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The multivariate arithmetic Tutte polynomial

Petter Brindén'ffand Luca Moci%¥

' Department of Mathematics, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
2Department of Mathematics, Universita di Roma ”La Sapienza” , Italy

Abstract. We introduce an arithmetic version of the multivariate Tutte polynomial recently studied by Sokal, and a
quasi-polynomial that interpolates between the two. We provide a generalized Fortuin-Kasteleyn representation for
representable arithmetic matroids, with applications to arithmetic colorings and flows. We give a new proof of the
positivity of the coefficients of the arithmetic Tutte polynomial in the more general framework of pseudo-arithmetic
matroids. In the case of a representable arithmetic matroid, we provide a geometric interpretation of the coefficients
of the arithmetic Tutte polynomial.

Résumé. Nous introduisons une version arithmétique du polyndme de Tutte multivariée récemment étudié par Sokal,
et un quasi-polyndme qui interpole entre les deux. Nous proposons une représentation de Fortuin-Kasteleyn gener-
alisée pour les matroides arithmétiques représentables, avec des applications aux colorations et flux arithmétiques.
Nous donnons une nouvelle preuve de la positivité des coefficients du polyndme de Tutte arithmétique dans le cadre
plus général des matroides pseudo-arithmétiques. Dans le cas d’un matroide arithmétique représentable, nous pro-
posons une interpretation geometrique des coefficients du polyndme de Tutte arithmetique.
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1 Introduction

In this paper we introduce a multivariate arithmetic Tutte polynomial, which generalizes many polynomi-
als that have appeared in the literature.

Recall that the Tutte polynomial is a bivariate polynomial with several well-known specializations: for
instance the chromatic polynomial of a graph, or the characteristic polynomial of a hyperplane arrange-
ment can be obtained by specializing the Tutte polynomial. Also, its coefficients are nonnegative, as
proved by Crapo by providing an explicit combinatorial interpretation ([[12]], [4]]).

Recently, in [6, 9, [10], an arithmetic version of this polynomial has been studied. Namely, to a finite
list £ of elements in a finitely generated abelian group G, one associates an arithmetic Tutte polynomial.
This is a bivariate polynomial, such that several geometric, algebraic or combinatorial invariants appear
as its specialization, for instance:

e the characteristic polynomial of the toric arrangement 7 (£). This is a family of subvarieties in the
linear algebraic group Hom(G, C*) (see [9} Section 5]);
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e the Hilbert series of the Dahmen-Micchelli space DM (L). This vector space was introduced in
order to study vector partition functions (see [9, Section 6]);

e the Ehrhart polynomial of the zonotope Z (L) (see [9) Section 4] and [[7])).

Furthermore, the arithmetic Tutte polynomial has applications to graph theory [7], and it has non-
negative coefficients, as proved in [6] by providing a combinatorial interpretation that extends Crapo’s
theorem.

The Tutte polynomial is naturally defined in the general framework of matroids, while the arithmetic
Tutte polynomial is associated to an arithmetic matroid A, which is a matroid and a multiplicity function
m. When A is represented by a list of elements of G, the function m encodes arithmetic information,
likewise the rank function encodes linear-algebraic information.

Recently, Sokal [[11] studied a remarkable multivariate generalization of the Tutte polynomial. This is
a multivariate Tutte polynomial, having one variable v, for each element e of the matroid (or edge e of the
graph), and one extra variable q. If all the variables v, are set to be equal, we obtain a bivariate polynomial
that is essentially equivalent to the standard Tutte polynomial. In the case of graphs, Sokal’s polynomial
is known to physicists as the partition function of the q-state Potts model, which along with the related
Fortuin—Kasteleyn random-cluster model plays an important role in the theory of phase transitions and
critical phenomena. In this paper we introduce a multivariate arithmetic Tutte polynomial

ZA(q,V) = Z m(A)g~ rk(4) H Ve.

