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Perturbation of central transportation
polytopes of order kn× n

Fu Liu1†

1Department of Mathematics, University of California, One Shields Avenue, Davis, California 95616.

Abstract. We describe a perturbation method that can be used to compute the multivariate generating function (MGF)
of a non-simple polyhedron, and then construct a perturbation that works for any transportation polytope. Applying
this perturbation to the family of central transportation polytopes of order kn × n, we obtain formulas for the MGF
of the polytope. The formulas we obtain are enumerated by combinatorial objects. A special case of the formulas
recovers the results on Birkhoff polytopes given by the author and De Loera and Yoshida. We also recover the formula
for the number of maximum vertices of transportation polytopes of order kn× n.

Résumé. Nous décrivons une méthode de perturbation qui peut être utilisé pour calculer la fonction génératrice
multivariée (MGF) d’un polyèdre non-simple, et ensuite construire une perturbation qui fonctionne pour tout polytope
de transport. Appliquant cette perturbation à la famille des centraux de transport polytopes de l’ordre kn × n, nous
obtenons des formules pour le MGF du polytope. Les formules que nous obtenons sont énumérées par les objets
combinatoires. Un cas spécial des formules récupère les résultats sur des polytopes de Birkhoff donnés par l’auteur et
De Loera et Yoshida. Nous récupérons également la formule pour le nombre de sommets maximum des de transport
polytopes d’ordre kn× n.
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1 Introduction
Let Bn be the convex polytope of n × n doubly-stochastic matrices; that is the set of real nonnegative
matrices with all row and column sums equal to one. The volume and Ehrhart polynomial of Bn are
extremely hard to compute. The volume Vol(Bn) has been computed for n ≤ 10 [BP03] and the Ehrhart
polynomial ofBn has only been computed for n ≤ 9. In [LLY09], the authors find a combinatorial expres-
sion for the multivariate generating function (MGF) of Bn, from which they obtain the first combinatorial
formulas for the volume and Ehrhart polynomial ofBn. The majority work in [LLY09] is to find the MGF
of Bn, from which the authors obtain formulas for the volume and Ehrhart polynomial of Bn by residue
calculation.

The Birkhoff polytope belongs to the family of transportation polytopes: Given r = (r1, . . . , rm) and
c = (c1, . . . , cn) two vectors of positive entries whose coordinates sum to a fixed integer, the transporta-
tion polytope determined by r and c, denoted by T (r, c), is the set of all m × n nonnegative matrices
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in which row i has sum ri and column j has sum cj . We call T (r, c) a transportation polytope of order
m × n. As the simplest generalization of Birkhoff polytopes, it is natural to study the same questions of
volume and Ehrhart polynomial for the family of transportation polytopes. Since the techniques used in
[LLY09] to obtain volumes and Ehrhart polynomials from MGFs can be applied to the MGF of any poly-
tope, we will focus on finding MGFs of transportation polytopes. The problem is relatively easy when a
transportation polytope is non-degenerate (see Section 3 for the definition), in which case one can apply
Corollary 3.7 to find its MGF. However, if a transportation polytope is degenerate, it is usually non-simple,
in which case one often has to triangulate the non-simple feasible cones. One of the main results of this
paper is a perturbation method that can be used to find the MGFs of degenerate transportation polytopes.

Following a suggestion of Bernd Sturmfels through personal communication, we consider a special
family of transportation polytopes that contains the Birkhoff polytope: the family of central transportation
polytopes. A classical central transportation polytope of order m × n is a transportation polytope whose
column sums are all m and row sums are all n. However, strictly speaking Birkhoff polytopes do not
belong to this family because the column sums and row sums are all 1 for Bn. Therefore, we generalize
the definition of the classical central transportation polytopes a bit to include Birkhoff polytopes. A
transportation polytope T (r, c) is central of order m × n if all the column sums are the same and all
the row sums are the same. The family of central transportation polytopes is an interesting subset of
transportation polytopes. For example, when m and n are coprime, the central transportation polytope of
order m×n achieves the maximum possible number of vertices among all the transportation polytopes of
order m×n [Bol72]. In [LLY09], the combinatorial data used to enumerate the MGF of Bn is the family
of rooted trees. Sturmfels asked whether we can give a nice description in terms of trees for the MGF of
any central transportation polytope. We answer his question for central transportation polytopes of order
kn × n by using the perturbation method we develop. Note that the Birkhoff polytope Bn is a special
case of this family of central transportation poltyopes when k = 1. Our result recovers the formulas for
the MGF of Bn given in [LLY09].

