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The multivariate arithmetic Tutte polynomial
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Abstract. We introduce an arithmetic version of the multivariate Tutte polynomial recently studied by Sokal, and a
quasi-polynomial that interpolates between the two. We provide a generalized Fortuin-Kasteleyn representation for
representable arithmetic matroids, with applications to arithmetic colorings and flows. We give a new proof of the
positivity of the coefficients of the arithmetic Tutte polynomial in the more general framework of pseudo-arithmetic
matroids. In the case of a representable arithmetic matroid, we provide a geometric interpretation of the coefficients
of the arithmetic Tutte polynomial.

Résumé. Nous introduisons une version arithmétique du polynôme de Tutte multivariée récemment étudié par Sokal,
et un quasi-polynôme qui interpole entre les deux. Nous proposons une représentation de Fortuin-Kasteleyn gener-
alisée pour les matroı̈des arithmétiques représentables, avec des applications aux colorations et flux arithmétiques.
Nous donnons une nouvelle preuve de la positivité des coefficients du polynôme de Tutte arithmétique dans le cadre
plus général des matroı̈des pseudo-arithmétiques. Dans le cas d’un matroı̈de arithmétique représentable, nous pro-
posons une interpretation geometrique des coefficients du polynôme de Tutte arithmetique.
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1 Introduction
In this paper we introduce a multivariate arithmetic Tutte polynomial, which generalizes many polynomi-
als that have appeared in the literature.

Recall that the Tutte polynomial is a bivariate polynomial with several well-known specializations: for
instance the chromatic polynomial of a graph, or the characteristic polynomial of a hyperplane arrange-
ment can be obtained by specializing the Tutte polynomial. Also, its coefficients are nonnegative, as
proved by Crapo by providing an explicit combinatorial interpretation ([12], [4]).

Recently, in [6, 9, 10], an arithmetic version of this polynomial has been studied. Namely, to a finite
list L of elements in a finitely generated abelian group G, one associates an arithmetic Tutte polynomial.
This is a bivariate polynomial, such that several geometric, algebraic or combinatorial invariants appear
as its specialization, for instance:

• the characteristic polynomial of the toric arrangement T (L). This is a family of subvarieties in the
linear algebraic group Hom(G,C∗) (see [9, Section 5]);
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• the Hilbert series of the Dahmen-Micchelli space DM(L). This vector space was introduced in
order to study vector partition functions (see [9, Section 6]);

• the Ehrhart polynomial of the zonotope Z(L) (see [9, Section 4] and [7]).

Furthermore, the arithmetic Tutte polynomial has applications to graph theory [7], and it has non-
negative coefficients, as proved in [6] by providing a combinatorial interpretation that extends Crapo’s
theorem.

The Tutte polynomial is naturally defined in the general framework of matroids, while the arithmetic
Tutte polynomial is associated to an arithmetic matroid A, which is a matroid and a multiplicity function
m. When A is represented by a list of elements of G, the function m encodes arithmetic information,
likewise the rank function encodes linear-algebraic information.

Recently, Sokal [11] studied a remarkable multivariate generalization of the Tutte polynomial. This is
a multivariate Tutte polynomial, having one variable ve for each element e of the matroid (or edge e of the
graph), and one extra variable q. If all the variables ve are set to be equal, we obtain a bivariate polynomial
that is essentially equivalent to the standard Tutte polynomial. In the case of graphs, Sokal’s polynomial
is known to physicists as the partition function of the q-state Potts model, which along with the related
Fortuin–Kasteleyn random-cluster model plays an important role in the theory of phase transitions and
critical phenomena. In this paper we introduce a multivariate arithmetic Tutte polynomial

ZA(q,v) :=
∑
A⊆E

m(A)q− rk(A)
∏
e∈A

ve.

(Here E is the ground set of the arithmetic matroid A, while rk and m are the rank and the multiplicity
functions respectively). As the name suggests, ZA(q,v) generalizes the polynomials above. It is naturally
defined starting from an arithmetic matroid, or more generally from what we call a pseudo-arithmetic
matroid (see Section 2). Actually, our polynomial encodes all the structure of the (pseudo-)arithmetic
matroid, i.e., it is possible to reconstruct A from ZA(q,v).

