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Classification of Ehrhart polynomials of
integral simplices

Akihiro Higashitanir

Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka
University, Toyonaka, Osaka 560-0043, Japan

Abstract. Let 6(P) = (do, d1,-..,0dq) be the §-vector of an integral convex polytope P of dimension d. First, by
using two well-known inequalities on d-vectors, we classify the possible §-vectors with Z?:o 6; < 3. Moreover, by
means of Hermite normal forms of square matrices, we also classify the possible §-vectors with Z?:o 6; = 4. In
addition, for Z?:o d; > 5, we characterize the §-vectors of integral simplices when Z?:o d; 18 prime.

Résumé. Soit §(P) = (do,01,...,dq) le d-vecteur d’un polytope intégrante de dimension d. Tout d’abord, en
utilisant deux bien connus des inégalités sur J-vecteurs, nous classons les §-vecteurs possibles avec ijo 0; < 3.En
outre, par le biais de Hermite formes normales, nous avons également classer les d-vecteurs avec Ef:o 0; = 4. De
plus, pour Z?:o d; > 5, nous caractérisons les §-vecteurs des simplex inégalités lorsque E?:o d; est premier.
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1 Introduction

One of the most attractive problems on enumerative combinatorics of convex polytopes is to find a com-
binatorial characterization of the Ehrhart polynomials of integral convex polytopes. In particular, the
d-vectors of integral simplices play an important and interesting role.

Let P C R¥ be an integral polytope, i.e., a convex polytope any of whose vertices has integer coordi-
nates, of dimension d, and let P denote the boundary of P. Given a positive integer n, we define

i(P,n) = [nPNZN| and i*(P,n) = [n(P\ OP)NZY|,

where nP = {na : a« € P}, n(P\ IP) = {na: a € P\ 9P} and | X| is the cardinality of a finite set
X. The systematic study of ¢(P, n) originated in the work of Ehrhart [2]], who established the following
fundamental properties:

(0.1) i(P,n) is a polynomial in n of degree d;
0.2) i(P,0) =1;
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(0.3) (loi de réciprocité) i* (P, n) = (—1)%(P, —n) for every integer n > 0.

We say that i(P,n) is the Ehrhart polynomial of P. We refer the reader to [I, Chapter 3], [3| Part II] or
[LO, pp. 235-241] for the introduction to the theory of Ehrhart polynomials.
We define the sequence dg, d1, 02, . . . of integers by the formula

(1 =N (P o)A =D s (1)
n=0 =0

Then the basic facts (0.1) and (0.2) on i(P,n) together with a fundamental result on generating func-
tion [10, Corollary 4.3.1] guarantee that §; = O for every ¢ > d. We say that the sequence (resp. the
polynomial)

d
0(P) = (60,01,...,04) (resp. Sp(t) = Z‘Siti)
i=0

which appears in[I]is called the d-vector (resp. the §-polynomial) of P. Alternate names of §-vectors are,
for example, Ehrhart h-vector, Ehrhart §-vector or h*-vector. By the reciprocity law (0.3), one has

— n o Ty dam Nt
n=1

The following properties on §-vectors are well known:
e By/[l] one has 6y = i(P,0) = land ; = i(P,1) — (d+ 1) = [P NZN| - (d + 1).
e By[l one has 4 = i*(P,1) = |(P \ dP) N ZV|. In particular, we have J; > 4.
e Each §; is nonnegative [9].
e If 64 # 0, then one has 6; < §; forevery 1 <i <d — 1 [4].
o It follows from [2] that

max{j : §; # 0} + min{k : k(P —9P)NZYN £ (0} =d + 1.

e When d = N, the leading coefficient of i(P, n), which coincides with Z?:o 0;/d, is equal to the
usual volume of P [10, Proposition 4.6.30]. In general, the positive integer Z?:o d; is called the
normalized volume of P.

On the classification problem of the d-vectors of integral convex polytopes, when we consider the
possible d-vectors of small dimensions, all of them are essentially given in [8] when d = 2. However, the
possible d-vectors are presumably open when d > 3.

In this article, we discuss the d-vectors of small normalized volumes. In particular, the §-vectors of
. . . . d
integral simplices play a crucial role when ), d; < 4.

A brief overview of this article is as follows. After reviewing some well-known technique how to
compute the d-vectors of integral simplices in Section 1, we study the possible J-vectors of Z?:o 0; <3
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by using two well-known inequalities on d-vectors in Section 2. In Section 3, we consider the case where
Z?:o 0; = 4 by considering all the d-vectors of all the integral simplices up to some equivalence. In
Section 4, we discuss the §-vectors of integral simplices when Zf:(] 0; is prime and we classify the
possible d-vectors of integral simplices of Zj:o d6; =band 7.