ACE ecA

(Here F is the ground set of the arithmetic matroid .4, while rk and m are the rank and the multiplicity
functions respectively). As the name suggests, Z 4(q, v) generalizes the polynomials above. It is naturally
defined starting from an arithmetic matroid, or more generally from what we call a pseudo-arithmetic
matroid (see Section 2). Actually, our polynomial encodes all the structure of the (pseudo-)arithmetic
matroid, i.e., it is possible to reconstruct A from Z 4(q,v).

For this polynomial we prove a deletion-contraction recurrence (Lemma [3.2). Then we give a new
proof of the nonnegativity of the coefficients of the arithmetic Tutte polynomial in the framework of
pseudo-arithmetic matroids (Theorem . Even more, we show that pseudo-arithmetic matroids are
the most general objects closed under deletion and contraction and such that the associated arithmetic
Tutte polynomials have nonnegative coefficients. We also provide a generalization of Crapo’s formula
(Theorem[4.3).

When A is represented by a list £ of elements in a finitely generated abelian group G, we provide a
Fortuin-Kasteleyn formula for Z 4(g,v) (Theorem , with applications to arithmetic colorings. This
can be seen as a generalization of the “finite field method” for computing the characteristic polynomial or
the Tutte polynomial of a rational hyperplane arrangement [1} 2} [13]], as well as a generalization of a simi-
lar result for toric arrangements [8]]. We also introduce a generalized “flow polynomial” with applications
to arithmetic flows (see Theorem|/.1]), which allows us to extend the results proved in [[7] for graphs with
labeled edges (Corollary [8.1).

Furthermore, we introduce a quasi-polynomial Z f (g, v) that interpolates between the ordinary and the
arithmetic multivariate Tutte polynomial (Theorems [6.31[6.6), and hence between ordinary and arith-
metic chromatic and flow polynomials. This quasi-polynomial is the partition function of a generalized
Potts models similar to the one studied by Caracciolo, Sportiello and Sokal, see [[11, Section 3.2].
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Finally we give a geometrical interpretation for M 4(x, y), holding for any representable .4 and gener-
alizing various formulae proved in [9, 6].

This is an extended abstract of the paper in preparation [3|]; the reader may refer to it for the proofs
and updates.

2 Arithmetic matroids and multivariate Tutte polynomials

The notion of an arithmetic matroid tries to capture the linear algebraic and arithmetic information con-
tained in a finite list of vectors in Z™.

Let N := {0,1,2,...} and 2¥ := {A : A C E}, where E is a finite set. We recall that a matroid, M,
on E may be defined via its rank function, which is a function rk : 2 — N such that rk()) = 0 and
satisfying

(R1) if A,B C Fand A C B, thenrk(A) < rk(B);
(R2) if A, B C E, thentk(A U B) +rk(AN B) <rk(A) +1k(B).

IfRCSCEIlkt[R,S]:={A:RCACS} Wesay that [R,S] is a molecule if S is the disjoint
union S = RU F U T and for each A € [R, 5]

rk(A) =1k(R) + |[AN F|.

A pseudo-arithmetic matroid A = (M, m) is a matroid M with a function m : 2F — R, called pseudo-
multiplicity, satisfying the following axiom:

(P) If [R, S] is a molecule, then

p(R, ) = (=171 ST (=)l () > 0.
A€[R, 9]

An arithmetic matroid A is a set E with two functions tk : 28 — N, m : 2F — N\ {0}, called rank
and multiplicity respectively, satisfying the axioms (R1), (R2), (P), and:

(Al) if AC E,v € E, and tk(A U {e}) = rk(A), then m(A U {v}) divides m(A); otherwise m(A)
divides m(A U {v});

(A2) if [R, S] is a molecule, then m(R) - m(S) = m(RUF) -m(RUT).

The dual of an arithmetic (or pseudo-arithmetic) matroid is defined as the matroid with the same ground
set F, rank function defined by rk*(A) := |A| — rk(F) + rk(F \ A) and multiplicity function defined
by m*(A) := m(E \ A). Notice that each of axioms (A1), (A2) and (P) is self-dual, so the dual of an
arithmetic matroid is indeed an arithmetic matroid.