For this polynomial we prove a deletion-contraction recurrence (Lemma 3.2). Then we give a new
proof of the nonnegativity of the coefficients of the arithmetic Tutte polynomial in the framework of
pseudo-arithmetic matroids (Theorem 3.5). Even more, we show that pseudo-arithmetic matroids are
the most general objects closed under deletion and contraction and such that the associated arithmetic
Tutte polynomials have nonnegative coefficients. We also provide a generalization of Crapo’s formula
(Theorem 4.3).

When A is represented by a list L of elements in a finitely generated abelian group G, we provide a
Fortuin-Kasteleyn formula for ZA(q,v) (Theorem 6.6), with applications to arithmetic colorings. This
can be seen as a generalization of the “finite field method” for computing the characteristic polynomial or
the Tutte polynomial of a rational hyperplane arrangement [1, 2, 13], as well as a generalization of a simi-
lar result for toric arrangements [8]. We also introduce a generalized “flow polynomial” with applications
to arithmetic flows (see Theorem 7.1), which allows us to extend the results proved in [7] for graphs with
labeled edges (Corollary 8.1).

Furthermore, we introduce a quasi-polynomial ZPL (q,v) that interpolates between the ordinary and the
arithmetic multivariate Tutte polynomial (Theorems 6.3, 6.5, 6.6), and hence between ordinary and arith-
metic chromatic and flow polynomials. This quasi-polynomial is the partition function of a generalized
Potts models similar to the one studied by Caracciolo, Sportiello and Sokal, see [11, Section 3.2].
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Finally we give a geometrical interpretation for MA(x, y), holding for any representable A and gener-
alizing various formulae proved in [9, 6].

This is an extended abstract of the paper in preparation [3]; the reader may refer to it for the proofs
and updates.

2 Arithmetic matroids and multivariate Tutte polynomials
The notion of an arithmetic matroid tries to capture the linear algebraic and arithmetic information con-
tained in a finite list of vectors in Zn.

Let N := {0, 1, 2, . . .} and 2E := {A : A ⊆ E}, where E is a finite set. We recall that a matroid,M,
on E may be defined via its rank function, which is a function rk : 2E → N such that rk(∅) = 0 and
satisfying

(R1) if A,B ⊆ E and A ⊆ B, then rk(A) ≤ rk(B);

(R2) if A,B ⊆ E, then rk(A ∪B) + rk(A ∩B) ≤ rk(A) + rk(B).

If R ⊆ S ⊆ E let [R,S] := {A : R ⊆ A ⊆ S}. We say that [R,S] is a molecule if S is the disjoint
union S = R ∪ F ∪ T and for each A ∈ [R,S]

rk(A) = rk(R) + |A ∩ F |.

A pseudo-arithmetic matroid A = (M,m) is a matroidM with a function m : 2E → R, called pseudo-
multiplicity, satisfying the following axiom:

(P) If [R,S] is a molecule, then

ρ(R,S) := (−1)|T |
∑

A∈[R,S]

(−1)|S|−|A|m(A) ≥ 0.

An arithmetic matroid A is a set E with two functions rk : 2E → N, m : 2E → N \ {0}, called rank
and multiplicity respectively, satisfying the axioms (R1), (R2) , (P), and:

(A1) if A ⊆ E, v ∈ E, and rk(A ∪ {e}) = rk(A), then m(A ∪ {v}) divides m(A); otherwise m(A)
divides m(A ∪ {v});

(A2) if [R,S] is a molecule, then m(R) ·m(S) = m(R ∪ F ) ·m(R ∪ T ).

The dual of an arithmetic (or pseudo-arithmetic) matroid is defined as the matroid with the same ground
set E, rank function defined by rk∗(A) := |A| − rk(E) + rk(E \ A) and multiplicity function defined
by m∗(A) := m(E \ A). Notice that each of axioms (A1), (A2) and (P) is self-dual, so the dual of an
arithmetic matroid is indeed an arithmetic matroid.

Our definition of arithmetic matroid is equivalent to the one given in [6]. The main example of an
arithmetic matroid is the one associated to a finite list of elements of a finitely generated abelian group G,
see Section 5.
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Recall [4, 12] that to each matroidM is associated the Tutte polynomial

TM(x, y) =
∑
A⊆E

(x− 1)rk(E)−rk(A)(y − 1)|A|−rk(A)

that Sokal [11] generalized by defining a multivariate Tutte polynomial in the variables q−1, v = {ve}e∈E :

ZM(q,v) :=
∑
A⊆E

q− rk(A)
∏
e∈A

ve.

