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Cartan invariant matrices for finite monoids:
Expression and computation using characters
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Abstract. Let M be a finite monoid. In this paper we describe how the Cartan invariant matrix of the monoid algebra
of M over a field K of characteristic zero can be expressed using characters and some simple combinatorial statistic.
In particular, it can be computed efficiently from the composition factors of the left and right class modules of M .
When M is aperiodic, this approach works in any characteristic, and generalizes to K a principal ideal domain like
Z. When M is R-trivial, we retrieve the formerly known purely combinatorial description of the Cartan matrix.

Résumé. Soit M un monoïde fini. Dans cet article, nous exprimons la matrice des invariants de Cartan de l’algèbre
de M sur un corps K de caractéristique zéro à l’aide de caractères et d’une statistique combinatoire simple. En
particulier, elle peut être calculée efficacement à partir des facteurs de compositions des modules de classes à gauche
et à droite de M . Lorsque M est apériodique, cette approche se généralise à toute caractéristique et aux anneaux
principaux comme Z. Lorsque M est R-trivial, nous retrouvons la description combinatoire de la matrice de Cartan
précédemment connue.
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1 Introduction
The recent years have witnessed a convergence of algebraic combinatorics and monoid/semigroup theory,
with a flurry of papers on the representation theory of finite monoids (see e.g. [HT06, Sal07, Sal08, Ste08,
HT09, AMSV09, HST10a, HST10b, DHST11, Den11, BBBS10, MS11a, MS11b] often involving intense
computer exploration. The general plan is to reduce their representation theory to that of groups. This plan
had been successfully applied a long time ago to the construction of their simple modules (see [GMS09])
and their characters [McA72]. An important current focus is on quivers and Cartan (invariant) matrices.

A typical approach is to use decompositions of the identity into primitive orthogonal idempotents.
However, constructing such decompositions can be a non trivial task, even for highly structured monoids
like the 0-Hecke monoid [Den10, Den11] orR-trivial monoids [BBBS10]. In this paper, we report on our
investigation of the alternative use of characters to express the Cartan matrix and compute it efficiently.
The spirit is similar to that of [MS11b], which gives a description of the quiver for monoids with basic
algebra (all simple modules are of dimension 1) and rectangular monoids, and of the Cartan matrix for
R-trivial monoids.

The key ingredient is a definition of the Cartan invariant matrix as generalized bimodule character of the
regular representation (Definition 2.6). Here, we focus mostly on characteristic zero, though the extension
to characteristic p is in progress.
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In Section 3 we setup the stage for character tables and their use to compute generalized characters of
modules and bimodules, and in particular Cartan matrices. In Section 4 we reformulate in this setting
the construction of [McA72] of the character table, showing further that it is block triangular, with the
diagonal blocks being the character tables of the subgroups (Theorem 4.1). We then derive a simple
expression for the Cartan matrix, in term of the character table and of a simple combinatorial statistic on
the monoid (Theorem 4.4). In the case of groups, this statistic boils down to the size of the centralizers.
Then, we remark that the computations can be broken down into much smaller chunks using J -classes
and the Schützenberger representation.

In Section 5 we explore special cases. ForJ -trivial monoids, we retrieve our previous results [DHST11],
without the need for orthogonal idempotents. For aperiodic monoids, the Cartan matrix takes a particu-
larly simple form (Theorem 5.2) which involves only left and right class modules, and works in any
characteristic, or even over a principal ideal domain like Z.

The point of this paper is that, once put together, most of the results are essentially straightforward.
Furthermore, they translate naturally into algorithms, an implementation of which is publicly available
in Sage-Combinat. A detailed analysis remains to be carried out; however, roughly speaking, the
algorithmic complexity for calculating the Cartan matrix drops from |M |6 for usual algorithms for finite
dimensional algebras down to |M |3. In practice we could calculate in one hour the representation theory of
the biHecke monoid of type A4, a monoid of cardinality 31103 with 120 simple representations, whereas
this calculation was out of reach previously.

Detailed proofs and examples will be given in an upcoming long version.
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2 Preliminaries
2.1 Monoids: basic combinatorics and representation theory

2.1.1 Monoids
A monoid is a set M together with a binary operation · : M × M → M such that we have closure
(x · y ∈M for all x, y ∈M ), associativity ( (x · y) · z = x · (y · z) for all x, y, z ∈M ), and the existence
of an identity element 1 ∈ M (which satistfies 1 · x = x · 1 = x for all x ∈ M ). In this paper, unless
explicitly mentioned, all monoids are finite. We use the convention that A ⊆ B denotes A a subset of B,
and A ⊂ B denotes A a proper subset of B.