This paper is organized as follows. In Section 2, we give background on results related to multivariate
generating functions. In Section 3, we review results on properties of transportation polytopes. In Section
4, we introduce our perturbation method, and describe a perturbation that works for every transportation
polytope. In Section 5, we apply the perturbation method to central transportation polytopes of order
kn× n and give combinatorial formulas for the MGFs of these polytopes.

2 Background
2.1 Ehrhart polynomials and multivariate generating functions
A polyhedron is the set of points defined by a system of linear inequalities Ax ≤ b, where A is an N ×D
matrix and b is a D-vector. A polytope is a bounded polyhedron. We assume familiarity with basic
definitions of polytopes as presented in [Zie98]. For any polyhedron P, we use Vert(P ) to denote the
vertex set of P. An integral polyhedron is a polyhedron whose vertices are all lattice points, i.e., points
with integer coordinates.

For any polytope P ⊂ RD, and a nonnegative integer t, we define

i(P, t) = #(tP ∩ ZD)

to be the number of lattice points inside tP = {tx | x ∈ P}, the tth dilation of P. It is well-known
that given a d-dimensional integral polytope P, the function i(P, t) is a polynomial in t of degree d with
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leading coefficient being the normalized volume of P. Since this was first discovered by Ehrhart [Ehr62],
we often refer to i(P, t) as the Ehrhart polynomial of P.Because the leading coefficient of i(P, t) gives the
volume of P, obtaining the Ehrhart polynomials of polytopes is one way people use to compute volumes
of polytopes. One can find the Ehrhart polynomial i(P, t) of P using the multivariate generating function.

Definition 2.1 Let P ⊂ RD be a polyhedron. The multivariate generating function (or MGF) of P is:

f(P, z) =
∑

α∈P∩ZD
zα,

where zα =
∏D
i=1 z

αi
i .

Note that when P is a polytope, we obtain i(P, t) by plugging zi = 1 for all i in the MGF f(tP, z) of tP.

2.2 Cones of polyhedra and Brion’s theorem
One benefit of computing the MGF of a polyhedron is that the problem can be reduced to computing
the MGF of the tangent/feasible cones of the given polyhedron by applying Brion’s theorem. Let’s first
review some related definitions and results.

Definition 2.2 Suppose P is a polyhedron and v ∈ P. The tangent cone of P at v is

tcone(P, v) = {v + u : v + δu ∈ P for all sufficiently small δ > 0}.

The feasible cone of P at v is

fcone(P, v) = {u : v + δu ∈ P for all sufficiently small δ > 0}.

For a set S ⊆ RD, the indicator function [S] : RD → R of S is defined as

[S](x) =

{
1 if x ∈ S,
0 if x 6∈ S.

We assume the readers are familiar with the definition of algebra of polyhedra/polytopes and valuation
presented in [BP99]. The following lemma gives the two important equations of indicator functions of
cones of polyhedra.

Lemma 2.3 (Theorems 6.4 and 6.6 in [Bar08]) Suppose P is a non-empty polyhedron. Then

[P ] ≡
∑

v∈Vert(P )

[tcone(P, v)] modulo polyhedra with lines; (1)

[0] ≡
∑

v∈Vert(P )

[fcone(P, v)] modulo polyhedra with lines. (2)

It turns out that the multivariate generating functions define a valuation on the algebra of polyhedra.