Similarly, to each arithmetic matroid A, is associated the arithmetic Tutte polynomial

MA(x, y) =
∑
A⊆E

m(A)(x− 1)rk(E)−rk(A)(y − 1)|A|−rk(A),

see [6, 9], that we are going to generalize by defining a multivariate arithmetic Tutte polynomial

ZA(q,v) :=
∑
A⊆E

m(A)q− rk(A)
∏
e∈A

ve.

Of course these polynomials are also defined for a pseudo-arithmetic matroid. Note that

ZM ((x− 1)(y − 1), y − 1) = (x− 1)− rk(E)TM(x, y); (1)

ZA ((x− 1)(y − 1), y − 1) = (x− 1)− rk(E)MA(x, y). (2)

(By v = y − 1 we mean that each variable ve is evaluated at y − 1).

3 Deletion-contraction and nonnegativity
Let A be an arithmetic matroid. Given an element e ∈ E, the deletion of A by e is the arithmetic matroid
A1 on the set E1 := E \ {e}, with rank function rk1 and multiplicity function m1 that are just the
restriction of the corresponding functions of A.

We also define the contraction of A by e as the matroid A2 on the set E2 := E \ {e} = E1, with rank
function rk2 given by rk2(A) := rk(A ∪ {e}) − rk({e}) and multiplicity function given by m2(A) :=
m(A ∪ {e}) for all A ⊆ E2.

Clearly, the same constructions hold for pseudo-arithmetic matroids.
If an arithmetic matroid A is represented by a list LE of elements of a finitely generated abelian group

G (see Section 5), it is easy to check that the deletion A1 is represented by the list LE1 in G, while the
contraction A2 is represented by the list E2 := {ga + 〈ge〉 : a ∈ E \ {e}} of cosets in G/〈ge〉.

We say that e ∈ E is:

• free (or a coloop) if both rk1(E \ {e}) = rk(E \ {e}) = rk(E)− 1 and rk2(E \ {e}) = rk(E)− 1;

• torsion (or a loop) if both rk1(E \ {e}) = rk(E) and rk2(E \ {e}) = rk(E);

• proper otherwise, i.e. if both rk1(E \ {e}) = rk(E) and rk2(E \ {e}) = rk(E)− 1.
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Remark 3.1 An interval [R,S] is a molecule if and only if, after contracting the arithmetic matroid
defined by S by all the elements in R, each of the remaining elements is either a coloop or a loop. In this
sense we use the word ”molecule” with a slightly more general meaning than in [6].

LetA be an arithmetic matroid, and letA1 andA2 be its deletion and contraction by an element e ∈ E.

Lemma 3.2
ZA(q,v) =

{
ZA1

(q,v) + ve ZA2
(q,v), if e is a loop;

ZA1(q,v) + (ve/q)ZA2(q,v), otherwise

We end this section by proving that the coefficients of the arithmetic Tutte polynomial of a pseudo-
arithmetic matroid are nonnegative.

Let B be the set of bases that can be extracted from E, and B∗ the bases of the dual matroid. Let us fix a
total order on E, and let us take B ∈ B. We say that e ∈ E \B is externally active on B if e is dependent
on the list of elements of B following it (in the total order fixed on E). We say that e ∈ B is internally
active on B if in the dual matroid e is externally active on the complement Bc := E \B ∈ B∗.

We denote by E(B) the set of externally active elements and by e(B) its cardinality, which is called
the external activity of B. In the same way, we denote by I(B) = E∗(Bc) the set of internally active
elements, and by i(B) its cardinaity, which is called the internal activity of B.

The proof of the following Proposition may be found in [4].

Proposition 3.3 Suppose that M is a matroid with ground set E and set of bases B. Then:

i) 2E is the disjoint union
2E =

⊔
B∈B

[B \ I(B), B ∪ E(B)].

ii) for each B ∈ B, [B \ I(B), B ∪ E(B)] is a molecule with F = I(B) and T = E(B).

Lemma 3.4 Let [R,S] be a molecule. Then∑
A∈[R,S]

m(A)(x− 1)rk(S)−rk(A)(y − 1)|A|−rk(A) =
∑

K⊆F,L⊆T

ρ(R ∪ L, S \K)x|K|y|L| =

=
1

m(R)

( ∑
K⊆F

ρ(R,R ∪ (F \K))x|K|
)( ∑

L⊆T

ρ(R ∪ L,R ∪ T )y|L|
)

Theorem 3.5 The coefficients of the arithmetic Tutte polynomial MA(x, y) of a pseudo-arithmetic ma-
troidA are nonnegative. Moreover, pseudo-arithmetic matroids are the most general objects closed under
deletion and contraction and such that the associated arithmetic Tutte polynomials have nonnegative co-
efficients.