Monoids come with a far richer diversity of features than groups, but collections of monoids can often
be described as varieties satisfying a collection of algebraic identities and closed under subquotients and
finite products (see e.g. [Pin86, Pin10a] or [Pin10a, Chapter VII]). Groups are an example of a variety of
monoids, as are all of the classes of monoids described in this paper. In this section, we recall the basic
tools for monoids, and describe in more detail some of the varieties of monoids that are relevant to this
paper.
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2.1.2 Green relations
In 1951 Green introduced several preorders on monoids which are essential for the study of their structures
(see for example [Pin10a, Chapter V]). Let M be a monoid and define ≤R,≤L,≤J ,≤H for x, y ∈M as
follows:

x ≤R y if and only if x = yu for some u ∈M
x ≤L y if and only if x = uy for some u ∈M
x ≤J y if and only if x = uyv for some u, v ∈M
x ≤H y if and only if x ≤R y and x ≤L y.

Beware that 1 is the largest element of these (pre)-orders. This is the usual convention in the semi-group
community, but is the converse convention from the closely related notions of left/right/Bruhat order in
Coxeter groups. These preorders give rise to equivalence relations, and for K ∈ {R,L,J ,H}, we denote
by K(x) the K-(equivalence) class of x.

Definition 2.1 A monoidM is calledK-trivial if allK-classes are of cardinality one, whereK ∈ {R,L,J ,H}.

The variety of H-trivial monoids coincides with that of aperiodic monoids (see for example [Pin10a,
Proposition 4.9]): a monoid is called aperiodic if for any x ∈M , there exists some positive integerN such
that xN = xN+1. The element xω := xN = xN+1 = xN+2 = · · · is then an idempotent (the idempotent
xω can in fact be defined for any element of any monoid [Pin10a, Chapter VI.2.3], even infinite monoids;
however, the period k such that xN = xN+k need no longer be 1). We write E(M) := {xω | x ∈M} for
the set of idempotents of M . Our favorite example of a monoid which is aperiodic but notR-trivial is the
biHecke monoid [HST10a, HST10b].

A monoid is regular if all its J -classes are regular, that is contain at least one idempotent.

2.1.3 The Schützenberger representation
Let R(x) be a right class. Then, the right class module KR(x) is defined by considering the natural
quotient structure given by KR(x) ≈ KxM/

∑
y<Rx

KyM . The action of M on R(x) is simply given
by:

x.m =

{
xm if xm ∈ R(x),
0 otherwise.

Symmetrically, any L-class gives rise to a left class module.
Furthermore, by the same construction, any J -class J (x) gives rise to aM -mod-M bimodule KJ (x).

We will see that elucidating the structure of those bimodules from the structure of left and right class
modules is the key to the efficient computation of the Cartan invariants matrix.

Proposition 2.2 When M is aperiodic, the bimodule KJ (x) admits a very simple description in terms of
the left and right class modules of x:

KJ (x) ≡M−mod−M KL(x)⊗KR(x) .

This is a straightforward application of the so-called eggbox picture [Pin10a].
For a general monoid, the description is slightly more complicated (see [CP61]). There is a groupH(x)

naturally associated to the J -class of x. If the J -class is regular, then H(x) is simply given by H(e) for
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any e idempotent in J (x). Otherwise, it is defined from the action of higher classes in J -order. Then,
the right classR(x) is endowed with a natural H(x)-mod-M module structure, called the Schützenberger
representation; KR(x) is further free as left H(x)-module:

KR(x) =
⊕
y

KH(x)y ,

where H(x)y ranges through theH-classes inR(x) (think diagonal action of a subgroup H of a group G
on the H-cosets in G). Similarly, the left class module KL(x) is endowed with a natural M -mod-H(x)
module structure; which is free as right H(x)-module.

Proposition 2.3 The J -class module of an element x of a monoid M can be described as:

KJ (x) ≡M−mod−M KL(x)⊗KH(x) KR(x) .

For an aperiodic monoid, H(x) is trivial, and we recover Proposition 2.2 as a special case.