Our definition of arithmetic matroid is equivalent to the one given in [6]. The main example of an
arithmetic matroid is the one associated to a finite list of elements of a finitely generated abelian group G,
see Section[3
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Recall [4}[12] that to each matroid M is associated the Tutte polynomial

Tm(z,y) = Z (2 — 1)TRE)=xk(A) () _ 1) Al=rk(4)
ACE

that Sokal [[I1] generalized by defining a multivariate Tutte polynomial in the variables ¢ =1, v = {v }ecp:

Znalav) = 3 O ] v

ACE ecA

Similarly, to each arithmetic matroid .4, is associated the arithmetic Tutte polynomial

Ma(w,y) =Y m(A)(w — 1)EE kA (y — 1)lAl=rk),
ACE

see [6l 9], that we are going to generalize by defining a multivariate arithmetic Tutte polynomial

ZA(q, V) = Z m(A)q~ rk(4) H Ve.

ACE ecA

Of course these polynomials are also defined for a pseudo-arithmetic matroid. Note that

Zpm((x =Dy —1),y—1) = (x — 1) O Ty (z,y); (1)
Za((z—1)(y—1),y—1) = (z— 1) EMy(z,y). (2)

(By v = y — 1 we mean that each variable v, is evaluated at y — 1).

3 Deletion-contraction and nonnegativity

Let A be an arithmetic matroid. Given an element e € F, the deletion of A by e is the arithmetic matroid
A; on the set Ey := E \ {e}, with rank function rk; and multiplicity function m; that are just the
restriction of the corresponding functions of A.

We also define the contraction of A by e as the matroid A5 on the set Ey := E \ {e¢} = E4, with rank
function rko given by rka(A) := rk(A U {e}) — rk({e}) and multiplicity function given by mz(A) :=
m(AU {e}) forall A C Fs.

Clearly, the same constructions hold for pseudo-arithmetic matroids.

If an arithmetic matroid A is represented by a list L of elements of a finitely generated abelian group
G (see Section E]), it is easy to check that the deletion A; is represented by the list Ly, in G, while the
contraction A; is represented by the list E5 := {g, + (g¢) : a € E \ {e}} of cosets in G/{ge).

We say that e € F is:

o free (or a coloop) if both ki (E\ {e}) = rk(E\ {e}) = rk(E) — 1 and rko(E\ {e}) = 1k(E) — 1;
e forsion (or a loop) if both rky (F \ {e}) = rk(F) and rky(F \ {e}) = rk(E);
e proper otherwise, i.e. if both rky (E \ {e}) = rk(F) and rko(E' \ {e}) = rk(F) — 1.



The multivariate arithmetic Tutte polynomial 671

Remark 3.1 An interval [R, S| is a molecule if and only if, after contracting the arithmetic matroid
defined by S by all the elements in R, each of the remaining elements is either a coloop or a loop. In this
sense we use the word "molecule” with a slightly more general meaning than in [0]].

Let A be an arithmetic matroid, and let .4; and A5 be its deletion and contraction by an element e € E.

Lemma 3.2 Za(av) Zau(av) ” ;
. A,(q, V) + e Z4a,(q, V), if eis aloop;
Zata) = { G Ll o

We end this section by proving that the coefficients of the arithmetic Tutte polynomial of a pseudo-
arithmetic matroid are nonnegative.

Let B be the set of bases that can be extracted from FE, and B* the bases of the dual matroid. Let us fix a
total order on E, and let us take B € B. We say that e € E \ B is externally active on B if e is dependent
on the list of elements of B following it (in the total order fixed on E). We say that e € B is internally
active on B if in the dual matroid e is externally active on the complement B¢ := E'\ B € B*.

We denote by E(B) the set of externally active elements and by e(B) its cardinality, which is called
the external activity of B. In the same way, we denote by I(B) = E*(B¢) the set of internally active
elements, and by 4(B) its cardinaity, which is called the internal activity of B.

The proof of the following Proposition may be found in [4].

