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Classification of Ehrhart polynomials of
integral simplices
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Abstract. Let δ(P) = (δ0, δ1, . . . , δd) be the δ-vector of an integral convex polytope P of dimension d. First, by
using two well-known inequalities on δ-vectors, we classify the possible δ-vectors with

∑d
i=0 δi ≤ 3. Moreover, by

means of Hermite normal forms of square matrices, we also classify the possible δ-vectors with
∑d

i=0 δi = 4. In
addition, for

∑d
i=0 δi ≥ 5, we characterize the δ-vectors of integral simplices when

∑d
i=0 δi is prime.

Résumé. Soit δ(P) = (δ0, δ1, . . . , δd) le δ-vecteur d’un polytope intégrante de dimension d. Tout d’abord, en
utilisant deux bien connus des inégalités sur δ-vecteurs, nous classons les δ-vecteurs possibles avec

∑d
i=0 δi ≤ 3. En

outre, par le biais de Hermite formes normales, nous avons également classer les δ-vecteurs avec
∑d

i=0 δi = 4. De
plus, pour

∑d
i=0 δi ≥ 5, nous caractérisons les δ-vecteurs des simplex inégalités lorsque

∑d
i=0 δi est premier.
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1 Introduction
One of the most attractive problems on enumerative combinatorics of convex polytopes is to find a com-
binatorial characterization of the Ehrhart polynomials of integral convex polytopes. In particular, the
δ-vectors of integral simplices play an important and interesting role.

Let P ⊂ RN be an integral polytope, i.e., a convex polytope any of whose vertices has integer coordi-
nates, of dimension d, and let ∂P denote the boundary of P . Given a positive integer n, we define

i(P, n) = |nP ∩ ZN | and i∗(P, n) = |n(P \ ∂P) ∩ ZN |,

where nP = {nα : α ∈ P}, n(P \ ∂P) = {nα : α ∈ P \ ∂P} and |X| is the cardinality of a finite set
X . The systematic study of i(P, n) originated in the work of Ehrhart [2], who established the following
fundamental properties:

(0.1) i(P, n) is a polynomial in n of degree d;

(0.2) i(P, 0) = 1;
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(0.3) (loi de réciprocité) i∗(P, n) = (−1)di(P,−n) for every integer n > 0.

We say that i(P, n) is the Ehrhart polynomial of P . We refer the reader to [1, Chapter 3], [3, Part II] or
[10, pp. 235–241] for the introduction to the theory of Ehrhart polynomials.

We define the sequence δ0, δ1, δ2, . . . of integers by the formula

(1− λ)d+1
∞∑

n=0

i(P, n)λn =

∞∑
i=0

δiλ
i. (1)

Then the basic facts (0.1) and (0.2) on i(P, n) together with a fundamental result on generating func-
tion [10, Corollary 4.3.1] guarantee that δi = 0 for every i > d. We say that the sequence (resp. the
polynomial)

δ(P) = (δ0, δ1, . . . , δd)

(
resp. δP(t) =

d∑
i=0

δit
i

)
which appears in 1 is called the δ-vector (resp. the δ-polynomial) of P . Alternate names of δ-vectors are,
for example, Ehrhart h-vector, Ehrhart δ-vector or h∗-vector. By the reciprocity law (0.3), one has

∞∑
n=1

i∗(P, n)λn =

∑d
i=0 δd−iλ

i+1

(1− λ)d+1
. (2)

The following properties on δ-vectors are well known:

• By 1, one has δ0 = i(P, 0) = 1 and δ1 = i(P, 1)− (d+ 1) = |P ∩ ZN | − (d+ 1).

• By 2, one has δd = i∗(P, 1) = |(P \ ∂P) ∩ ZN |. In particular, we have δ1 ≥ δd.

• Each δi is nonnegative [9].

• If δd 6= 0, then one has δ1 ≤ δi for every 1 ≤ i ≤ d− 1 [4].

• It follows from 2 that

max{j : δj 6= 0}+min{k : k(P − ∂P) ∩ ZN 6= ∅} = d+ 1.

• When d = N , the leading coefficient of i(P, n), which coincides with
∑d

i=0 δi/d!, is equal to the
usual volume of P [10, Proposition 4.6.30]. In general, the positive integer

∑d
i=0 δi is called the

normalized volume of P .