4 Generalizations of Crapo’s formula
The following combinatorial interpretation of the coefficients of the Tutte polynomial was proved in [4].

Theorem 4.1 (Crapo)
T (x, y) =

∑
B∈B

xi(B)ye(B).
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Crapo’s formula has been extended in [6] to arithmetic matroids. In order to do that, one constructs a list
LE in which each maximal rank sublist S appears ρ(S)

.
= ρ(S,E) many times. Notice that if we extract

the bases from our list LE , each basis B will show up exactly m(B) times (by inclusion-exclusion).
Dually, we construct the list L∗E in the same way from the dual arithmetic matroid.
We denote by B the list of pairs (B, T ), whereB is a basis,B ⊆ T and T ∈ LE . The corresponding list

in the dual will be denoted by B∗. For every such pair (B, T ) we define E(B, T ) to be the set of elements
of T which are externally active for B. Then we define the local external activity e(B, T ) = |E(B, T )|.
Dually, we define E∗(Bc, T̃ ) in the same way for the basis Bc in the dual and T̃ ∈ L∗E .

Let ψ be the bijection between B and B∗ introduced in [6], and defined as follows. For every basis
B, identify the pairs (B, T ) and (B, T ′) ∈ B whenever E(B, T ) = E(B, T ′); dually, identify the pairs
(BC , S) and (BC , S′) ∈ B∗ whenever E∗(BC , S) = E∗(BC , S′). Then let ψB be a bijection between
the pairs (B, ·) and the pairs (BC , ·) that equidistributes these pairs among each others (this exists by [6];
see this paper for details and examples). Let ψ be the ”join” of all these matchings ψB , B ∈ B. We denote
by I(B, T )

.
= E∗(ψ(B, T )) and we define the local internal activity i(B, T ) = |I(B, T )|.

Theorem 4.2 (D’Adderio-Moci)

MA(x, y) =
∑

(B,T )∈B

xi(B,T )ye(B,T ).

We can extend this theorem to the multivariate arithmetic Tutte polynomial:

Theorem 4.3

ZA(q,v) = ZA(q,v)
.
= q− rk(E)

∑
(B,T )∈B

∏
b∈B

vb
∏

e∈E(B,T )

(ve + 1)
∏

i∈I(B,T )

(
q

vi
+ 1)

In particular when all the multiplicities are 1, we get an analogue of Crapo’s formula for Sokal’s poly-
nomial, i.e. Corollary ??.

5 Representable arithmetic matroids
Let L = (ge)e∈E be a finite list of vectors in a finitely generated abelian groupG. Recall that such a group
is isomorphic to Gf ⊕Gt, where Gt is finite and Gf is free abelian, i.e., it is isomorphic to Zr for some
r ≥ 0. ThenGt is called the torsion ofG and r := rk(G) is the rank ofG. A matroid with ground setE is
naturally defined by rk(A) = rk(〈LA〉) where LA = (ge)e∈A and 〈LA〉 is the subgroup generated by LA.
In addition to the matroid structure L carries arithmetic information which is encoded as multiplicities.
For A ⊆ E, let HA be the maximal subgroup of G such that 〈LA〉 ≤ HA and |HA : 〈LA〉| < ∞,
where |HA : 〈LA〉| denotes the index (as subgroup) of 〈LA〉 in HA. The multiplicity m(A) is defined as
m(A) := |HA : 〈LA〉|.

Equivalently, we can define GA :=
(
G/〈LA〉

)
t

as the torsion subgroup of G/〈LA〉, and m(A) :=
|GA|.

The fact that this function satisfies the original five axioms for an arithmetic matroid (and hence our
axioms) has been verified in [6]; for (A1)–(A2) this also follows from Lemma 5.2 and 5.3 below.

Remark 5.1 The most familiar situation is when G = Zn. However if we want to allow for deletion and
contraction (see Section 3) we need the above more general setup.
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We will denote byML the matroid determined by L, and by AL = (ML,m) the arithmetic matroid
determined by L. We say that an arithmetic matroid is representable if it comes from such a list.