Proposition 3.3 Suppose that M is a matroid with ground set E and set of bases B. Then:
i) 2F is the disjoint union
2¥ = | |[B\I(B),BUE(B)].
BEB
ii) foreach B € B, [B\ I(B), BU E(B)] is a molecule with F = I(B) and T' = E(B).
Lemma 3.4 Let [R, S] be a molecule. Then

Z m(A)(z — 1)rk(5)—rk(A)(y _ 1)\A\—rk(A) — Z p(RU L’S\K)x\K\yILI =
A€[R,S] KCF,LCT

= L( > p(R,RU(F\K)z ) (>~ p(RUL,RUT)YM)

m(R) KCF LCT

Theorem 3.5 The coefficients of the arithmetic Tutte polynomial M 4(x,y) of a pseudo-arithmetic ma-
troid A are nonnegative. Moreover, pseudo-arithmetic matroids are the most general objects closed under
deletion and contraction and such that the associated arithmetic Tutte polynomials have nonnegative co-
efficients.

4 Generalizations of Crapo’s formula

The following combinatorial interpretation of the coefficients of the Tutte polynomial was proved in [4].
Theorem 4.1 (Crapo)

T(ay) =) a"Py®).
BeB
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Crapo’s formula has been extended in [6] to arithmetic matroids. In order to do that, one constructs a list
L in which each maximal rank sublist S appears p(S) = p(S, F') many times. Notice that if we extract
the bases from our list L g, each basis B will show up exactly m(B) times (by inclusion-exclusion).

Dually, we construct the list L}, in the same way from the dual arithmetic matroid.

We denote by B the list of pairs (B, T'), where B is a basis, B C T'and T' € L. The corresponding list
in the dual will be denoted by B*. For every such pair (B, T') we define E(B,T') to be the set of elements
of T which are externally active for B. Then we define the local external activity e(B,T) = |E(B,T)|.
Dually, we define E*(B¢, T) in the same way for the basis B¢ in the dual and T’ € L%

Let v be the bijection between B and B* introduced in [6], and defined as follows. For every basis
B, identify the pairs (B,T) and (B,T”) € B whenever E(B,T) = E(B,T"); dually, identify the pairs
(B¢, S) and (B, S") € B* whenever E*(B¢,S) = E*(B®,S’). Then let )5 be a bijection between
the pairs (B, -) and the pairs (B, -) that equidistributes these pairs among each others (this exists by [6];
see this paper for details and examples). Let ¢ be the “’join” of all these matchings g, B € B. We denote
by I(B,T) = E*(¢¥(B,T)) and we define the local internal activity i(B,T) = |1(B,T)|.

Theorem 4.2 (D’Adderio-Moci)

Matwg)= 3 aiBDy,
(B,T)eB

We can extend this theorem to the multivariate arithmetic Tutte polynomial:
Theorem 4.3

ZA(q,v)zfA(q,v)iq_rk(E) Z HUb H (ve +1) H (5“‘1)

(B,T)eBbeB  ecE(B,T) i€I(B,T)

In particular when all the multiplicities are 1, we get an analogue of Crapo’s formula for Sokal’s poly-
nomial, i.e. Corollary ??.

5 Representable arithmetic matroids

Let £ = (ge)ccr be afinite list of vectors in a finitely generated abelian group G. Recall that such a group
is isomorphic to Gy & G, where G, is finite and G ; is free abelian, i.e., it is isomorphic to Z" for some
r > 0. Then G, is called the torsion of G and r := rk(G) is the rank of G. A matroid with ground set E is
naturally defined by rk(A) = rk((L£4)) where L4 = (ge)eca and (L 4) is the subgroup generated by £ 4.
In addition to the matroid structure £ carries arithmetic information which is encoded as multiplicities.
For A C FE, let H, be the maximal subgroup of G such that (£4) < H and |Hy : (La4)| < oo,
where |H 4 : (L£4)| denotes the index (as subgroup) of (£ 4) in H4. The multiplicity m(A) is defined as
m(A):=|Ha: {(La)l]

Equivalently, we can define G4 := (G/(La)), as the torsion subgroup of G/(L4), and m(A) :=
|G al.

The fact that this function satisfies the original five axioms for an arithmetic matroid (and hence our
axioms) has been verified in [6]]; for (A1)—-(A2) this also follows from Lemma[5.2]and [5.3] below.