On the classification problem of the δ-vectors of integral convex polytopes, when we consider the
possible δ-vectors of small dimensions, all of them are essentially given in [8] when d = 2. However, the
possible δ-vectors are presumably open when d ≥ 3.

In this article, we discuss the δ-vectors of small normalized volumes. In particular, the δ-vectors of
integral simplices play a crucial role when

∑d
i=0 δi ≤ 4.

A brief overview of this article is as follows. After reviewing some well-known technique how to
compute the δ-vectors of integral simplices in Section 1, we study the possible δ-vectors of

∑d
i=0 δi ≤ 3
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by using two well-known inequalities on δ-vectors in Section 2. In Section 3, we consider the case where∑d
i=0 δi = 4 by considering all the δ-vectors of all the integral simplices up to some equivalence. In

Section 4, we discuss the δ-vectors of integral simplices when
∑d

i=0 δi is prime and we classify the
possible δ-vectors of integral simplices of

∑d
i=0 δi = 5 and 7.

2 Review on the computation of the δ-vectors of integral simplices
Before proving our theorems, we recall a combinatorial technique to compute the δ-vector of an integral
simplex.

Given an integral simplex F ⊂ RN of dimension d with the vertices v0, v1, . . . , vd, we set

S =

{
d∑

i=0

ri(vi, 1) ∈ RN+1 : 0 ≤ ri < 1

}
∩ ZN+1 and

S∗ =

{
d∑

i=0

ri(vi, 1) ∈ RN+1 : 0 < ri ≤ 1

}
∩ ZN+1.

We define the degree of an integer point (α, n) ∈ S ((α, n) ∈ S∗) with deg(α, n) = n, where α ∈ ZN

and n ∈ Z≥0. Let δi = |{α ∈ S : degα = i}| and δ∗i = |{α ∈ S∗ : degα = i}|. Then we have

Lemma 2.1 Work with the same notation as above. Then we have

(a)
∞∑

n=0

i(F , n)λ =
δ0 + δ1λ+ · · ·+ δdλ

d

(1− λ)d+1
;

(b)
∞∑

n=0

i(F∗, n)λ =
δ∗1λ+ · · ·+ δ∗d+1λ

d+1

(1− λ)d+1
;

(c)

δ∗i = δd+1−i for 1 ≤ i ≤ d+ 1.

We also recall the following

Lemma 2.2 [1, Theorem 2.4] Suppose that (δ0, δ1, . . . , δd) is the δ-vector of an integral convex polytope
of dimension d. Then there exists an integral convex polytope of dimension d + 1 whose δ-vector is
(δ0, δ1, . . . , δd, 0).

Note that the required δ-vector is obtained by forming the pyramid over the integral convex polytope.



594 Akihiro Higashitani

3 Two well-known inequalities on δ-vectors
In this section, we present two well-known inequalities on δ-vectors. By using them, we give the complete
classification of the possible δ-vectors of integral convex polytopes with

∑d
i=0 δi ≤ 3.

Let s = max{i : δi 6= 0}. Stanley [11] shows the inequalities

δ0 + δ1 + · · ·+ δi ≤ δs + δs−1 + · · ·+ δs−i, 0 ≤ i ≤ [s/2] (3)

by using the theory of Cohen–Macaulay rings. On the other hand, the inequalities

δd + δd−1 + · · ·+ δd−i ≤ δ1 + δ2 + · · ·+ δi+1, 0 ≤ i ≤ [(d− 1)/2] (4)

appear in [4, Remark (1.4)]. A proof of the inequalities 4 is given by using combinatorics on convex
polytopes.

Somewhat surprisingly, when
∑d

i=0 δi ≤ 3, the above inequalities 3 together with 4 give a characteri-
zation of the possible δ-vectors. In fact,

Theorem 3.1 Given a finite sequence (δ0, δ1, . . . , δd) of nonnegative integers, where δ0 = 1, which sat-
isfies

∑d
i=0 δi ≤ 3, there exists an integral convex polytope P ⊂ Rd of dimension d whose δ-vector

coincides with (δ0, δ1, . . . , δd) if and only if (δ0, δ1, . . . , δd) satisfies all inequalities 3 and 4. Moreover,
all integral convex polytopes can be chosen to be simplices.

