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An algorithm which generates linear
extensions for a non-simply-laced d-complete
poset with uniform probability
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Abstract. The purpose of this paper is to present an algorithm which generates linear extensions for a non-simply-
laced d-complete poset with uniform probability.

Résumé. Le but de ce papier est présenter un algorithme qui produit des extensions linéaires pour une non-simply-
laced d-complete poset avec probabilité constante.

Keywords: d-complete posets, algorithm, linear extension, uniform generation

1 Introduction

In [7](Theorem 4.2), J. Stembridge classified irreducible minuscule elements of Kac-Moody Weyl group
over a root system @ into three classes below:

o ® is simply-laced,

e & has the form %:<:OI—% - O—0  (namely, of type B) , or

e ® has the form _Om—O 9—9:@00—% - O—0  (we say type F,,, for simplicity).

In [5][6], the author and S. Okamura constracted an algorithm which generates reduced decompositions
for a given minuscule element of simply-laced Weyl group with uniform probability. The algorithm in
[6] is described in terms of graphs. Simply-laced minuscule elements are described as certain simple
acyclic di-graphs. The transitive-closure of the graph is called a d-complete poset. Then, the reduced
decompositions are identified with linear extensions of the graph. This algorithm gives a proof of the
hook formula [[1]] for the number of reduced decompositions of a minuscule element in simply-laced case.

In this paper, we present an algorithm (algorithm A) in terms of graphs (See Section 2 for details).
This algorithm is a generalization of an algorithm in [S]][6]. We define a certain acyclic multi-di-graph
corresponding to a minuscule element of type B (resp. type F,,) in Section 3 (resp. Section 4). Our
main result (Theorem [5.1)) is that the algorithm A generates linear extensions for a minuscule element of
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type B and F},, with uniform probability. More precisely, the probability the algorithm A generates linear
extension L of a graph S is given by:

[Tes(l+ #Hs (v)*)
#8S! ’

where Hg (v)+ is a certain subset of S (See Section 2 for detail). This (I.I) is independent from the
choice of L. Hence, we get the hook formula for the number of linear extensions of a given shape S of
type B and F,,,. Namely, the number of linear extensions of a shape S is given by:

48!
[Toes(1+#Hs (v)7)

In section 6, we give a Lie theoretical description of shape of type B and F,.

(1.1)

2 An algorithm for a graph I"

Let ' = (T'; A, 0,1) be a finite acyclic multi-di-graph, where A denotes the set of arrows of T, i(a) the
sink of @ € A, and o(a) the source of a € A.

Definition 2.1 Put d := #T. A bijection L : {1,--- ,d} — T is said to be a linear extension of I" if:
L(k) =o(a) and i(a) = L(l) impliesk > 1, k,le{l,---.,d}, a€A.
The set of linear extensions of T is denoted by L (T).
For a given v € T, we define a set Hp (v) " by:
Hr (v)* :={a€ AT)|v=o0(a)}.
For a given I', we call the following algorithm the algorithm A for I
GNWI. Seti:=0andset'yg:=1T.
GNW2. (Now I'; has d — i nodes.) Set j := 1 and pick a node v; € T'; with the probability 1/(d — 7).

GNW3. If #Hr, (v;)* # 0, pick an arrow ajy1 € Hr, (v;)" with the probability 1/#Hr, (v;)". If not,
go to GNWS.

GNW4. Setv; 41 :=i(a;). Set j := j + 1 and return to GNW3.
GNWS5. (Now #Hr, (v;)" =0.) Set L(i +1) := v; and set T';, ; := I'; \ v; (the graph deleted v; from I';).
GNWG6. Seti:=1+ 1. If 7 < d, return to GNW2; if ¢ = d, terminate.

We note that the algorithm A stops in finite time since I' is acyclic. By the definition of the algorithm A
for T, the map L : ¢ — L(i) generated above is a linear extension of I". We denote by Probr (L) the
probability we get L € £ (T') by the algorithm A.
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3 Shapes of type B

We denote by N the set of non-negative integers. We define a set B by:
B:={(ij) e NxN|i<j}.
The set B is depicted in FIGURE 3.1} We equip the B with the partial order:

(i,j) < (i",j") <= i>4i and j>j'.

|

Fig. 3.1: The set B

Definition 3.1 Let S be a finite order filter of B. We induce to S a graph structure by:

“i=j and i' =i,j' > ",
“i<joand i =i,f' > "
“i<jand @' >, =5,

or “i<jand i =j,j >,
(i,5) = (¢',5") ifandonlyif “i<j and i =j =j”,

(i,5) = (¢',5") if and only if

and there exists no other adjacency relation. Here, v — v' means there exists exactly one arrow from v
to v', and v = v’ there exists exactly two arrows from v to v'. A graph S is called a shape of type B. See
F]GUREfor examples of Hg (v)*.

| |

Fig.3.2: Hs (u)*, Hs (v)", and Hg (w) ™.

