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Abstract. We introduce a “lifting” construction for generalized permutohedra, which turns an n-dimensional gen-
eralized permutahedron into an (n + 1)-dimensional one. We prove that this construction gives rise to Stasheff’s
multiplihedron from homotopy theory, and to the more general “nestomultiplihedra,” answering two questions of
Devadoss and Forcey.

We construct a subdivision of any lifted generalized permutahedron whose pieces are indexed by compositions. The
volume of each piece is given by a polynomial whose combinatorial properties we investigate. We show how this
“composition polynomial” arises naturally in the polynomial interpolation of an exponential function. We prove that
its coefficients are positive integers, and conjecture that they are unimodal.

Résumé. Nous introduisons une construction de “lifting” (redressement) pour permutaèdres généralisés, qui trans-
forme un permutaèdre généralisé de dimension n en un de dimension n+1. Nous démontrons que cette construction
conduit au multiplièdre de Stasheff à partir de la théorie d’homotopie, et aux “nestomultiplièdres,” ce qui répond à
deux questions de Devadoss et Forcey.

Nous construisons une subdivision de n’importe quel permutaèdre généralisé dont les pièces sont indexées par com-
positions. La volume de chaque pièce est donnée par un polynôme dont nous recherchons les propriétés combi-
natoires. Nous montrons comment ce “polynôme de composition” surgit naturellement dans l’interpolation d’une
fonction exponentiel. Nous démontrons que ses coefficients sont strictement positifs, et nous conjecturons qu’ils sont
unimodaux.

Keywords: Polytope, permutohedron, associahedron, multiplihedron, nestohedron, subdivision, composition poly-
nomial, polynomial interpolation

1 Introduction
Generalized permutahedra are the polytopes obtained from the permutahedron by changing the edge
lengths while preserving the edge directions, possibly identifying vertices along the way. These poly-
topes, closely related to polymatroids and recently re-introduced by Postnikov [15] have been the sub-
ject of great attention due their very rich combinatorial structure. Examples include several remarkable
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polytopes which naturally appear in homotopy theory, in geometric group theory, and in various mod-
uli spaces: permutahedra, matroid polytopes [2], Pitman-Stanley polytopes [14], Stasheff’s associahedra
[23], Carr and Devadoss’s graph associahedra [4], Stasheff’s multiplihedra [23], Devadoss and Forcey’s
multiplihedra [6], and Feichtner and Sturmfels’s and Postnikov’s nestohedra [15, 8].

We begin in Section 2 by introducing a “lifting” construction which takes a generalized permutahedron
P in Rn into a generalized permutahedron P (q) in Rn+1, where 0 ≤ q ≤ 1. We show that the lifting
construction connects many important generalized permutahedra:

generalized permutahedron P lifting P (q)

permutahedron Pn permutahedron Pn+1

associahedron Kn multiplihedron Jn
graph associahedron KG graph multiplihedron JG
nestohedron KB nestomultiplihedron JB
matroid polytope PM independent set polytope IM (q = 0)

We provide geometric realizations of these polytopes and concrete descriptions of their face lattices.
In particular, in Section 3 we answer two questions of Devadoss and Forcey: we find the Minkowski
decomposition of the graph multiplihedra JG into simplices, and we construct the nestomultiplihedron
JB.

In Section 4 we construct a subdivision of any lifted generalized permutahedron P (q) whose pieces are
indexed by compositions c. The volume of each piece is essentially given by a polynomial in q, which we
call the composition polynomial gc(q).

Section 5 is devoted to the combinatorial properties of the composition polynomial gc(q) of a com-
position c = (c1, . . . , ck). We prove that gc(q) arises naturally in the polynomial interpolation of an
exponential function. We prove that gc(q) = (1− q)kfc(q) where fc(q) is a polynomial with fc(1) 6= 0.
We prove that the coefficients of fc(q) are positive integers, and conjecture that they are unimodal as well.

In Section 6 we establish a connection between composition polynomials and Stanley’s order polytopes.
We use this to show that gc(q) is the generating function for counting linear extensions of a poset Pc.