Note that the “Only if” part of Theorem 3.1 is obvious. Thus we may show the “If” part. Moreover,
when

∑d
i=0 δi = 1, it is obvious that the possible sequence is only (1, 0, . . . , 0) and this is a δ-vector of

some integral convex polytope, in particular, integral simplex. A sketch of a proof of the “If” part with∑d
i=0 δi = 2 or 3 is as follows:

• When
∑

i=0 δi = 2, the possible integer sequence looks like (1, 0, . . . , 0, 1︸︷︷︸
i

, 0, . . . , 0) ∈ Zd+1,

where 1︸︷︷︸
i

means that δi = 1. On the other hand, we have i ≤ b(d + 1)/2c by 4. Hence we may

find an integral convex polytope, in particular, an integral simplex, whose δ-vector coincides with
that. Note that we may construct such simplex with i = b(d+ 1)/2c by virtue of Lemma 2.2.

• When
∑

i=0 δi = 3, we have two candidates of the possible integer sequences.

– When (1, 0, . . . , 0, 2︸︷︷︸
i

, 0, . . . , 0) ∈ Zd+1, similar discussions to the previous case can be

applied.

– When (1, 0, . . . , 0, 1︸︷︷︸
i

, 0, . . . , 0, 1︸︷︷︸
j

, 0, . . . , 0) ∈ Zd+1, from 3 and 4, we have the inequal-

ities
1 ≤ i < j ≤ d, 2i ≤ j and i+ j ≤ d+ 1.

Once we can find an integral simplex whose δ-vector coincides with that with 2i = j and
i+j = d+1, we can also construct an integral simplex whose δ-vector is that for any integers
i and j with the above inequalities.
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On the other hand, the following example shows that Theorem 3.1 is no longer true for the case where∑d
i=0 δi = 4.

Example 3.2 The integer sequence (1, 0, 1, 0, 1, 1, 0, 0) cannot be the δ-vector of any integral convex
polytope of dimension 7, although this satisfies the inequalities 3 and 4. In fact, suppose, on the con-
trary, that there exists an integral convex polytope P ⊂ RN of dimension 7 with (δ0, δ1, . . . , δ7) =
(1, 0, 1, 0, 1, 1, 0, 0) its δ-vector. Since δ1 = 0, we know that P is a simplex. Let v0, v1, . . . , v7 be
the vertices of P . By using Lemma 2.1, one has S = {(0, . . . , 0), (α, 2), (β, 4), (γ, 5)} and S∗ =

{(α′, 3), (β′, 4), (γ′, 6), (
∑7

i=0 vi, 7)}. Write α′ =
∑7

i=0 rivi with each 0 < ri ≤ 1. Since (α′, 3) 6∈ S,
there is 0 ≤ j ≤ 7 with rj = 1. If there are 0 ≤ k < ` ≤ 7 with rk = r` = 1, say, r0 = r1 = 1, then
0 < rq < 1 for each 2 ≤ q ≤ 7 and

∑7
i=2 ri = 1. Hence (α′ − v0 − v1, 1) ∈ S, a contradiction. Thus

there is a unique 0 ≤ j ≤ 7 with rj = 1, say, r0 = 1. Then α =
∑7

i=1 rivi and γ =
∑7

i=1(1 − ri)vi.
Let F denote the facet of P whose vertices are v1, v2, . . . , v7 with δ(F) = (δ′0, δ

′
1, . . . , δ

′
6) ∈ Z7. Then

δ′2 = δ′5 = 1. Since δ′i ≤ δi for each 0 ≤ i ≤ 6, it follows that δ(F) = (1, 0, 1, 0, 0, 1, 0). This contradicts
the inequalities 3.

4 Hermite normal forms with a given δ-vector
In this section, we give the complete classification of the possible δ-vectors with

∑d
i=0 δi = 4 by means

of Hermite normal forms. Moreover, it turns out that all the possible δ-vectors with
∑d

i=0 δi = 4 can be
chosen to be integral simplices.