Lemma 5.2 Let A ⊂ E and e ∈ E \A. If rk(A) < rk(A∪{e}) then there exists a group monomorphism
GA ↪→ GA∪{e}. If rk(A) = rk(A ∪ {e}) then there exists a group epimorphism GA � GA∪{e}.

Furthermore, if A ⊆ B ⊆ E are such that rk(A) = rk(B), the composition morphism GA � GB
does not depend on the order chosen on B \ A. In the same way, if rk∗(A) = rk∗(B), the composition
morphism GA ↪→ GB does not depend on the order chosen on B \A.

Lemma 5.3 For each molecule [R,R ∪ F ∪ T ]

GR∪F
GR

∼=
GR∪F∪T
GR∪T

.

6 A Fortuin-Kasteleyn quasi-polynomial
Let G = (V,E) be a finite graph with vertex set V and edge set E. In [11] the multivariate Tutte
polynomial of a graph was defined as

ZG(q,v) :=
∑
A⊆E

qk(A)
∏
e∈A

ve,

where k(A) denotes the number of connected components in the subgraph (V,A). The multivariate Tutte
polynomial has an interpretation in statistical physics as the partition function of the q-state Potts model.

Theorem 6.1 (Fortuin–Kasteleyn) For any positive integer q,

ZG(q,v) =
∑

σ:V→[q]

∏
e=ij∈E

(1 + veδ(σ(i), σ(j))),

where δ is the Kronecker delta and [q] := {1, . . . , q}.
Theorem 6.1 is known as the Fortuin–Kasteleyn representation of the q-state Potts model. Our main goal
of this section is to generalize this theorem to list of vectors in finitely generated abelian groups.

We define here a generalization of the Potts model which is similar to the one studied by Caracciolo,
Sportiello and Sokal, see [11, Section 3.2]. Let L = (ge)e∈E be a list of elements in a finitely generated
abelian group G, and let H be a finite abelian group. Then

ZL(G,H,v) :=
∑

φ∈Hom(G,H)

∏
e∈E

(1 + veδ(φ(ge), 0)).

The special case when H = Zq := Z/qZ will be particularly interesting, and we set

ZPL (q,v) :=
∑

φ∈Hom(G,Zq)

∏
e∈E

(1 + veδ(φ(ge), 0)).

We will prove that ZPL (q,v) is a quasi-polynomial in q that interpolates between the arithmetic multi-
variate Tutte polynomial ZAL(q,v) of the arithmetic matroid AL and the multivariate Tutte polynomial
ZML(q,v) of its underlying matroidML.
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Remark 6.2 Notice that ZPL (q,v) is not an invariant of the arithmetic matroid. For instance, the empty
list in Z4 defines the same arithmetic matroid as the empty list in Z2 ⊕ Z2, but ZPL (2,v) is equal to 2 in
the former case, and to 4 in the latter.

For a group G integer q let qG := {qh : h ∈ G}, where Z acts on G in the usual way.

Theorem 6.3 If H ∼= ⊕ki=1Zqi and q = |H|, then

ZPL (G,H,v) = qrk(G)
∑
A⊆E

q− rk(A)
k∏
i=1

m(A)

|qiGA|
∏
e∈A

ve.

Remark 6.4 Since (q + |G|)G = qG holds for any finite group G it follows that ZPL (q,v) is a quasi-
polynomial in q.

Let LCM(L) denote the least common multiple of all m(B), where B ⊆ E is a bases. When G = Zn
and L has rank r, then LCM(L) equals the least common multiple of all non-zero r × r minors of L.
Define two subsets of Z+ := {n ∈ Z : n > 0} as follows

ZM (L) := {q ∈ Z+ : GCD(q,LCM(L)) = 1},
ZA(L) := {q ∈ Z+ : qGB = (0) for all bases B ⊆ E}.

For example if q is a multiple of LCM(L), then q ∈ ZA(L).

Theorem 6.5 Let |H| = q. Then q ∈ ZM (L) if and only if

ZPL (G,H,v) = qrk(G)ZML(q,v),

as a polynomial in v.