Remark 5.1 The most familiar situation is when GG = Z"™. However if we want to allow for deletion and
contraction (see Section [3) we need the above more general setup.
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We will denote by M the matroid determined by £, and by A, = (M, m) the arithmetic matroid
determined by £. We say that an arithmetic matroid is representable if it comes from such a list.

Lemma 5.2 Let A C Eande € E\ A. Iftk(A) < rk(AU{e}) then there exists a group monomorphism
G4 = Gaugey- If tk(A) = rk(A U {e}) then there exists a group epimorphism G o — G su{e}-

Furthermore, if A C B C FE are such that rk(A) = rk(B), the composition morphism G4 — Gp
does not depend on the order chosen on B \ A. In the same way, if rk*(A) = rk™(B), the composition
morphism G 4 < G g does not depend on the order chosen on B \ A.

Lemma 5.3 For each molecule [R, RU F UT]

Grur ., Grurur

Gr GRrur

6 A Fortuin-Kasteleyn quasi-polynomial

Let G = (V, E) be a finite graph with vertex set V and edge set E. In [11] the multivariate Tutte
polynomial of a graph was defined as

Zg(q,V) = Z qk(A) H Ve,

ACE ecA
where k(A) denotes the number of connected components in the subgraph (V, A). The multivariate Tutte
polynomial has an interpretation in statistical physics as the partition function of the q-state Potts model.
Theorem 6.1 (Fortuin—Kasteleyn) For any positive integer q,
Zg@a.v)= Y Il (t+vd(a(i),o()),
o:V—qle=ijeE
where 0 is the Kronecker delta and [q] := {1,...,q}.

Theorem |[6.1]is known as the Fortuin—Kasteleyn representation of the g-state Potts model. Our main goal
of this section is to generalize this theorem to list of vectors in finitely generated abelian groups.

We define here a generalization of the Potts model which is similar to the one studied by Caracciolo,
Sportiello and Sokal, see [11} Section 3.2]. Let £ = (g.)cck be a list of elements in a finitely generated
abelian group G, and let H be a finite abelian group. Then

Ze(G,H,v) := Z H(1+ve5(¢>(ge),0)).

¢€Hom(G,H) e€E

The special case when H = Z, := 7Z/qZ will be particularly interesting, and we set

ZE@v) = Y J]+0d(8(g0),0).

peHom(G,Z,) e€E

We will prove that Z 5 (g, V) is a quasi-polynomial in ¢ that interpolates between the arithmetic multi-
variate Tutte polynomial Z 4. (g, v) of the arithmetic matroid A, and the multivariate Tutte polynomial
Z (g, v) of its underlying matroid M .
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Remark 6.2 Notice that Z f (g, V) is not an invariant of the arithmetic matroid. For instance, the empty
list in Z4 defines the same arithmetic matroid as the empty list in Zo & Zo, but Z f (2,v) is equal to 2 in
the former case, and to 4 in the latter.

For a group G integer g let ¢G := {qh : h € G}, where Z acts on G in the usual way.
Theorem 6.3 If H = &% _,7,. and q = |H|, then

k
. . m(A
ZE(G ) = O Y MO T [T v
i=1 1

ACE e€A
Remark 6.4 Since (¢ + |G|)G = ¢G holds for any finite group G it follows that Z£ (¢, v) is a quasi-
polynomial in q.

Let LCM(L) denote the least common multiple of all m(B), where B C E is a bases. When G = Z™
and £ has rank 7, then LCM(L) equals the least common multiple of all non-zero X r minors of L.
Define two subsets of Z, := {n € Z : n > 0} as follows

Zy (L) :={q € Z4+ : GCD(q, LCM(L)) = 1},
Za(L):={q€Zy :qGp = (0) for all bases B C E}.

For example if ¢ is a multiple of LCM(L), then ¢ € Z 4 (L).
Theorem 6.5 Let |H| = q. Then q € Z; (L) if and only if

ZE(G, H,v) = ¢ D Zp,(q,v),

as a polynomial in v.