2 Lifting a generalized permutahedron.
The permutahedron Pn is the polytope in Rn whose n! vertices are the permutations of the vector
(1, 2, . . . , n). A generalized permutahedron is a deformation of the permutahedron, obtained by chang-
ing the lengths of the edges of Pn in such a way that all edge directions and orientations are preserved,
while possibly identifying vertices along the way. [17]. Postnikov showed [15] that every generalized
permutahedron can be written in the form:

Pn({zI}) =

{
(t1, . . . , tn) ∈ Rn :

n∑
i=1

ti = z[n],
∑
i∈I

ti ≥ zI for all I ⊆ [n]

}
,

where zI is a real number for each I ⊆ [n] := {1, . . . , n}, and z∅ = 0.
We now introduce lifting, a procedure which converts a generalized permutahedron in Rn into a lifted

generalized permutahedron in Rn+1.
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Definition 2.1 Given a generalized permutahedron P = Pn({zI}) in Rn and a number 0 ≤ q ≤ 1,
define the q-lifting of P to be the polytope P (q) given by the inequalities

n+1∑
i=1

ti = z[n],
∑
i∈I

ti ≥ qzI for I ⊆ [n],
∑

i∈I∪{n+1}

ti ≥ zI for I ⊆ [n].

In other words, P (q) := Pn+1({z′I}) where z′J = qzJ and z′J∪{n+1} = zJ for J ⊆ [n]. The polytope
P (q) is called a lifted generalized permutahedron.

We will let the lifting of P refer to any q-lifting with 0 < q < 1. We will see in Corollary 2.4 that all
such q-liftings are combinatorially isomorphic.

Proposition 2.2 If P is a generalized permutahedron, its q-lifting P (q) is a generalized permutahedron.

Notice that the 1-lifting P (1) is the natural embedding of P in the hyperplane xn+1 = 0 of Rn+1.
The 0-lifting P (0) = Pn+1({z′I}) is the generalized permutahedron in Rn+1 defined by z′J = 0 and
z′J∪{n+1} = z′J for all J ⊆ [n]. These are shown in Figure 1.

Recall that the Minkowski sum of two polytopes P andQ in Rn is defined to be P +Q := {p+q : p ∈
P, q ∈ Q}. Since the hyperplane parameters {zI} of generalized permutahedra are additive with respect
to Minkowski sums [2, 15], we have:

Proposition 2.3 For 0 ≤ q ≤ 1, the q-lifting of any generalized permutahedron P satisfies that P (q) =
qP (1) + (1− q)P (0).

Corollary 2.4 All q-liftings of P with 0 < q < 1 are combinatorially isomorphic.

q + (1-q)P(1) P(0) P(q)=

Fig. 1: The q-lifting of a generalized permutahedron Pn({yI}).

For each I ⊆ [n], consider the simplex ∆I = conv{ei : i ∈ I}. Any generalized permutahedron P =
Pn({zI}) can be written uniquely as a signed Minkowski sum of simplices in the form P = Pn({yI}) :=∑
yI∆I for yI ∈ R. (i) [2, 15] The z-parameters and the y-parameters of P are linearly related by the

equations
zI =

∑
J⊆I

yJ , for all I ⊆ [n].

Proposition 2.5 The q-lifting of the generalized permutahedron P =
∑
I yI∆I is

P (q) = q
∑
I

yI∆I + (1− q)
∑
I

yI∆I∪{n+1}.

(i) An equation like P −Q = R should be interpreted as P = Q+R.
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From these observations it follows that the face of P (q) maximized in the direction (1, . . . , 1, 0) is a
copy of P , while the face maximized in the opposite direction is a copy of P scaled by q. The vertices of
P (q) will come from vertices of P , with a factor of q applied to certain specific coordinates. We describe
them in Section 4.

3 Nestohedra and nestomultiplihedra.
In his work on homotopy associativity for A∞ spaces, Stasheff [23] defined the multiplihedron Jn, a cell
complex which has since been realized in different geometric contexts by Fukaya, Oh, Ohta, and Ono
[10], by Mau and Woodward [13], and others. It was first realized as a polytope by Forcey [7].

More generally, Devadoss and Forcey [6] defined, for each graph G, the graph multiplihedron JG.
[3, 4] When G has no edges, they gave a description of JG as a Minkowski sum. They asked for a
Minkowski sum description of JG for arbitrary G.