2.1.4 Simple modules
We recall here the construction of the simple modules of a finite monoid M . A nice survey exposition is
given in [GMS09], including detailed references to the literature since the pioneering work of Clifford,
Munn and Ponizovskii.

For each regular J -class Ji, write Hi for any of the H-classes containing an idempotent. Observe that
Hi is a group. Choose an indexing set Ii for the simple modules SHi

i,j of Hi, and write I =
⋃
i Ii. Each

module SHi
i,j can be canonically induced to a simple module Si,j of M , and each simple module of M is

obtained exactly once by this construction.
More explicitly, the induction proceeds as follow: one takes a left class module Li of Ji, and compute

its top by moding out the radical, which is simply the annihilator of Ji acting on Li. Then one uses the
right action of Hi on Li to extract the appropriate simple module out of this top. This may equivalently
be achieved from a right class module.

For an aperiodic monoid, the group Hi is trivial, and thus has a single simple module, and we can drop
the j in our notations. Then, the simple left module Si is the top of the left class module Li; equivalently,
the dual simple right module S∗i is the top of the right class moduleRi. For a J -trivial monoid, the simple
module Si is given directly by the J -class Ji.

2.2 Representation theory of finite dimensional algebras
We refer to [CR06] and [Ben91] for an introduction to representation theory.

2.2.1 Generalized characters and Grothendieck group
Let A be a finite-dimensional algebra. Given an A-module X , any strictly increasing sequence (Xi)i≤k
of submodules

{0} = X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xk = X

is called a filtration of X . A filtration (Yj)i≤` such that, for any i, Yi = Xj for some j is called a
refinement of (Xi)i≤k. A filtration (Xi)i≤k with no non-trivial refinement is called a composition series.
For a composition series, each quotient module Xj/Xj−1 is simple is called a composition factor. The
multiplicity of a simple module S in the composition series is the number of indices j such thatXj/Xj−1
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is isomorphic to S. The Jordan-Hölder theorem states that this multiplicity does not depend on the choice
of the composition series. Hence, we may define the generalized character (or character for short) of a
module X as the formal sum

[X] :=
∑
i∈I

ci[Si] ,

where I indexes the simple modules of A and ci is the multiplicity of the simple module Si in any
composition series for X .

The additive group of formal sums
∑
i∈I mi[Si], with mi ∈ Z, is called the Grothendieck group of the

category of A-modules, and is denoted by G0(A). By definition, for any exact sequence 0→ X → Y →
Z → 0, the following equality holds in the Grothendieck group:

[X] = [Y ] + [Z] .

See [Ser77] for more information about Grothendieck groups.

Example 2.4 The prototypical example, due to Frobenius, is given by the symmetric group in character-
istic zero: A = KSn. Here, I is the set of integer partitions of n, and the Grothendieck group is identified
with the homogeneous component of degree n of the Z-algebra of symmetric functions. The map V 7→ [V ]
is called the Frobenius map; it sends the simple module Sλ to the Schur function sλ = [Sλ].

By analogy, we denote by (si := [Si])i∈I the Z-basis of the Grothendieck group G0(A). It is often
convenient to enlarge the ground ring by considering instead: K⊗Z G0(A) = K(si)i∈I .

2.2.2 Bimodules
We consider now A-mod-B bimodules. Recall that they can be considered equivalently as left A ⊗ Bop

modules, where Bop is the opposite algebra of B (a right module for B being a left module for Bop).
Hence all of the above applies right away. Furthermore, the simple modules can be derived from the
following general theorem:

Theorem 2.5 (See [CR81], Th. 10.38, p. 252) Let A and B be two finite dimensional algebras over a
field K which we assume to be large enough (e.g. algebraically closed). Then, the simple A⊗B modules
are given by the tensor products of the A simple modules by the B simple modules. In particular the
simple A-mod-A modules are given by the Si ⊗ S∗j , where (Si)i∈I are the simple left modules of A, and
(S∗i )i∈I their dual simple right modules.

2.2.3 Cartan invariant matrix
The Cartan invariant matrix of a finite dimensional algebra is usually defined using the dimensions of
sandwiches by orthogonal idempotents, or of Homsets between projective modules. We propose here an
alternative definition as bimodule character of the regular representation. This definition is natural and
must be well known, though we have not yet found a reference in the literature.