Note that when L ⊂ Zn = G is a totally unimodular matrix, i.e., m(B) = 1 for all bases B, then
ZM (L) = ZA(L) = Z+. Thus Theorem 6.5 extends [11, Theorem 3.1] and can also be seen as a refine-
ment of the “finite field method” to compute the characteristic polynomial of a hyperplane arrangement,
see [2] (or its Tutte polynomial, see [1, 13]). The proof of the following Theorem follows immediately
from Theorem 6.3:

Theorem 6.6 Let q be a positive integer. Then q ∈ ZA(L) if and only if

ZPL (q,v) = qrk(G)ZAL(q,v),

as a polynomial in v.

Theorem 6.6 is a refinement of the finite field method to compute the characteristic polynomial of a
toric arrangement, see [8].

Example 6.7 Let us see why Theorem 6.1 is a special case of Theorem 6.6. Let G = (V,E) be a graph
on V = [n]. Let further G = Zn and L = (ge)e∈E where ge is the vector with ith coordinate 1 and jth
coordinate −1 and the other coordinates 0, where e = {i, j} and i < j. Then m(A) = 1 for all A since
the matrix L is totally unimodular, and hence GA = (0) for all A ⊆ E. Moreover Hom(G,Zq) = ZVq so
Theorem 6.1 follows.
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Example 6.8 Let G = Z3 and

L =

 1 1 0 0 0 1 1
0 1 1 1 0 0 1
0 0 0 1 1 1 1

 .
ThenML is the non–Fano matroid F−7 , which is not a regular matroid. The multiplicities of the bases
are given by the absolute values of the nonzero 3 × 3 minors and are thus equal to 1 or 2. Hence for q a
positive integer

ZPL (q,v) = q3

{
ZF−7

(q,v), if q is odd,

ZAL(q,v), if q is even.

By analogy with the graphic case (see Section 8) we call an element φ ∈ Hom(G,Zq) a proper (L, q)-
coloring if φ(ge) 6= 0 for all e ∈ E. We denote by χL(q) the number of such colorings. Notice that
by definition this is equal to the evaluation of ZPL (q,v) at ve = −1 for all e ∈ E, that we denote by
ZPL (q,−1). We call χL(q) the chromatic quasi-polynomial. We get the following “color”-interpretation
of the characteristic polynomial ofML and the arithmetic characteristic polynomial of AL:

Corollary 6.9 Let q be a positive integer.
If q ∈ ZM (L), then

χL(q) = (−1)rk(E)qrk(G)−rk(E)TL(1− q, 0).

If q ∈ ZA(L), then
χL(q) = (−1)rk(E)qrk(G)−rk(E)ML(1− q, 0).

7 Generalized flows
For A ⊆ E define a homomorphism Ψq

A : ZAq → G/qG by

Ψq
A(φ) =

∑
e∈A

φ(e)ge + qG.

By analogy with q-flows in graphs (see Section 8), an element φ ∈ ker(Ψq
E) will be called a (L, q)-flow.

If in addition φ(e) 6= 0 for all e ∈ E, φ is called nowhere-zero. Hence a nowhere-zero (L, q)-flow is
a map φ : E → Zq \ {0} for which

∑
e∈E φ(e)ge = 0 in G/qG. We denote by χ∗L(q) the number of

nowhere-zero (L, q)-flows.
The multivariate arithmetic flow polynomial of L is defined by

FL(q,v) :=
∑

φ∈ker(Ψq
E)

∏
e∈E

(1 + veδ(φ(e), 0)).

Notice that by definition χ∗L(q) is equal to the evaluation of FL(q,v) at ve = −1 for all e ∈ E, that we
denote by FL(q,−1). We call χ∗L(q) the flow quasi-polynomial. Indeed we have:

Theorem 7.1 For positive integers q,

FL(q,v) = q− rk(G) |qGt|
m(∅)

(∏
e∈E

ve

)
ZPL (q, q/v),

where q/v := {q/ve}e∈E . Moreover,
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1. If q ∈ ZM (L), then

FL(q,v) =

(∏
e∈E

ve

)
ZML (q, q/v).

2. If q ∈ ZA(L), then

FL(q,v) =
1

m(∅)

(∏
e∈E

ve

)
ZAL (q, q/v).

The following result follows immediately from Theorem 7.1 and Formulae (1), (2).

Corollary 7.2 Let q be a positive integer.