In a different direction, Postnikov [15] defined the nestohedronKB, an extension of graph associahedra
to the more general context of building sets B. Devadoss and Forcey asked whether there is a notion of
nestomultiplihedron JB, which extends the graph multiplihedra to this context.

In this section we answer these questions affirmatively in a unified way, by showing that the q-lifting
of the graph associahedron KG is the graph multiplihedron JG and, more generally, the q-lifting of the
nestohedron KB is the desired nestomultiplihedron JB.

3.1 Nestohedra and B-forests.
Definition 3.2 [8, 15] A building set B on a ground set [n] is a collection of subsets of [n] such that:
(B1) If I, J ∈ B and I ∩ J 6= ∅ then I ∪ J ∈ B.
(B2) For every e ∈ [n], {e} ∈ B.

For a building set B the nestohedron KB is the Minkowski sum of simplices KB :=
∑
B∈B∆B .

An important example of a building set is the following: given a graph G on a vertex set [n], the
associated building set B(G) consists of the subsets I ⊆ [n] for which the induced subgraph G|I is
connected. Such subsets are sometimes called the tubes of G.

If B is a building set on [n] and A ⊆ [n], we define the induced building set of B on A to be B|A :=
{I ∈ B : I ⊆ A}. Also let Bmax be the set of containment-maximal elements of B.

Definition 3.3 [8, 15] A nested set N for a building set B is a subset N ⊆ B such that:
(N1) If I, J ∈ N then I ⊆ J or J ⊆ I or I ∩ J = ∅.
(N2) If J1, . . . , Jk ∈ N are pairwise incomparable and k ≥ 2 then J1 ∪ · · · ∪ Jk /∈ B.
(N3) Bmax ⊆ N .
The nested set complex N (B) of B is the simplicial complex on B whose faces are the nested sets of B.

When B(G) is the building set of tubes of a graph, the nested sets are called the tubings ofG. IfG is the
graph shown in Figure 2(a), an example of a nested set or tubing isN = {3, 4, 6, 7, 379, 48, 135679, 123456789},
shown in Figure 2(b).(ii)

The sets in a nested set N form a poset by containment. This poset is a forest rooted at Bmax by (N1).
Relabelling each node N with the set N̂ := N\

⋃
M∈N :M<N M , we obtain a B-forest:

(ii) We omit the brackets from the sets inN for clarity.
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Fig. 2: (a) A graph G. (b) A nested set or tubing of G.
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Fig. 3: The poset and the B-forest for the nested set N = {3, 4, 6, 7, 379, 48, 135679, 123456789} of Figure 2(b).

Definition 3.4 [8, 15] Given a building set B on [n], a B-forest N is a rooted forest whose vertices are
labeled with non-empty sets partitioning [n] such that:
(F1) For any node S, N≤S ∈ B.
(F2) If S1, . . . , Sk are incomparable and k ≥ 2,

⋃k
i=1N≤Si /∈ B.

(F3) If R1, . . . , Rr are the roots of F , then the sets N≤R1
, . . . ,N≤Rr

are precisely the maximal elements
of B.

HereN≤S :=
⋃
T≤S T . It is clear that nested sets for B are in bijection with B-forests. As the notation

suggests, we will make no distinction between a nested set and its corresponding B-forest.

Theorem 3.5 [8, 15] The nestohedron
KB =

∑
B∈B

∆B

is isomorphic to the opposite of the poset of B-forests.

It is worth remarking that the graph associahedron JG is the nestohedron for the building set B(G) of
the graph G. Figure 4 shows the correspondence between faces of the associahedron and B-forests.

3.6 Nestomultiplihedra and painted B-forests.
For a building set B on [n] the nestomultiplihedron JB ⊆ Rn+1 is the Minkowski sum of simplices

JB :=
∑
B∈B

∆B +
∑
B∈B

∆B∪{n+1}.

The face poset of the nestomultiplihedron is related the the poset of painted B-forests.
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Fig. 4: The associahedron with faces labeled with corresponding B-forests.