Theorem 2.4 (Theorem 3.1 and its proof in [BP99]) There is a map F which, to each rational poly-
hedron P ⊂ RD, associates a unique rational function f(P, z) in D complex variables z ∈ CD,
z = (z1, . . . , zD), such that the following properties are satisfied:



974 Fu Liu

(i) The map F is a valuation.

(ii) If P is pointed, there exists a nonempty open subset Up ⊂ CD, such that
∑
α∈P∩ZD zα converges

absolutely to f(P, z) for all z ∈ UP .

(iii) If P is pointed, then f(P, z) satisfies

f(P, z) =
∑

α∈P∩ZD
zα

for any z ∈ CD where the series converges absolutely.

(iv) If P is not pointed, i.e., P contains a line, then f(P, z) = 0.

Using this valuation property and Equation (1), we immediately have Brion’s theorem:

Theorem 2.5 (Brion, 1988; Lawrence, 1991) Let P be a rational polyhedron. Then,

f(P, z) =
∑

v∈Vert(P )

f(tcone(P, v), z).

Corollary 2.6 If P an integral polyhedron, then

f(P, z) =
∑

v∈Vert(P )

zvf(fcone(P, v), z). (3)

Hence, for any positive integer t,

f(tP, z) =
∑

v∈Vert(P )

ztvf(fcone(P, v), z). (4)

One see that to get the MGF of the tth dilation of an integral polyhedron, we only need to replace v
in (3) with tv. Therefore, as long as we know the formula for the MGF f(P, z) of an integral polytope
P (assuming the formula is of form (3), we can easily obtain the formulas for the MGFs of its dilations.
Then one can use residue calculation showed in [LLY09] to find the volume and Ehrhart polynomial of
P. Hence, the problem of finding formulas for the volume and Ehrhart polynomial of an integral polytope
is reduced to finding the formula for its MGF. However, by Corollary 2.6, it suffices to find the formulas
for the MGF of the feasible cone of each vertex of P.

2.3 MGFs of unimodular cones
In general, one cannot calculate the MGF of a cone just by reading its generating rays. If a cone is not
simple, i.e., the number of rays that generate the cone is larger than the dimension of the cone, one usually
has to triangulate the cone into simple cones first. Even if a cone is simple, it is usually impossible to
calculate its MGF directly from its generating rays. However, it can be done when the cone is unimodular.
A pointed coneK in RD generated by the rays {ri}1≤i≤d is unimodular if ri’s form a Z-basis of the lattice
ZD ∩ span(K).
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Lemma 2.7 (Lemma 4.1 in [BP99]) Suppose K is a unimodular cone generated by the rays {ri}1≤i≤d.
Then

f(K, z) =

d∏
i=1

1

1− zri
.

Because of computing the MGF of a unimodular cone is easy, it is easy to computethe MGF of an
integral polyhedron/polytope whose feasible cones are all unimodular. Therefore, we give the following
definition.

Definition 2.8 A polytope P ⊂ RD is totally unimodular if every vertex of P is a lattice point and every
feasible cone of P is unimodular.

Corollary 2.9 Suppose P ⊂ RD is a totally unimodular polytope. Then

f(P, z) =
∑

v∈Vert(P )

zv
d∏
i=1

1

1− zrv,i
,

where rv,1, . . . , rv,d are the generating rays of the vertex v.

Proof: It follows from Corollary 2.6 and Lemma 2.7. 2

3 Properties of Transportation Polytopes
In this section, we will review properties of transportation polytopes. Most of them can be found in
[YKK84].

Transportation polytopes have natural connection to the complete bipartite graphs. Let Km,n be the
complete bipartite graph with m vertices u1, . . . , um on the left and n vertices w1, . . . , wn on the right.
In this paper, we often refer to ui’s as the left vertices and wj’s as the right vertices. Denote by ei,j the
edge in Km,n connecting ui and the wj . For any subgraph G of Km,n, we denote by E(G) the edge set
of G.