Definition 2.6 LetA be a finite dimensional algebra over a large enough field. Then, the Cartan invariant
matrix (Ci,j)i,j∈I of A is its A-mod-A character χA, expressed in Z(si)i ⊗ Z(si)i. In other words, Ci,j
counts the number of composition factors of type Si ⊗ S∗j in A.
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Here is a quick argument for why this definition is equivalent to the usual one. Let (qi)i∈I be a transver-
sal of a decomposition of the identity into primitive orthogonal idempotents. Fix two idempotents qi and
qj . Then, the dimension of the sandwich of a simple A-mod-A module Si′ ⊗ Sj′ is given by:

dim qiSi′ ⊗ Sj′qj = δi,i′δj,j′ .

Since computing the dimension of a sandwich is compatible with composition series, we obtain that
Ci,j = dim qiAqj counts the number of composition factors of type Si ⊗ S∗j in A, as desired.

3 Characters and Cartan invariant matrix for finite dimensional
algebras

3.1 Concrete characters
Let G be a group, and assume for simplicity that the field is large enough and of characteristic zero. It is
well known that one can give a concrete realization of the Grothendieck group by defining, for g ∈ G and
V a module, χV (g) as the trace of the action of g on V . Indexing the conjugacy classes by i ∈ I , and
choosing an element gi in each conjugacy class, we define the map V 7→ χV :=

∑
χV (gi)pi, where the

pi’s are formal indeterminates. This map is independent of the choice of the gi’s since χV (g) is constant
on conjugacy classes. Furthermore the map V 7→ χV depends only on [V ] and extends to a one-to-one
Z-linear map G0(M) 7→ K(pi)i∈I . Then, a convenient point of view is to consider (pi)i as an alternative
basis for the (enlarged) Grothendieck group K(si)i∈I of A, with the character table being the matrix of
the change of basis from (si)i to (pi)i.

Example 3.1 Let G = Sn be the symmetric group. If the pλ are chosen as the powersum symmetric
functions, then the character χV correspond to the element [V ] of the Grothendrieck group with the
identification done as in Example 2.4. This motivates the notation pλ.

Definition 3.2 Given some field K and set L, an L-valued trace function is a function χ assigning to
each K-vector space V and endomorphism g ∈ EndK(V ) some number χV (g) ∈ L, and satisfying the
usual axioms of the usual (K-valued) trace function (compatibility with duality, tensor products, quotients,
conjugation).We further request that the trace function is computable.

Most of the time we take the usual trace function. However, we occasionally take some alternative, in the
spirit of Brauer characters for modular representations of groups.

Definition 3.3 A concrete character for a finite dimensional algebra A is given by a trace function χ and
two families (gi)i∈I and (g∗i )i∈I of elements of A, called support of the concrete character, such that:

(i) for a module V the action of gi on V is adjoint to that of g∗i acting on the dual module V ∗;

(ii) the following Z-linear map is one-to-one:{
G0(G) → L(pi)i∈I

[V ] 7→
∑
i∈I χV (gi)pi

.

Example 3.4 Let G be a group, and KG its group algebra for some field K of characteristic zero and
containing the appropriate roots of unity. A concrete character is obtained by taking some transversal
(gi)i∈I of the conjugacy classes of G, together with (g∗i := g−1

i )i∈I and the usual trace function.
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More generally, the results of McAlister [McA72] can be reformulated as the construction, for a finite
monoid and a large enough field of characteristic zero, of a suitable choice of (gi)i∈I and (g∗i )i∈I to get a
concrete character with the usual trace function (see Section 4.1).

The following example shows that concrete characters exist as soon as the field is large enough; the
interesting point is to find some that are easy to compute.

Example 3.5 Let A be a finite dimensional algebra over a large enough field of characteristic zero. Con-
sider a decomposition of the identity into primitive orthogonal idempotents, and pick one such idempotent
qi per simple representation of A. Then, setting gi = g∗i = qi, together with the usual trace function gives
a concrete character for A.

3.1.1 Character table
Let now A be any finite dimensional algebra endowed with a concrete character. Then, by definition,
the irreducible representations Si of A can be indexed by i ∈ I , and the concrete character may be
summarized by a matrix called the character table of A:

T := (χSi
(gj))i∈I,j∈I .

For a group, and taking the usual trace function, this is the usual character table of the group. For a
finite dimensional algebra, if one takes the concrete character given by primitive orthogonal idempotents
as in example 3.5, the character table is just the identity; it thus contains no useful information.