Definition 3.7 A painted B-forest N = (N−,N 0,N+) is a B-forest N together with a partition of the
vertices into a downset N−, an antichain N 0, and an upset N+ such that N− ∪ N 0 is a downset (and
hence N 0 ∪ N+ is an upset). The vertices of N−,N 0, and N+ are colored white, gray, and black,
respectively.

Figure 5 shows a painted B-forest for the building set of the graph in Figure 2(a). Here N− =
{3, 4, 6, 7}, N 0 = {8, 9}, and N+ = {15, 2}.

2

15

6 49

3

8

7

Fig. 5: A painted B-forest. The vertices in N−,N 0, and N+ are shaded white, gray, and black, respectively.

The painted B-forests form a partial order. We go down the poset by successively
• converting a white (W) or black (B) vertex into a gray (G) vertex,
• contracting a BB, WW, or GW edge, or
• contracting all the BG edges below a black vertex.

Figure 6 shows the multiplihedron J3 (which is also the graph multiplihedron JK3, as well as the
nestomultiplihedron JB(K3) for the building set of K3), whose faces are in order-preserving bijective
correspondence with the painted trees on [3]. Our next theorem describes the face poset of the nestomul-
tiplihedron, which plays the analogous role for an arbitrary building set B.
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x1x3

x2

Fig. 6: The multiplihedron J3 = JK3 whose faces correspond to the painted trees on [3], projected onto the
hyperplane x4 = 0. (Not all forests are pictured.)

Theorem 3.8 The face poset of the nestomultiplihedron

JB =
∑
B∈B

∆B +
∑
B∈B

∆B∪{n+1}

is isomorphic to the opposite of the poset of painted B-forests.

Corollary 3.9 The lifting of the nestohedron KB is the nestomultiplihedron JB.

Remark 3.10 In [6], Devadoss and Forcey asked for a nice Minkowski decomposition of the graph mul-
tiplihedron KG. By definition, KG is combinatorially isomorphic to the nestomultiplihedron for the
building set B(G) of the graph G. Therefore Theorem 3.8 offers a satisfactory answer to their question.

4 Face q-liftings and volumes.
We will now modify the q-lifting operator P (q) and define the face q-lifting operator Pπ(q), which acts
on a specific face Pπ of a generalized permutahedron instead of acting on P as a whole. This operator is
useful in that it subdivides the polytope P (q) into pieces whose volumes are easy to compute, i.e.

P (q) =
⋃
π∈Pn

Pπ(q),

and
Vol n(P (q)) =

∑
π∈Pn

Vol n(Pπ(q)),

where Vol n(Pπ(q)) is a degree-n polynomial in q. The family of polynomials described in this volume
formula are defined in terms of compositions of n, and we explore them in greater depth in Section 5.
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For the sake of visualizations and the cleanliness of formulas, for this section let us treat P (q) as a full-
dimensional polytope in Rn via projection onto the hyperplane xn+1 = 0, rather than as a codimension-
1 polytope in Rn+1. Thus if P = Pn({zI}) then it follows from Definition 2.1 that P (q) will have
hyperplane description

P (q) =

{
x ∈ Rn : qzI ≤

∑
i∈I

xi ≤ z[n] − z[n]\I for all I ⊆ [n]

}
.

Consider the linear functional f(x1, . . . , xn) = a1x1+· · ·+anxn. Partition [n] into blocksA1, . . . , Ak
so ai = aj if and only if i and j both belong to the same block As, and ai < aj if and only if i ∈ As
and j ∈ At for some s < t. If we let π = A1| · · · |Ak then we say that the functional f is of type π. The
f -maximal face Pf of P depends only on the type π.

Definition 4.1 Define the face q-lifting of P as follows. Let π = B1| · · · |Bk be an ordered partition of [n]
and let Pπ be the face of P that maximizes a linear functional of type π. Now for i = 0, . . . , k construct
a modified copy of Pπ by applying a factor of q to the coordinates of the vertices of Pπ whose indices
belong to the first i blocks of π, B1 ∪ · · · ∪Bi. The convex hull of all of these modified copies of Pπ is the
face q-lifting of Pπ , and we denote it as Pπ(q).