Let Am,n be the incidence (m + n) ×mn matrix of Km,n. (Then the column Ai,jm,n of Am,n corre-
sponding to the edge ei,j is the (m + n)-vector where the ith and (m + j)th component are 1 and zero
elsewhere.) Then the transportation polytope T (r, c) can be described by

Am,nx =

(
rT

cT

)
, x ≥ 0.

We often call matrix Am,n the constraint matrix of the transportation polytopes of order m× n.
A vertex of a transportation polytope of orderm×n is non-degenerate if it has exactlym+n−1 entries

that are positive; otherwise it is degenerate. A transportation polytope is non-degenerate if all its vertices
are non-degenerate; otherwise it is degenerate. It’s easy to see that every non-degenerate transportation
polytope is simple. It is known that Am,n is a totally unimodular matrix, i.e., every minor of Am,n is 0,
1, or −1. Therefore, if a transportation polytope is non-degenerate or simple, it is a totally unimodular
polytope. Then we can apply Corollary 2.9 to find its MGF.

There is an easy way to identify non-degenerate transportation polytopes.
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Theorem 3.1 (Theorem 1.2 of Chapter 6 in [YKK84]) The transportation polytope T (r, c) is non-degenerate
if and only if the only nonempty index subsets I ⊆ [m] and J ⊆ [n] satisfying

∑
i∈I ri =

∑
j∈J cj are

I = [m] and J = [n].

To express the MGF of a totally unimodular polytope, we need to know how to describe its vertices,
and the generating rays of each feasible cone.

3.1 Vertices of transportation polytopes
The vertices of a transportation polytope can be characterized with the auxiliary graphs.

Definition 3.2 For any M ∈ T (r, c), we define supp(M) to be the set of indices (i, j) such that M(i, j)
is positive.

The auxiliary graph of M , denoted by aux(M), is the induced subgraph of Km,n with edge set
{ei,j | (i, j) ∈ supp(M)}.

We denote by vertAux(r, c) the set of all the auxiliary graphs obtained from vertices of T (r, c).

We have that a pointM ∈ T (r, c) is a vertex of T (r, c) if and only if the column vectors {Ai,jm,n | (i, j) ∈
supp(M)} are linearly independent. However, one can show that given any index set ind ⊂ [m] × [n],
the column vectors {Ai,jm,n |(i, j) ∈ ind} are linearly independent if and only if the induced subgraph of
Km,n with edge set {ei,j | (i, j) ∈ ind} is a forest. Therefore, we have the following theorem, which
follows from Theorem 2.2 of Chapter 6 in [YKK84].

Theorem 3.3 Let M ∈ T (r, c). Then M is a vertex of T (r, c) if and only if aux(M) is a spanning forest
of Km,n. Furthermore, aux induces a bijection between the vertex set of T (r, c) and the set of spanning
forests of Km,n that are auxiliary graphs of some points in T (r, c).

In particular, if T (r, c) is non-degenerate, M is a vertex of T (r, c) if and only if aux(M) is a spanning
tree ofKm,n. Thus, aux induces a bijection between the vertex set of T (r, c) and the set of spanning trees
of Km,n that are auxiliary graphs of some points in T (r, c).

3.2 Feasible cones of transportation polytopes
Section 4.1 of Chapter 6 in [YKK84] gives a complete description of the generating rays of feasible
cones of transportation polytopes, as well as a characterization of when two vertices are adjacent in a
transportation polytope. We summarize the results as two lemmas below (Lemma 3.5 and Lemma 3.6).
We begin with a preliminary definition.

Definition 3.4 Let T be a spanning forest of Km,n and e 6∈ E(T ). Suppose T ∪ e creates a cycle. Note
this cycle is unique if it exists. The edge e must be contained in the cycle. Suppose this cycle is:

e = ei1,j1 , ei2,j1 , ei2,j2 , . . . , eis,js , ei1,js .