Let Zd×d denote the set of d × d integer matrices. Recall that a matrix A ∈ Zd×d is unimodular if
det(A) = ±1. Given integral convex polytopes P and Q in Rd of dimension d, we say that P and Q are
unimodularly equivalent if there exists a unimodular matrix U ∈ Zd×d and an integral vector w ∈ Zd,
such that Q = fU (P) + w, where fU is the linear transformation in Rd defined by U , i.e., fU (v) = vU
for all v ∈ Rd. Clearly, if P and Q are unimodularly equivalent, then δ(P) = δ(Q). Conversely, given
a vector v ∈ Zd+1

≥0 , it is natural to ask what are all the integral convex polytopes P under unimodular
equivalence, such that δ(P) = v. We focus on this problem for simplices with one vertex at the origin.
In addition, we do not allow any shifts in the equivalence, i.e., integral convex polytopes P and Q of
dimension d are equivalent if there exists a unimodular matrix U , such that Q = fU (P).

For discussing the representative under this equivalence of the integral simplices with one vertex at the
origin, we consider Hermite normal forms of square matrices.

Let P be an integral simplex in Rd of dimension d with the vertices v0, v1, . . . , vd, where v0 =
(0, . . . , 0). Define M(P) ∈ Zd×d to be the matrix with the row vectors v1, . . . , vd. Then we have
the following connection between the matrix M(P) and the δ-vector of P: |det(M(P))| =

∑d
i=0 δi.

In this setting, P and P ′ are equivalent if and only if M(P) and M(P ′) have the same Hermite normal
form, where the Hermite normal form of a nonsingular integral square matrix B is a unique nonnegative
lower triangular matrix A = (aij) ∈ Zd×d

≥0 such that A = BU for some unimodular matrix U ∈ Zd×d

and 0 ≤ aij < aii for all 1 ≤ j < i. (See, e.g., [7, Chapter 4].) In other words, we can pick the Her-
mite normal form as the representative in each equivalence class. By considering the δ-vectors of all the
integral simplices arising from the Hermite normal forms M with det(M) = 4, we obtain the following
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Theorem 4.1 Let 1+ ti1 + ti2 + ti3 be a polynomial in t with 1 ≤ i1 ≤ i2 ≤ i3 ≤ d. Then there exists an
integral convex polytope P ⊂ Rd of dimension d whose δ-polynomial coincides with 1 + ti1 + ti2 + ti3 if
and only if (i1, i2, i3) satisfies

i3 ≤ i1 + i2, i1 + i3 ≤ d+ 1, i2 ≤ b(d+ 1)/2c (5)

and an additional condition
2i2 ≤ i1 + i3 or i2 + i3 ≤ d+ 1. (6)

Moreover, all integral convex polytopes can be chosen to be simplices.

Note that the inequalities 5 follow from the inequalities 3 and 4, that is to say, the condition 5 is
automatically a necessary condition. Thus, the condition 6 is the new necessary condition on δ-vectors
when

∑d
i=0 δi = 4.

A sketct of a proof of this theorem is as follows:

• On the “If” part, we may construct integral simplices whose δ-polynomials look like 1+ti1+ti2+ti3
satisfying 5 and 6. By characterizing the possible δ-vectors of all the integral simplices arising from
the Hermite normal forms M with det(M) = 4, we can find such integral simplices.

• On the “Only if” part, we may show that if a polynomial 1 + ti1 + ti2 + ti3 satisfies 5 but does
not satisfy 6, then i1 > 1, i.e., an integral convex polytope with this δ-polynomial is always a
simplex. By characterizing the possible δ-vectors of all the integral simplices arising from the
Hermite normal forms M with det(M) = 4, we can say that there exists no integral simplex whose
δ-polynomial is equal to 1 + ti1 + ti2 + ti3 not satisfying 6.

Example 4.2 As we see in Example 3.2, the integer sequence (1, 0, 1, 0, 1, 1, 0, 0) cannot be the δ-vector
of any integral convex polytope of dimension 7. In fact, since 8 = 2i2 > i1+ i3 = 7 and 9 = i2+ i3 > 8,
there exists no integral convex polytope of dimension 7 whose δ-polynomial is 1+t2+t4+t5. On the other
hand, there exists an integral convex polytope of dimension 8 whose δ-vector is (1, 0, 1, 0, 1, 1, 0, 0, 0)
since 9 = i2 + i3 = d+ 1.