By definition, the character table also summarizes the character for right modules and is invertible.
However, unlike for groups, it is not necessarily an orthogonal matrix. It also depends a priori on the
choice of the gi’s; for example, the definition does not prohibit replacing each gi by gi/2; we will see
that, for a finite monoid, enforcing that the gi’s are in the monoid makes the character table canonical up
to relabeling of the rows and columns.

3.1.2 Composition factors of modules from characters
Remark 3.6 Let A be a finite dimensional algebra endowed with a concrete character. Then, the charac-
ter [V ] of a left or right module V , that is its composition factors Si with multiplicities, can be computed
by calculating χV in K(pi)i, and converting it back to Z(si)i.

If a filtration {0} ⊂ V0 ⊂ · · · ⊂ Vk = V is known, the character calculation reduces to the sum of the
characters of the composition factors Vi+1/Vi.

3.2 Characters for tensor products and bi-modules
Proposition 3.7 LetA andB be two finite dimensional algebras endowed each with a concrete character
using the same trace function χ. Then, A ⊗ B can be endowed with the concrete character given by the
families:

(gAi ⊗ gBj )i∈IA,j∈IB and (gAi
∗ ⊗ gBj

∗
)i∈IA,j∈IB ,

where (gAi )i∈IA and (gAi
∗
)i∈IA is the support of the concrete character of A, and similarly for B.

As a special case of Proposition 3.7, we can compute the composition factors of bimodules.

Corollary 3.8 Let A be a finite dimensional algebra endowed with a concrete character, and V be an
A-mod-A bimodule V . Then, its character [V ], that is its composition factors Si ⊗ Sj with multiplicities,
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can be computed by calculating the A-mod-A character χV in K(pi)i⊗K(p∗i )i and converting it back to
Z(si)i ⊗ Z(s∗i )i.

If a filtration {0} ⊂ A0 ⊂ · · · ⊂ Ak = A is known, the character calculation reduces to the sum of the
characters of the composition factors Ai+1/Ai.

3.3 The Cartan invariant matrix
Theorem 3.9 Let A be a finite dimensional algebra over a large enough field of characteristic zero en-
dowed with a concrete character. Then, its Cartan invariant matrix can be obtained by computing the
character of A as a A-mod-A module, in K(pi)i ⊗K(pi)i, and converting back to Z(si)i ⊗ Z(si)i.

4 Characters and Cartan invariant matrices for finite monoids
4.1 Concrete characters
Theorem 4.1 Let M be a finite monoid, and K a large enough field of characteristic zero. For each
regular J -class Ji of M , choose one element gi,j in each conjugacy class of Hi, and set g∗i,j := g−1

i,j ,
where the inverse is taken in Hi. Then:

(i) The families (gi,j)(i,j)∈I and (g∗i,j)(i,j)∈I together with the usual trace function is a concrete char-
acter of KM .

(ii) The obtained character does not depend on the choice of gi,j .

(iii) The character table is block-triangular, with the diagonal blocks given by the character tables of the
groups Hi. In particular, those blocks are invertible.

This is mostly a reformulation of the main result of McAlister in [McA72]. As far as we know, the block
triangularity (iii) is new. Besides, it allows for a short proof.

Remark 4.2 In practice, the character table can be computed by letting the gi,j’s act on the simple
modules Si′,j′ as constructed in Section 2.1.4, for i′ ≤J i.

4.2 The Cartan invariant matrix
Let M be a finite monoid and KM its algebra. Let (gi)i∈I be as in Theorem 4.1. Define the matrix
C = (ci,j)i,j∈I by

ci,j := |{s ∈M, gisg
∗
j = s}| .

Lemma 4.3 The character of KM as a KM -mod-KM module is given by

χKM =
∑
i,j∈I

ci,jpi ⊗ p∗j .

Let furthermore T be the character table of M .

Theorem 4.4 The Cartan matrix of KM is given by:

C = tT−1CT−1 .
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It follows from the above theorem that, beside the character table, the Cartan matrix C depends only on
the combinatorial data given by the matrix C.

Example 4.5 Let G be a finite group, and K a field of characteristic zero. Then,

ci,j = δi,j |CG(gi)| ,

where CG(gi) is the centralizer of gi. Hence,

χKG =
∑
i

|CG(gi)|pi ⊗ p∗i .