Note that when £ C Z" = G is a totally unimodular matrix, i.e., m(B) = 1 for all bases B, then
Zni (L) = Za(L) = Z. Thus Theorem [6.5]extends [11, Theorem 3.1] and can also be seen as a refine-
ment of the “finite field method” to compute the characteristic polynomial of a hyperplane arrangement,
see [2] (or its Tutte polynomial, see [1}[13]). The proof of the following Theorem follows immediately
from Theorem

Theorem 6.6 Let q be a positive integer. Then q € 7 (L) if and only if
ZE(q,v) = ¢ Z4,(q,v),

as a polynomial in v.

Theorem [6.6] is a refinement of the finite field method to compute the characteristic polynomial of a
toric arrangement, see [S]].

Example 6.7 Let us see why Theorem is a special case of Theorem Let G = (V, E) be a graph
on V = [n]. Let further G = Z™ and £ = (g.).cr Where g, is the vector with ith coordinate 1 and jth
coordinate —1 and the other coordinates 0, where e = {i,j} and ¢ < j. Then m(A) = 1 for all A since
the matrix £ is totally unimodular, and hence G4 = (0) for all A C E. Moreover Hom(G,Z,) = Z) so
Theorem[6.]] follows.
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Example 6.8 Let G = Z3 and
1 1.0 0 0 1 1
L=]101 1 1 0 0 1
00 0 1 1 1 1

Then M is the non—Fano matroid F>~, which is not a regular matroid. The multiplicities of the bases
are given by the absolute values of the nonzero 3 x 3 minors and are thus equal to 1 or 2. Hence for g a
positive integer

Zp- (g,v), if ¢ is odd,

Z . (q,v), if ¢ is even.

ZF (q.v) q3{

By analogy with the graphic case (see Section we call an element ¢ € Hom(G, Z,) a proper (L, q)-
coloring if ¢(g.) # 0 for all e € E. We denote by x~(gq) the number of such colorings. Notice that
by definition this is equal to the evaluation of Z f (¢,v) at v = —1 for all e € E, that we denote by
ZE(q,—1). We call x£(q) the chromatic quasi-polynomial. We get the following “color’-interpretation
of the characteristic polynomial of M/ and the arithmetic characteristic polynomial of A:

Corollary 6.9 Let q be a positive integer.
Ifq € Zy (ﬁ), then
xe(q) = (=) gHA=ETL (1 — ¢,0).

Ifq € Za(L), then
xc(q) = (=) E gRAO=REI A1 (1 — ¢,0).

7 Generalized flows
For A C E define a homomorphism ¥? : Zj;‘ — G/qG by
wi(6) = 3 6(e)g. + G-
ecA

By analogy with g-flows in graphs (see Section , an element ¢ € ker(WY,) will be called a (£, g)-flow.
If in addition ¢(e) # 0 for all e € E, ¢ is called nowhere-zero. Hence a nowhere-zero (L, g)-flow is
amap ¢ : E — Zg \ {0} for which ) __ . ¢(e)ge = 0in G/qG. We denote by x7.(¢) the number of
nowhere-zero (L, q)-flows.

The multivariate arithmetic flow polynomial of L is defined by

Fr(g,v) = Z H(1+v65(¢(e)ﬂ0))
$eker(VL) e€E

Notice that by definition x7-(¢) is equal to the evaluation of F-(g,v) at v, = —1 for all e € F, that we
denote by F (g, —1). We call x7(q) the flow quasi-polynomial. Indeed we have:

Theorem 7.1 For positive integers q,

Fr(gv) =g ™9 TZ(G@t)' <H ve> ZE(q,q/v),
eckE

where q/v := {q/Ve}ecr- Moreover,
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1. If q € Zp (L), then

Fr(q,v) = (H ve> 77 (¢,9/v).

eck

2. Ifq € ZA(L), then
F,C(q,v) = #0) (H Uc) Z?(an/v)

The following result follows immediately from Theorem [7.1]and Formulae (1), 2).
Corollary 7.2 Let q be a positive integer.

1. If g € Zp (L), then
Xz(q) = (=)EI= 7,01 - g)

2. If g € Zs(L), then
Xz(a) = ()P E) (m(0)) " Me(0,1 - q)

8 Graphs

Let us see how colorings and flows on graphs may be generalized using the ideas in the previous sections.