Remark 4.3 We see that all the possible δ-vectors can be obtained by integral simplices when
∑d

i=0 δi ≤
4. However, the δ-vector (1, 3, 1) cannot be obtained from any integral simplex, while this is a possible
δ-vector of some integral convex polytope of dimension 2. In fact, suppose that (1, 3, 1) can be obtained
from a simplex. Since min{i : δi 6= 0, i > 0} = 1 and max{i : δi 6= 0} = 2, one has min{i : δi 6= 0, i >
0} = 3 −max{i : δi 6= 0}, which implies that the assumption of [5, Theorem 2.3] is satisfied. Thus the
δ-vector must be shifted symmetric, a contradiction.

5 Ehrhart polynomials of integral simplices with prime volumes
From the previous two sections, we know that all the possible δ-vectors with

∑d
i=0 δi ≤ 4 can be obtained

by integral simplices, while this does not hold when
∑d

i=0 δi = 5. Therefore, for the further classifications
of the δ-vectors with

∑d
i=0 δi ≥ 5, it is natural to investigate the δ-vectors of integral simplices. In this
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section, we establish the new equalities and inequalities on δ-vectors for integral simplices when
∑d

i=0 δi
is prime. Moreover, by using them, we classify all the possible δ-vectors of integral simplices with∑d

i=0 δi = 5 and 7.
The following equalities or inequalities are new constraints on the δ-vectors of integral simplices when∑d
i=0 δi is prime.

Theorem 5.1 Let P ⊂ RN be an integral simplex of dimension d and δ(P) = (δ0, δ1, . . . , δd) its δ-
vector. Suppose that

∑d
i=0 δi = p is an odd prime number. Let i1, . . . , ip−1 be the positive integers such

that
∑d

i=0 δit
i = 1 + ti1 + · · ·+ tip−1 with 1 ≤ i1 ≤ · · · ≤ ip−1 ≤ d. Then

(a)
i1 + ip−1 = i2 + ip−2 = · · · = i(p−1)/2 + i(p+1)/2 ≤ d+ 1;

(b)
ik + i` ≥ ik+` for 1 ≤ k ≤ ` ≤ p− 1 with k + ` ≤ p− 1.

Example 5.2 When
∑d

i=0 δi is not prime, Theorem 5.1 is not true. In fact, by virtue of Theorem 4.1,
(1, 1, 0, 2, 0, 0) is the δ-vector of some integral simplex of dimension 5. However, one has 2 = i1 + i1 <
i2 = 3.

A proof of this theorem is given by considering the additive group S (appeared in Section 2) associated
with an integral simplex with prime normalized volume. Since the order of S is equal to the normalized
volume of P , S is nothing but a cyclic group Z/pZ. By studying S and the degrees of its elements,
we obtain the statements (a) and (b). Note that (b) follows from [6, Theorem 2.2], known as Cauchy–
Davenport theorem.

As an application of Theorem 5.1, we give a complete characterization of the possible δ-vectors of
integral simplices when

∑d
i=0 δi = 5 and 7.

Corollary 5.3 Given a finite sequence (δ0, δ1, . . . , δd) of nonnegative integers, where δ0 = 1, which
satisfies

∑d
i=0 δi = 5, there exists an integral simplex P ⊂ Rd of dimension d whose δ-vector coincides

with (δ0, δ1, . . . , δd) if and only if i1, . . . , i4 satisfy

i1 + i4 = i2 + i3 ≤ d+ 1, 2i1 ≥ i2 and i1 + i2 ≥ i3,

where i1, . . . , i4 are the positive integers such that
∑d

i=0 δit
i = 1 + ti1 + · · ·+ ti4 with 1 ≤ i1 ≤ · · · ≤

i4 ≤ d.

Corollary 5.4 Given a finite sequence (δ0, δ1, . . . , δd) of nonnegative integers, where δ0 = 1, which
satisfies

∑d
i=0 δi = 7, there exists an integral simplex P ⊂ Rd of dimension d whose δ-vector coincides

with (δ0, δ1, . . . , δd) if and only if i1, . . . , i6 satisfy

i1 + i6 = i2 + i5 = i3 + i4 ≤ d+ 1, i1 + i` ≥ i`+1 for 1 ≤ ` ≤ 3 and 2i2 ≥ i4,

where i1, . . . , i6 are the positive integers such that
∑d

i=0 δit
i = 1 + ti1 + · · ·+ ti6 with 1 ≤ i1 ≤ · · · ≤

i6 ≤ d.

By virtue of Theorem 5.1, the “Only if” parts of Corollary 5.3 and Corollary 5.4 are obvious.
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