Since KG is semi-simple, it is isomorphic to
∑
Si ⊗ S∗i as a KG-bimodule (in particular, its left regular

representation is the direct sum of dimSi copies of each simple module Si). We therefore expect that:

χKG =
∑
i

si ⊗ s∗i .

We start from the right hand side, and use the fact that the columns of the character table are orthogonal,
with the norm of the column indexed by gi being |CG(gi)|.∑

i∈I
si ⊗ s∗i =

∑
i∈I

(
∑
j∈I

ci,jpj)⊗ (
∑
j′∈I

ci,j′p
∗
j′)

=
∑
j,j′∈I

(
∑
i∈I

ci,jci,j′)pj ⊗ p∗j =
∑
j∈I
|CG(gj)| pj ⊗ p∗j .

We conclude this example with a remark when G is the symmetric group Sn. Recall that the conjugacy
classes of Sn are indexed by partitions of n, and that the size of the centralizer of the permutation gλ
having cycle type λ is usually denoted by zλ. Then,∑

λ∈I

zλpλ ⊗ pλ =
∑
λ∈I

sλ ⊗ sλ

is nothing but the homogeneous component of degree n of the Cauchy kernel expanded respectively in the
powersum and Schur bases.

4.3 Exploiting J -classes
The J -classes of M provide a natural KM -mod-KM filtration for KM , which can be used to reduce the
calculation of the Cartan matrix of KM .

Remark 4.6 The Cartan matrix of KM is the sum of the KM -mod-KM character of each J -class mod-
ule.

Remark 4.7 The Schützenberger representation can be used to compute efficiently the character of a J -
class module KJ (x) from those of the corresponding left and right class modules. To this end, one first
computes the KM -mod-H(x) character of KL(x) and the H(x)-mod-KM of KR(x), and use Proposi-
tion 2.3 to recombine them.
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5 Special cases
5.1 Aperiodic monoids
Proposition 5.1 Let M be an aperiodic monoid, and K be any field. One may take a concrete character
such that the character table is integer valued and uni-triangular. In particular, the (pi)i form a Z basis
of the Grothendieck group G0(KM).

Let I be the indexing set of all J -classes, regular or not. Let

TL := (χLi(gj))i∈I,j∈I and TR := (χRi(gj))i∈I,j∈I

be the (rectangular) matrices of the characters of the left class modules KLi and right class modules
KRi respectively. Note that M act on those modules by transformation on the basis, so TL and TR
are combinatorial and do not depend on the characteristic. Note that the matrix DL := TLT

−1 is the
decomposition matrix of the left class modules in term of the simple modules, and similarly for DR. As
an essentially straightforward corollary of Theorem 4.4, one gets:

Theorem 5.2 The Cartan matrix of M is given by:

C = tDLDR = tT−1tTL TRT
−1 .

Remark 5.3 Restricting TL to the regular J -classes, gives a unitriangular matrix. It follows that the
character of the left classes provide yet another alternative basis for the Grothendieck group G0(KM),
and similarly for the right classes.

Hence, the theory is characteristic free for aperiodic monoids, and could be generalized straightfor-
wardly to, say, principal ideal domains like Z. Altogether, all the ingredients are combinatorial, except for
the construction of the simple modules as top of the left class modules (the radical is obtained by solving
a linear system), and computation of the character of the gi thereupon; because of that, the character table
still depends on the characteristic.

5.2 J -trivial monoids
We recover directly the description of the Cartan matrix of a J -trivial monoid M of [DHST11], without
the need for orthogonal idempotents. The simple modules are in one-to-one correspondence with the
idempotents of M , so we use I = E(M) as indexing set. For x ∈M , define

rfix(x) := min{e ∈ E(M) | xe = x} and lfix(x) := min{e ∈ E(M) | ex = x} ,

where the min’s are taken in J -order (see [DHST11] for the details).

Theorem 5.4 Let K be any field and M be a J -trivial monoid. Then, the Cartan matrix of KM is given
by:

χKM =
∑
x∈M

slfix(x) ⊗ s∗rfix(x) .

Proof: By Theorem 5.2, one is reduced to the calculation of the M -mod-M character of all J -class
modules. Each such module is of the form Kx for x in M ; it is of dimension 1, simple, and isomorphic
as a M -mod-M bimodule to Slfix(x) ⊗ S∗rfix(x). 2
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