Example 4.2 Consider the associahedron K(4). We have K(4)1|3|2 = conv{(1, 4, 1)}. Then

K(4)1|3|2(q) = conv{(1, 4, 1), (q, 4, 1), (q, 4, q), (q, 4q, q)}.

This and other face q-liftings are pictured in Figure 7.

x1x3

x2

1,4,1

q,4,1

q,4,q

q,4q,q

x1x3

x2

2,1,3
2q,q,3

2q,q,3q

1,2,3

q,2q,3

q,2q,3q

x1x3

x2

K(4)

qK(4)

Fig. 7: Three face q-liftings of the associahedron K(4): K(4)1|3|2(q), K(4)12|3(q), and K(4)123(q). The red regions
represent the faces K(4)π .

Definition 4.3 For a subset I ⊆ [n] define xI :=
∑
i∈I xi. For a generalized permutahedron P =

Pn({zI}) and an ordered partition π = B1| · · · |Bk define

zBi := zB1∪···∪Bi
− zB1∪···∪Bi−1

.
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Theorem 4.4 The set of face q-liftings {Pπ(q) : π an ordered partition of [n]} forms a subdivision of the
q-lifted polytope P (q).

Proof: (Sketch.) Let x ∈ P (q). We consider the 2n points vI = (zI ,
∑
i∈I xi) ∈ R2 for I ⊆ [n]. Let the

lower hull of this set of points consist of vA0
, vA1

, vA2
, . . . , vAk

in that order. We prove that Ai−1 ⊂ Ai
for each i, and define Bi = Ai \Ai−1 and π = B1| · · · |Bk. Then we show that x ∈ Pπ(q). 2

Theorem 4.5 Let P be a generalized permutahedron in Rn. Let π = B1| · · · |Bk be an ordered partition
of [n]. Then the volume of the face q-lifting Pπ(q) is a polynomial in q given by

Vol n(Pπ(q)) = zB1 · · · zBkVol n−k(Pπ)

∫ 1

q

∫ tk

q

· · ·
∫ t2

q

t
|B1|−1
1 · · · t|Bk|−1

k dt1 · · · dtk.

The proof of this theorem relies on the observation that the face q-lifting Pπ(q) is combinatorially
the product of Pπ and a k-dimensional simplex ∆. We consider the projection to ∆ whose fibers are
combinatorially isomorphic to Pπ; their volumes differ from the volume of Pπ by a predictable factor. We
then integrate these fibers along ∆. Figure 8 depicts this construction.

x1x3

x2

x1x3

x2

x1x3

x2

Fig. 8: Computing the volumes of face q-liftings. These correspond to the face q-liftings shown in Figure 7.

5 Composition polynomials.
Here we introduce the composition polynomial gc(q) of an ordered composition c = (c1, . . . , ck) of
n and the reduced composition polynomial fc(q) = (1 − q)−kgc(q). We present Theorem 5.3, which
summarizes our main results on these polynomials. We show that fc(q) is indeed a polynomial. We
prove that its coefficients are positive integers, and interpret them combinatorially. We ask whether the
coefficients of fc(q) are also unimodal, or even log-concave.

• f(1,1,1,1)(q) = 1
24 .

• f(2,2,2,2)(q) = 1
384 (1 + q)4.
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• f(1,2,2)(q) = 1
120 (8 + 9q + 3q2).

• f(2,2,1)(q) = 1
120 (3 + 9q + 8q2).

• f(5,3)(q) = 1
120 (5 + 10q + 15q2 + 12q3 + 9q4 + 6q5 + 3q6).

• f(a,b)(q) = 1
ab(a+b) (b+ 2bq + · · ·+ (a− 2)bqa−3 + (a− 1)bqa−2 + abqa−1 +

+ a(b− 1)qa + a(b− 2)qa+1 + · · ·+ 2aqa+b−3 + aqa+b−2)

Let us begin by reviewing the notion of a composition of an integer.

Definition 5.1 A composition c is a finite ordered tuple of positive integers, denoted c = (c1, . . . , ck). We
call the ci the parts of c, and the sum c1 + · · ·+ ck the size of c. If c = (c1, . . . , ck) has size n, we say that
c is a composition of n into k parts. The reverse of the composition c is defined as c̄ = (ck, . . . , c1).