Remark 3.2 A shape of type B as poset is order-isomorphic to a shifted shape. Shifted shapes are also
realized as d-complete posets over a root system of type D. The graph-structure of shapes of type D is
described in [I6]] and compatible with notion of hooks (or called bars) of shifted shapes. The algorithm A
depends not only on poset-structure but on graph-structure. Hence, we do not consider shapes of type B
as shifted shapes.



664 Kento NAKADA

4 Shapes of type F,,, (m > 2).

We denote by Z the set of integers. Let m be an integer greater than or equal to 2. We define a set I, by:

1=0 and j > —m,
Froi=¢ (,j) ENXxZ|i=1 and j >0, or
2<i<m and j=0

For example, the set F3 is depicted in FIGURE[.1] We equip the [F,,, with the partial order:

(i,j) < (i",j") <= i>4 and j>j'.

L1

Fig. 4.1: The set F3

Definition 4.1 Let S be a finite order filter of F,,. We induce to S a graph structure by:

“i=0,j<—1and i £—j. i >j"
“—07=0, and j' > 0",
“=1,j=0, and ' = 1,7 > 0",
(i,7) — (7', j") if and only if “=1,7=0, and i’ > 1,5 =07,
“>925=0, and ' >4, =07,
“i>1and i' =i,§' >,

or “5>1and 7 >i,5 =37,

(i,5) = (i',5") ifandonlyif “i=0,7=0, and 0<i',j/ =0,

and there exists no other adjacency relation. A graph S is called a shape of type F,,. See FIGURE
for examples of Hg (v) ™.
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5 Main result
Now, we can state the main theorem:

Theorem 5.1 Let S be a shape of type B or type F,, for some m > 2. Let L € L (S). Then the algorithm
A for S generates L with the probability

[T,es(1+#Hs (v)*)
#S! ’

Since the right hand side of (5.1} is independent from the choice of L € £ (.S), we have:

Probg(L) = (5.1

Corollary 5.2 Let S be a shape of type B or type F,, for some m > 2. Then we have:

45!
[Toes(+#Hs (v)")

6 Lie theoretical description of main result and Remarks

In this section, we fix a (not necessary simply-laced) Kac-Moody Lie algebra g with a simple root system
II = { Q; ‘ el } For all undefined terminology in this section, we refer the reader to [2] [3].

#L(5) =

Definition 6.1 An integral weight \ is said to be pre-dominant if:
(A, BY) > =1 foreach " € @Y,

where ®Y denotes the set of positive real coroots. The set of pre-dominant integral weights is denoted by
P>_4. For A\ € P>_y, we define the set D(\)" by:

DAY :={pY e®Y|(\ BY)=-1}.
The set D(N)Y is called the shape of \. If #D(\)¥ < oo, then X is called finite.

Proposition 6.2 (see [4]) Let A\ € P>_; be finite and Y ,~vY € D(A) satisfy 3¥ > ~" in the ordinary
order of coroots. Then we have:
(B,vY)=0,1, or 2.

By proposition we introduce graph-structure into D(A)¥ by:
BY =Y e BY >4" and (B,7Y) =1.
B =4Y &Y >4 and (B, 7Y) = 2.
If ¥ £ 4V, or BY >+Y and (B, 7") = 0, then no arrows from 3 to vV exist.
Thus, we get a finite acyclic multi-di-graph D(\)¥ for a finite A € P>_;.

Remark 6.3 The finite pre-dominant integral weights \ are identified with the minuscule elements w [4].
And, we have D(\) = { 8¥ € ®Y |w™(8Y) < 0}. Furthermore, the linear extensions of D(\)" are
identified with the reduced decompositions of w [4] by the following one-to-one correspondence:

Red(w) 3 (84, 8ips 5 8i,) «— L € LDWA)Y), L(k)=si - 5i,_, (i)Y €D (k=1,---d),

where Red(w) denotes the set of reduced decompositions of w, d = £(w) the length of w.
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6.1 Case of type B
Suppose that the underlying Dynkin diagram is of type B:

0 1 2
Let W = (sg, S1, S2, - - - ) be the Weyl group. Let Ag be the 0-th fundamental weight. Then each A € WA,
is a finite pre-dominant integral weight. And, D(A)Y is graph-isomorphic with some shape of type B
defined in section 3.

Remark 6.4 Let Wy := (s1, 82, - - - ) be a maximal parabolic subgroup of W, which is the Weyl group of
type A. Then a minimal coset representative w in W /W is called a Lagrangian Grassmannian element.

Let A\ € WAq. Then the corresponding minuscule element w in remark [6.3|is a Lagrangian Grass-
mannian element. Our result gives the number of reduced decompositions of Lagrangian Grassmannian
element w.

6.2 Caseoftype F,, (m > 2)

Let m € Z be greater than or equal to 2. Suppose that the underlying Dynkin diagram is of type F,,:

—m -2 -1 0 1
Let W = (s_p, ++ ,8_2,5_1, S0, 1, - - ) be the Weyl group. Let A_,, be the (—m)-th fundamental
weight. Then each A € P>_; N WA_,, is a finite pre-dominant integral weight. And, D(\)" is graph-

isomorphic with some shape of type F},, defined in section 4.
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