We define cycle(T, e) to be the m× n matrix whose entries are defined as

cycle(T, e)(i, j) =


1, if (i, j) ∈ {(i1, j1), (i2, j2), . . . , (is, js)};
−1, if (i, j) ∈ {(i2, j1), (i3, j2), . . . , (i1, js)};
0, otherwise.

(5)
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Lemma 3.5 Let M be a vertex in T (r, c), and T = aux(M) the auxiliary graph of M. (By Theorem 3.3,
T is a spanning forest of Km,n.) Then

{cycle(T, e) | T ∪ e creates a cycle} (6)

is the set of rays that generates the feasible cone of T (r, c) at the vertex M.
In particular, if T (r, c) is non-degenerate. Then the generating set (6) can be rewritten as

{cycle(T, e) | e 6∈ E(T )}. (7)

Lemma 3.6 Let M and N be two distinct vertices in T (r, c). Then M and N are adjacent if and only if
the union of aux(M) and aux(N) has a unique cycle.

Moreover, if M and N are two adjacent vertices, the unique cycle in the union of aux(M) and aux(N)
is the same as cycle(aux(M), e), for some e 6∈ E(aux(M)). Thus, the unique cycle determines the ray
from M to N as described in (5).

It turns out that the transportation polytope T (r, c) is integral if r and c are both integer vectors. Hence,
the following corollary follows immediately from Corollary 2.9 and Lemma 3.5.

Corollary 3.7 Suppose r and c are integer vectors and T (r, c) a non-degenerate transportation polytope.
Then the multivariate generating function of T (r, c) is

f(T (r, c), z) =
∑

M∈Vert(T (r,c))

zM
∏

e 6∈E(aux(M))

1

1− zcycle(aux(M),e)
. (8)

We also have the following corollary to Lemma 3.6.

Corollary 3.8 Suppose T (r, c) and T (r′, c′) are two transportation polytopes of order m× n satisfying

vertAux(r, c) = vertAux(r′, c′).

Let T ∈ vertAux(r, c), and MT and M ′T be the vertices of T (r, c) and T (r′, c′), respectively, corre-
sponding to T . Then

fcone(T (r, c),MT ) = fcone(T (r′, c′),M ′T ).

4 A perturbation method
When calculating the MGF of a polytope/polyhedron which has non-simple feasible cones, we usually
triangulate those non-simple feasible cones into simple cones, and then apply various algorithms [Bar08,
Chapter 16] for computing MGFs of simple cones to find the final formula. In this section, we introduce
a perturbation method that can be used to replace the triangulation step in the above procedure. We
then apply this method to transportation polytopes. Because the constraint matrix Am,n of transportation
polytopes is totally unimodular, the simple cones we obtain from the perturbation are all unimodular.
Hence, instead of using other algorithms, it suffices to use Corollary 2.7 to obtain the MGFs.

Lemma 4.1 Let P be a non-empty rational polyhedron defined by Ax ≤ b. Let {b1,b2, . . . } be a
sequence of vectors that converges to b, and ` a fixed integer. Suppose each bi defines a non-empty
polyhedron Pi = {x |Ax ≤ bi} with exactly ` vertices: wi,1, . . . , wi,` satisfying the following conditions:
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a) The feasible cone of Pi at wi,j does not depend on i, i.e., there exists a coneKj for each 1 ≤ j ≤ `,
such that

fcone(Pi, wi,j) = Kj ,∀i ∈ N.

b) For each 1 ≤ j ≤ `, the sequence of vertices {w1,j , w2,j , . . . } converges to some vertex of P.

For each v ∈ Vert(P ), let Jv be the set of j’s where {w1,j , w2,j , . . . } converges to v. Then

[fcone(P, v)] ≡
∑
j∈Jv

[Kj ] modulo polyhedra with lines.

Therefore,
f(fcone(P, v), z) =

∑
j∈Jv

f(Kj , z).