Let G = (V, E) be a finite graph. Following [7]], we assume that E is a disjoint union £ = R U D,
where we call the elements of R regular edges and the elements of D dotted edges. (Of course we can
assume D = () and then G is a standard graph; however this general setting is necessary for having
deletion-contraction).

For each e = {i, j} € E choose an element £(e) € Z" such that all coordinates except possibly the ith
and jth are zero. Denote the ith coordinate of ¢(e) by e’. We denote by L and L, the lists of vectors in
ZV corresponding to elements of R and D respectively.

Then we look at the group G := Z" /(L p), and we identify the elements of L with the corresponding
cosets in G. This gives as an arithmetic matroid Ag . We denote by Zg ¢(g, v) the associated multivariate
arithmetic Tutte polynomial.

A proper (¢, q)-coloring is then a map ¢ : V' — Z, such that

o ¢(i)e! + ¢(j)e? # 0, for all edges e = {i,j} € R;
o ¢(i)e’ + ¢(j)e/ = 0, for all edges e = {i,j} € D.
A nowhere-zero (¢, q)-flow is amap ¢ : E — Z, such that ¢(e) # 0 for all e € R and such that the
weighted Kirchhoff laws hold:
Z p(e)e! =0, forallic V.

edi
We define the arithmetic chromatic quasi-polynomial x g ¢(q) and the arithmetic flow quasi-polynomial
Xg.0(q) of (G,¢) to be the functions that assign to each positive integer ¢ the number of proper (¢, )-
colorings and the number of nowhere-zero (¢, ¢)-flows respectively. It is easy to see that these definitions
agree with the more general ones given in the previous sections. Hence

Xg.e(q) = Z§ (g, —1)
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and
XG,0(q) = Fge(q, —1)

are truly quasi-polynomials.

Clearly these functions generalize the classical chromatic and flow polynomial (in which D = () and
e =1,e/ = —1foralle € R) and also their arithmetic versions introduced in [7] (in which e’ = —e7 # 0
and g € Z4(L)).

Let k be the number of connected components of the graph G, and V be the set of vertices of the graph
obtained from G by contracting all the dotted edges. Notice that k = rk(G) — rk(E) and |V| = 7k(G).
Then by Corollaries [6.9 and [7.2] we have the following results:

Corollary 8.1
o) = {(—u'”q%,m ~q,0) ifg € Za(L);
’ (

—D)VI=kgh TG (1= ,0)  ifq € Za(L).

o) = (_1)|R|*|Y\+quDI7IV\+IY\MQ’Z(O’1 —q) ifqEZA(L);
gL (_1)|R|—|V\+kq|D|—|V\+|V\Tg’f(o’ 1-q) ifq € Zr(L).

9 A geometrical interpretation in the realizable case

We keep the notation of the previous Sections. In particular, let £ be a list of elements in G = Gy ® G,
and let A be the arithmetic matroid defined by £ on the ground set E. For every B € B, we consider the
molecule [B\ I(B), BU E(B)].

Let Z(1(B)) = X cc1(p)0<t.<1 lege be the semi-open zonotope defined by I(B), and let P(B) the
set of its integer points. Notice that since I(B) is an independent set, the coefficients ¢, are uniquely
determined. Define a function

t:P(B) =N

in the following way: forevery p = > t.g. € P(B), let 1(p) be the number of e € I(B) such that ¢, = 0.

SetYg = ((B\ I(B)) U E(B). Let T(Yp) be the generalized toric arrangement defined by Yp; this
is a set of subgroups (hence submanifolds) in the abelian compact Lie group Hom(G, S*); namely, we
have one subgroup H, for every e € Y, having codimension 0 if e is torsion and 1 otherwise. Let C(B)
be the set of connected components of the subgroup Nec(p\1(B)) He- Define a function

n:C(B) >N

in the following way: for every ¢ € C(B), let (c) be the number of elements e € F(B) such that H, 2 c.
Then we have:
Theorem 9.1

Mg (z,y) = Z Z 2¢(P) Z y©)
)

BeB \peP(B) cec(B
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