Definition 5.2 For a composition c = (c1, . . . , ck) let tc−1 := tc1−1
1 · · · tck−1

k , where t = (t1, . . . , tk).
Then define the composition polynomial gc(q) by

gc(q) :=

∫ 1

q

∫ tk

q

· · ·
∫ t2

q

tc−1dt1 · · · dtk.

This polynomial has degree n and belongs to Q[q].

The main goal for this section is to prove the following theorem about composition polynomials.

Theorem 5.3 Let c = (c1, . . . , ck) be a composition of n. Then:

0. Let βi = c1 + · · · + ci, and let h(t) = a0 + · · · + tkak be the polynomial of smallest degree that
passes through the k + 1 points (βi, q

βi) for i = 0, . . . , k. Here the coefficients ai are functions of
q. Then ak = ±gc(q).

1. gc(q) factors as gc(q) = (1− q)kfc(q), where deg(fc(q)) = n− k and fc(1) 6= 0.

2. The coefficients of fc(q) are strictly positive.

3. fc(1) = 1/k!.

4. fc̄(q) = qn−kfc(1/q).

5. fαc(q) = 1
αk (1 + q + · · ·+ qα−1)kfc(q

α) for any positive integer α.

Definition 5.4 We will refer to the polynomial fc(q) as the reduced composition polynomial for the com-
position c.

Our proof of the remaining parts of Theorem 5.3 relies on a recursive construction of the polynomial
gc(q).

Definition 5.5 Define the truncated compositions cL := (c2, . . . , ck) and cR := (c1, . . . , ck−1). For
m ∈ {1, . . . , k − 1} we define the merged composition cm as the composition formed by combining the
parts cm and cm+1 into a single part:

cm := (c1, . . . , cm−1, cm + cm+1, cm+2, . . . , ck).
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Proposition 5.6 Let c = (c1, . . . , ck) be a composition of n into k parts. Let cm be the merged compo-
sition (c1, . . . , cm + cm+1, . . . , ck), and let cL = (c1, . . . , ck) and cR = (c0, . . . , ck−1) be the truncated
compositions. Then the composition polynomial gcm(q) follows the recursion

gcm(q) =
βm
n
gcR(q) +

(
1− βm

n

)
qc1gcL(q), (1)

where βm denotes the partial sum βm = c1 + · · ·+ cm.

This result is significant because every composition c except for the trivial composition (1, . . . , 1) can
be thought of as a merged composition. Also notice that the sizes of cL and cR are each strictly less
than the size of cm, though the number of parts remains constant. This means we have actually pro-
duced a recursive expression for an arbitrary nontrivial composition polynomial in terms of composition
polynomials of strictly smaller degree. Theorem 5.3 follows swiftly from this result.

6 Connection with order polytopes
Consider the poset Pc consisting of a chain p0 < p1 < · · · < pk together with a chain of size ci−1 below
pi for 1 ≤ i ≤ k. The order polytopeO(Pc) is the polytope of points x ∈ RPc such that 0 ≤ xi ≤ xj ≤ 1
whenever i ≤ j ∈ P .

P1

P

P2

0

Fig. 9: The poset P32.

Proposition 6.1 Let H ∈ RPc be the hyperplane xp0 = q. Then

Vol (O(Pc) ∩H) =
gc(q)

(c1 − 1)! · · · (ck − 1)!
.

Proof: For any 0 ≤ q ≤ t1 ≤ · · · ≤ · · · tk ≤ 1, the intersection of O(Pc) with xp0 = q and xpi = ti for

1 ≤ i ≤ k is a product of k simplices having volume
∏k
i=1

t
ci−1

i

(ci−1)! . Now integrate over all such values. 2

Corollary 6.2 The composition polynomial is given by

gc(q) =
(c1 − 1)! · · · (ck − 1)!

n!

n∑
i=0

Ni+1

(
n

i

)
qi(1− q)n−i

where Nj is the number of linear extensions of Pc such that x0 has height j. We have N2
j ≥ Nj−1Nj+1

for 2 ≤ j ≤ n.

Proof: This follows from Stanley’s work on order polytopes, namely Proposition 6.1 and (15) of [19]. 2
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