Proof: Omit. 2

It is clear that we have the following lemma.

Lemma 4.2 Lemma 4.1 still holds if we replace the sequence {b1,b2, . . . } with a continuous function
b(t) on some interval (c, 0) or (0, d) which converges to b as t goes to 0.

Corollary 4.3 We assume the same conditions as Lemma 4.1 or Lemma 4.2, and assume further that P
is integral. Then

f(P, z) =
∑

v∈Vert(P )

zv
∑
j∈Jv

f(Kj , z) =
∑̀
j=1

zlimi→∞ wi,jf(Kj , z).

A universal perturbation
We will describe a perturbation that works for any transportation polytope.

Lemma 4.4 Suppose r = (r1, r2, . . . , rm) and c = (c1, c2, . . . , cn) are two rational vectors. We define

r(t) = (r1 − t, . . . , rm − t), c(t) = (c1, . . . , cn−1, cn −mt), 0 ≤ t < 1

Km
,

where K is the greatest common divisor of the denominators of r and c. Then we have the following:

(i) For any t ∈ (0, 1
Km ), the transportation polytope T (r(t), c(t)) is non-degenerate.

(ii) For any t ∈ (0, 1
Km ), the set vertAux(T (r(t), c(t))) is in dependent of t.

(iii) {T (r(t), c(t)) | t ∈ (0, 1
Km )} is a family of transportation polytopes satisfying the condition of

Lemma 4.2.

We give the following two definitions before the proof of the above lemma.

Definition 4.5 Let x be a real number. The floor or integer part of x, denoted by bxc is the biggest integer
that is not greater than x, and the fractional part of x, denoted by frac(x), is x − bxc. The ceiling of x,
denoted by dxe is the smallest integer that is not smaller than x, and the co-fractional part of x, denoted
by cofrac(x), is dxe − x.
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Definition 4.6 Let G be a subgraph of the complete bipartite graph Km,n.
Let dj be the number of edges inG connecting towj , the jth right vertex ofKm,n.We call (d1, d2, . . . , dn)

the right degree sequence of G and write δ(G) = (d1, . . . , dn).
We also define

l(G) := the number of ui’s in G, i.e., the number of left vertices in G.

For convenience, for any spanning tree T of Km,n, we consider T as a rooted tree rooted at wn, the
nth right vertex. For any vertex v of T, we denote by Tv the subtree of T rooted at v.

Proof of Lemma 4.4: Because T (Kr(t),Kc(t)) is a dilation of T (r(t), c(t)), the polytopes T (Kr(t),Kc(t))
and T (r(t), c(t)) have exactly the same combinatorial structures. Therefore, without loss of generality,
we can assume that r and c are integer vectors, and K = 1.

(i) Suppose ∅ 6= I ⊂ [m] and ∅ 6= J ⊂ [n] are two index sets satisfying∑
i∈I

r(t)i =
∑
j∈J

c(t)j . (9)

The co-fractional part of the left hand side of (9) is |I|t 6= 0. Hence, n ∈ J, because otherwise
the right hand side of (9) is an integer. Then the co-fractional part of the right hand side of (9) is
mt. Therefore, |I| = m and I = [m]. This implies that J = [n]. Therefore, by Theorem 3.1, the
polytope T (r(t), c(t)) is non-degenerate.

(ii) Let t0 ∈ (0, 1
Km = 1

m ), and let T ∈ vertAux(T (r(t0), c(t0))). By Theorem 3.3, T is a spanning
tree of Km,n. It suffices to show that for any t ∈ (0, 1

m ), the tree T is the auxiliary graph of a vertex
of T (r(t), c(t)). Let MT (t0) be the vertex of T (r(t0), c(t0)) corresponding to the tree T.

We claim that

cofrac(MT (t0)(i, j)) = l(Tui) t0, if wj is the parent of ui in T ;
frac(MT (t0)(i, j)) = l(Twj ) t0, if ui is the parent of wj in T ;

and the matrix MT whose entries defined by the following equation is a vertex of T (r, c).