1. If q ∈ ZM (L), then
χ∗L(q) = (−1)|E|−rk(E)TL(0, 1− q)

2. If q ∈ ZA(L), then
χ∗L(q) = (−1)|E|−rk(E) (m(∅))−1

ML(0, 1− q)

8 Graphs
Let us see how colorings and flows on graphs may be generalized using the ideas in the previous sections.

Let G = (V,E) be a finite graph. Following [7], we assume that E is a disjoint union E = R ∪ D,
where we call the elements of R regular edges and the elements of D dotted edges. (Of course we can
assume D = ∅ and then G is a standard graph; however this general setting is necessary for having
deletion-contraction).

For each e = {i, j} ∈ E choose an element `(e) ∈ ZV such that all coordinates except possibly the ith
and jth are zero. Denote the ith coordinate of `(e) by ei. We denote by LR and LD the lists of vectors in
ZV corresponding to elements of R and D respectively.

Then we look at the group G := Zn/〈LD〉, and we identify the elements of LR with the corresponding
cosets inG. This gives as an arithmetic matroidAG,`. We denote by ZG,`(q,v) the associated multivariate
arithmetic Tutte polynomial.

A proper (`, q)-coloring is then a map φ : V → Zq such that

• φ(i)ei + φ(j)ej 6= 0, for all edges e = {i, j} ∈ R;

• φ(i)ei + φ(j)ej = 0, for all edges e = {i, j} ∈ D.

A nowhere-zero (`, q)-flow is a map φ : E → Zq such that φ(e) 6= 0 for all e ∈ R and such that the
weighted Kirchhoff laws hold: ∑

e3i
φ(e)ei = 0, for all i ∈ V.

We define the arithmetic chromatic quasi-polynomial χG,`(q) and the arithmetic flow quasi-polynomial
χ∗G,`(q) of (G, `) to be the functions that assign to each positive integer q the number of proper (`, q)-
colorings and the number of nowhere-zero (`, q)-flows respectively. It is easy to see that these definitions
agree with the more general ones given in the previous sections. Hence

χG,`(q) = ZPG,`(q,−1)
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and
χ∗G,`(q) = FG,`(q,−1)

are truly quasi-polynomials.
Clearly these functions generalize the classical chromatic and flow polynomial (in which D = ∅ and

ei = 1, ej = −1 for all e ∈ R) and also their arithmetic versions introduced in [7] (in which ei = −ej 6= 0
and q ∈ ZA(L)).

Let k be the number of connected components of the graph G, and V be the set of vertices of the graph
obtained from G by contracting all the dotted edges. Notice that k = rk(G) − rk(E) and |V | = rk(G).
Then by Corollaries 6.9 and 7.2 we have the following results:

Corollary 8.1

χG,`(q) =

{
(−1)|V |−kqkMG,`(1− q, 0) if q ∈ ZA(L);

(−1)|V |−kqkTG,`(1− q, 0) if q ∈ ZM (L).

χ∗G,`(q) =

{
(−1)|R|−|V |+kq|D|−|V |+|V |MG,`(0, 1− q) if q ∈ ZA(L);

(−1)|R|−|V |+kq|D|−|V |+|V |TG,`(0, 1− q) if q ∈ ZM (L).

9 A geometrical interpretation in the realizable case
We keep the notation of the previous Sections. In particular, let L be a list of elements in G = Gf ⊕Gt,
and let A be the arithmetic matroid defined by L on the ground set E. For every B ∈ B, we consider the
molecule [B \ I(B), B ∪ E(B)].

Let Z(I(B)) =
∑
e∈I(B),0≤te<1 tege be the semi-open zonotope defined by I(B), and let P(B) the

set of its integer points. Notice that since I(B) is an independent set, the coefficients te are uniquely
determined. Define a function

ι : P(B)→ N

in the following way: for every p =
∑
tege ∈ P(B), let ι(p) be the number of e ∈ I(B) such that te = 0.

Set YB
.
= ((B \ I(B)) ∪ E(B). Let T (YB) be the generalized toric arrangement defined by YB ; this

is a set of subgroups (hence submanifolds) in the abelian compact Lie group Hom(G,S1); namely, we
have one subgroup He for every e ∈ YB , having codimension 0 if e is torsion and 1 otherwise. Let C(B)
be the set of connected components of the subgroup ∩e∈(B\I(B))He. Define a function

η : C(B)→ N

in the following way: for every c ∈ C(B), let η(c) be the number of elements e ∈ E(B) such thatHe ⊇ c.
Then we have:

Theorem 9.1

ML(x, y) =
∑
B∈B

 ∑
p∈P(B)

xι(p)

 ∑
c∈C(B)

yη(c)

 .
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