the same, so a• = (a, a, . . . , a) =: am.

If a = 1, then we may use the hook-length formula. The Kostka number K(1n, b), where n + b = 2c
is even, is the number of Young tableaux of shape (c, c− b), which is

K(1n, b) :=
n!(b+1)

(c−b)!(c+1)!
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When m = 2n is even, the inequality of Lemma 3 is that K(12n−2) 6= K(12n−2, 2). We compute

K(12n−2) =
(2n− 2)!(1)

n!(n+ 1)!
and K(12n−2, 2) =

(2n− 2)!(3)

(n− 2)!(n+ 1)!

and so

K(12n−2, 2)/K(12n−2) = 3
n!(n+1)!

(n−2)!(n+1)!
= 3

n−1

n+1
6= 1 ,

when n > 2, but when n = 2 both Kostka numbers are 1, which proves the inequality of Lemma 3 when
each ai = 1.

We now suppose that a• = (am+2) where a > 1 and m · a is even. Table 1 shows that when a = 2
and m ≤ 16, the inequality of Lemma 3 holds. However, the sign of K(2m, 4)−K(2m, 1, 1) changes at

Tab. 1: The inequality (2.2) for the case a• = (2m+2)

m K(2m, 4) K(2m, 1, 1) Difference
0 0 1 −1
1 0 1 −1
2 1 2 −1
3 2 4 −2
4 6 9 −3
5 15 21 −6
6 40 51 −11
7 105 127 −22
8 280 323 −43
9 750 835 −85

10 2025 2188 −163
11 5500 5798 −298
12 15026 15511 −485
13 41262 41835 −573
14 113841 113634 207
15 315420 310572 4848
16 877320 853467 23853

m = 14. In fact, we have the following lemma.

Lemma 8 For all m ≥ 1, we have K(2m, 4) 6= K(2m, 1, 1). If m < 14 then K(2m, 4) < K(2m, 1, 1)
and if m ≥ 14, then K(2m, 4) > K(2m, 1, 1).

The remaining cases a ≥ 3 have a more uniform behavior.

Lemma 9 For a ≥ 3 and for all m ≥ 2 we have

K(am, 2a) < K(am, (a−1)2) . (3.3)

We omit the proof of Lemma 9 from this extended abstract, but include a proof of Lemma 8.
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3.2 Proof of Lemma 8

By the computations in Table 1, we only need to show that K(2m, 4) − K(2m, 1, 1) > 0 for m ≥ 14.
Using (3.2), we have

K(2m, 4)−K(2m, 1, 1) =
2

π

∫ π

0

λ2(θ)m
(
λ4(θ) − λ1(θ)2

)
sin2 θ dθ

=
2

π

∫ π

0

λ2(θ)m
(
sin 5θ sin θ − sin2 2θ

)
dθ

=
2

π

∫ π

0

λ2(θ)m
1

2

(
2 cos 4θ − cos 6θ − 1

)
dθ

=
1

π

∫ π

0

λ2(θ)m
(
2 cos 4θ − cos 6θ − 1

)
dθ .

The integrand f(θ) of the last integral is symmetric about θ = π/2 in that f(θ) = f(π − θ). Thus, it
suffices to prove that if m ≥ 14, then∫ π

2

0

λ2(θ)m(2 cos 4θ − cos 6θ − 1) dθ > 0 . (3.4)

To simplify our notation, set

F (θ) := 2 cos 4θ − cos 6θ − 1 and λ(θ) := λ2(θ) = 1 + 2 cos 2θ .

We display these functions and the integrand in (3.4) for m = 8 in Figure 2.

π
2

π
4

−3

−2

−1

1

2

F (θ)

π
2

π
4

−1

1

2

3

λ(θ)

π
2

π
4

−300

−200

−100

100

λ(θ)8F (θ)

Fig. 2: The functions F (θ), λ(θ), and λ(θ)8F (θ).

In the interval [0, π2 ], the zeroes of F occur at 0, π
12 , and 5π

12 , and λ vanishes at π3 . Both functions are
positive on [0, π12 ], and so∫ π

2

0

λm(θ)F (θ) dθ ≥
∫ π

12

0

λm(θ)F (θ) dθ −
∫ π

2

π
12

∣∣λm(θ)F (θ)
∣∣ dθ . (3.5)
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We show the positivity of (3.4) by showing that the right hand side of (3.5) is positive for m ≥ 14. This
is equivalent to the following inequality,∫ π

12

0

λm(θ)F (θ) dθ >

∫ π
3

π
12

∣∣λm(θ)F (θ)
∣∣ dθ +

∫ π
2

π
3

∣∣λm(θ)F (θ)
∣∣ dθ . (3.6)

The function λ(θ) is monotone decreasing in the interval [0, π2 ], and it vanishes at π3 , so the maximum
of |λ(θ)| on this interval is |λ(π2 )| = 1. Also, |F (θ)| ≤ 4 for all θ ∈ [0, π2 ]. Thus we estimate the last
integral in (3.6), ∫ π

2

π
3

∣∣λm(θ)F (θ)
∣∣ dθ ≤ ∫ π

2

π
3

1 · 4 dθ =
2π

3
.

It is therefore enough to show that∫ π
12

0

λm(θ)F (θ) dθ >

∫ π
3

π
12

∣∣λm(θ)F (θ)
∣∣ dθ +

2π

3
, (3.7)

for m ≥ 14. We establish (3.7) by induction on m ≥ 14. This inequality holds for m = 14, as the left
hand side is ∫ π

12

0

λ14(θ)F (θ) dθ =
69

4
π +

26374

7

√
3 +

1679543168

255255
≈ 13159.9

whereas the right hand side is∫ π
3

π
12

∣∣λ14(θ)F (θ)
∣∣ dθ +

2π

3
=

63052312

17017

√
3− 613

12
π +

1679543168

255255
≈ 12837.1

Suppose now that the inequality (3.7) holds for some m ≥ 14.
As λ( π12 ) = 1 +

√
3 and λ is decreasing in [0, π2 ], we have λ(θ) ≥ 1 +

√
3 for θ ∈ [0, π12 ]. Thus∫ π

12

0

λm+1(θ)F (θ) dθ ≥
∫ π

12

0

(
1+
√

3
)
· λm(θ)F (θ) dθ. (3.8)

Similarly, when θ ∈ [ π12 ,
π
2 ] we have that |λ(θ)| ≤ 1+

√
3, as λ(π2 ) = −1. Therefore,∫ π

3

π
12

∣∣λm+1(θ)F (θ)
∣∣ dθ ≤ ∫ π

3

π
12

(
1+
√

3
)
·
∣∣λm(θ)F (θ)

∣∣ dθ. (3.9)

From the induction hypothesis and equations (3.8) , and (3.9), we obtain∫ π
12

0

λm+1(θ)F (θ) dθ ≥
∫ π

12

0

(
1+
√

3
)
·
∣∣λm(θ)F (θ)

∣∣ dθ
>

∫ π
3

π
12

(
1+
√

3
)
·
∣∣λm(θ)F (θ)

∣∣ dθ + (1+
√

3) · 2π

3

>

∫ π
3

π
12

∣∣λm+1(θ)F (θ)
∣∣ dθ +

2π

3
. (3.10)

This completes the proof of Lemma 8.
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