MT (i, j) =


dMT (t0)(i, j)e, if wj is the parent of ui in T ;
bMT (t0)(i, j)c, if ui is the parent of wj in T ;
0, otherwise.

(10)

The claim can be proved by induction on hook lengths of vertices of T. (Recall the hook length of a
vertex v in a rooted tree is the number of descendants of v.) We define the matrixMT (t) as follows:

MT (t)(i, j) =


dMT (t0)(i, j)e − l(Tui) t, if wj is the parent of ui in T ;
bMT (t0)(i, j)c+ l(Twj ) t, if ui is the parent of wj in T ;
0, otherwise.

(11)

It is clear that MT (t) is a vertex of T (r(t), c(t)) with auxiliary graph T.
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(iii) It follows from (ii) and Corollary 3.8.

2

Corollary 4.7 Assume the conditions of Lemma 4.4 and further assume that r and c are integer vectors.
Let t0 ∈ (0, 1

m ). Then the multivariate generating function of T (r, c) is

f(T (r, c), z) =
∑

T∈vertAux(r(t0),c(t0))

zMT

∏
e 6∈E(T )

1

1− zcycle(T,e)
, (12)

where MT is defined as in (10).
Also, for any vertex M of T (r, c), let

PertAux(M) := {T ∈ vertAux(r(t0), c(t0)) | aux(M) is a subgraph of T}. (13)

Then

[fcone(T (r, c),M)] ≡
∑

T∈PertAux(M)

[fcone(T (r(t0), c(t0)),MT (t0))] (14)

modulo polyhedra with lines.

Hence,

f(fcone(T (r, c),M), z) =
∑

T∈PertAux(M)

∏
e 6∈E(T )

1

1− zcycle(T,e)
. (15)

Proof: Omit. 2

We finish this section by a remark.

Remark 4.8 Using Theorem 7.1 of Chapter 6 in [YKK84], we can show that when T (r, c) is a central
transportation polytope, the transportation polytopes T (r(t), c(t)) we defined in Lemma 4.4 achieve the
maximum number of vertices among all the transportation polytopes of order m× n.

5 Central transportation polytope of order kn× n

In this section, We always assume that T (r, c) is a central transportation polytope of order m× n, where
m = kn, and r = (a, . . . , a) and c = (b, . . . , b) are two integer vectors. We will apply the perturbation
defined in the last section to T (r, c), and show that {T (r(t), c(t)) | t ∈ (0, 1

m )} is a family of central
transportation polytopes satisfying the condition of Lemma 4.2 so that we are able to use Lemma 4.2 to
find the MGF of the original (non-simple) transportation polytope.

Define

r(t) = (a− t, . . . , a− t), c(t) = (b, . . . , b, b−mt), 0 ≤ t < 1

m
,
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Theorem 5.1 The set of vertices of T (r(t), c(t)) is in bijection with the set of the spanning trees T of
Km,n satisfying δ(T ) = (k + 1, . . . , k + 1, k). Furthermore, for any spanning tree T of Km,n with
δ(T ) = (k + 1, . . . , k + 1, k), the corresponding vertex of T (r, c) is the matrix MT (t) whose entries are
defined as:

MT (t)(i, j) =


a− l(Tui) t, if wj is the parent of ui in T ;
l(Twj ) t, if ui is the parent of wj in T ;
0, otherwise.

(16)

Proof: Omit. 2

It is clear that the vertices of T (r, c) are the {0, a}-matrices in which each row has exact one entry of a
and each column has exactly k entries of a. These matrices corresponding to “k to 1” matching from the
m = kn left vertices to the n right vertices. This motivates the following definition.

Definition 5.2 We call an kn × n matrix M a k-to-1 matching matrix if M is a {0, 1}-matrix such that
there is exactly one 1 in each row and exactly k 1’s in each column. We denote byMatk,n the set of all
the kn× n k-to-1 matching matrices.

We also call the auxiliary graph of each k-to-1 matching matrix a k-to-1 matching graph.

With this definition, the vertices of T (r, c) is the set

Vert(T (r, c)) = {aM |M ∈Matk,n} =: aMatk,n.

We now apply Equation (15) to get the MGF of the feasible cone of T (r, c) at each vertex and then the
MGF of T (r, c).

Corollary 5.3 Suppose M ∈Matk,n. Then the MGF of the feasible cone of T (r, c) at aM is

f(fcone(T (r, c), aM), z) =
∑

T∈PertAux(aM)

∏
e 6∈E(T )

1

1− zcycle(T,e)
.

Thus, the MGF of T (r, c) is

f(T (r, c), z) =
∑

M∈Matk,n

zaM
∑

T∈PertAux(aM)

∏
e 6∈E(T )

1

1− zcycle(T,e)
.

In both equations,

PertAux(aM) = { all the spanning trees of Kkn,n with right degree sequence

(k + 1, . . . , k + 1, k) that contains aux(M) }.

The set PertAux(M) defined in Corollary 5.3 can be described by basic combinatorial objects. Denote
byRn the set of all the rooted trees on {w1, w2, . . . , wn} rooted at wn.

Lemma 5.4 Let v be a vertex of T (r, c), i.e., v = aM for some M ∈ Matk,n. There is a bijection
between PertAux(v) and the setRn × [k]n−1.

Therefore, the cardinality of PertAux(v) is nn−2kn−1.
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Proof: Given a rooted tree R ∈ Rn and f = (f1, . . . , fn−1) ∈ [k]n−1, we can construct a tree T ∈
PertAux(v) from (R, f) in the following way: We start with the k-to-1 matching graph aux(M). If wj0
is the parent of wj in R, we add an edge connecting wj and the (fj)th left vertex that is matched to wj0
in aux(M). After adding these n − 1 edges, one can check that we actually obtain a spanning tree T of
Kkn,n rooted at wn and each right vertex wj has exactly k children. We can ignore the root. Then T is in
PertAux(v).

One sees that the above procedure can be reversed. Thus, we give a bijection between PertAux(v) and
Rn × [k]n−1.

The cardinality result follows from the famous result that the |Rn| = nn−2. 2

When k = 1 and a = 1, the setMk,n is actually the symmetric group Sn, and the polytope T (r, c) is the
Birkhoff polytope Bn. Therefore, for any σ ∈ Sn, we have a bijection betweenRn and PertAux(σ). We
call this map Φσ. Then we obtain the following theorem for the Birkhoff polytopes, which is equivalent
to Theorem 1.1 and Corollary 4.1 in [LLY09].

Theorem 5.5 Suppose σ ∈ Sn is a vertex of the Birkhoff polytope Bn. Then the MGF of the feasible
cone of Bn at σ is

f(fcone(Bn, σ), z) =
∑

T∈Φσ(Rn)

∏
e 6∈E(T )

1

1− zcycle(T,e)
.

Thus, the MGF of Bn is

f(Bn, z) =
∑
σ∈Sn

zσ
∑

T∈Φσ(Rn)

∏
e 6∈E(T )

1

1− zcycle(T,e)
.

Lemma 5.4 also induces a bijection betweenMatk,n ×Rn × [k]n−1 and vertAux(r(t), c(t)) (for any
t ∈ (0, 1

m )). Therefore, we have the following Corollary.

Corollary 5.6 The number of vertices of T (r(t), c(t)) is
(kn)!

(k!)n
nn−2kn−1.

By Remark 4.8, we obtain another known result.

Corollary 5.7 (Corollary 8.6 of Chapter 6 in [YKK84]) The maximum number of vertices among all

the transportation polytopes of order kn× n is
(kn)!

(k!)n
nn−2kn−1.
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