2 Review on the computation of the §-vectors of integral simplices

Before proving our theorems, we recall a combinatorial technique to compute the J-vector of an integral
simplex.
Given an integral simplex 7 C RY of dimension d with the vertices vg, vy, . . ., vq, We set

d
S_{ Ti(vi71)€RN+1:OS”<1}OZN+1 and
=0

d
S* = {Zri(vi,l) eRNL.0<r, < 1} aVARES
i=0

S

We define the degree of an integer point (o, n) € S ((a,n) € S*) with deg(a, n) = n, where a € ZV
andn € Z>g. Letd; = |[{a € S : dega = i}| and 6] = [{a € S* : dega = i}|. Then we have

Lemma 2.1 Work with the same notation as above. Then we have

(a)
Ny 80+ O A+ 5gN?
Zz(]—",n))\ = ;
~ (1 — )\)d+1

(b)
< SIA+ -+ 6 AT
> i(F A = e
n=0 <1 - )\)d+1

(c)

(5:< :6d+1,i for 1§Z§d+1

We also recall the following

Lemma 2.2 [Il Theorem 2.4] Suppose that (do, 01, . .., 04) is the §-vector of an integral convex polytope
of dimension d. Then there exists an integral convex polytope of dimension d + 1 whose d-vector is

(60,617 ce . ,6d70).

Note that the required d-vector is obtained by forming the pyramid over the integral convex polytope.
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3 Two well-known inequalities on §-vectors
In this section, we present two well-known inequalities on J-vectors. By using them, we give the complete
classification of the possible §-vectors of integral convex polytopes with Z?:o 0; < 3.

Let s = max{i : 0; # 0}. Stanley [L1]] shows the inequalities

o+ 61+ +6 <05+ 051+ +0s—i, 0<i<]s/2] 3)
by using the theory of Cohen—Macaulay rings. On the other hand, the inequalities

O0g+0g-1+ - +604—i < +62+ -+ dit1, OSiS[(d—l)/Q] 4)

appear in [4, Remark (1.4)]. A proof of the inequalities [4|is given by using combinatorics on convex
polytopes.

Somewhat surprisingly, when Zj:o §; < 3, the above inequalitiestogether withgive a characteri-
zation of the possible §-vectors. In fact,

Theorem 3.1 Given a finite sequence (3¢, 1, . ..,04) of nonnegative integers, where 6o = 1, which sat-

isfies E?:o 8; < 3, there exists an integral convex polytope P C R? of dimension d whose §-vector
coincides with (89,01, . .., 0q) if and only if (80,01, . .., 84) satisfies all inequalities[3|and ] Moreover,
all integral convex polytopes can be chosen to be simplices.

Note that the “Only if” part of Theorem [3.1]is obvious. Thus we may show the “If” part. Moreover,
when Z?:o 0; = 1, it is obvious that the possible sequence is only (1,0,...,0) and this is a d-vector of
some integral convex polytope, in particular, integral simplex. A sketch of a proof of the “If” part with
Z?:o §; = 2 or 3 is as follows:

e When >",_,d; = 2, the possible integer sequence looks like (1,0,...,0, 1 ,0,...,0) € Z4*1,
where 1 means that §; = 1. On the other hand, we have ¢ < |(d + 1)/2] by 4 Hence we may

find an integral convex polytope, in particular, an integral simplex, whose d-vector coincides with
that. Note that we may construct such simplex with i = | (d + 1)/2] by virtue of Lemma[2.2}

e When ) ., d; = 3, we have two candidates of the possible integer sequences.

- When (1,0,...,0, 2 ,0,...,0) € Z*!, similar discussions to the previous case can be
applied.
- When (1,0,...,0, 1 ,0,...,0, 1 ,0,...,0) € Z4*1, fromand we have the inequal-
~ ~
i J
ities

1<i<j<d, 2<jand i+j<d+ 1.

Once we can find an integral simplex whose §-vector coincides with that with 2¢ = j and
i+j = d+1, we can also construct an integral simplex whose J-vector is that for any integers
¢ and 7 with the above inequalities.
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On the other hand, the following example shows that Theorem [3.1]is no longer true for the case where
Z?:o 0; = 4.
Example 3.2 The integer sequence (1,0,1,0,1,1,0,0) cannot be the d-vector of any integral convex
polytope of dimension 7, although this satisfies the inequalities [3]and 4 In fact, suppose, on the con-
trary, that there exists an integral convex polytope P C R of dimension 7 with (&¢,d1,...,07) =
(1,0,1,0,1,1,0,0) its d-vector. Since 6; = 0, we know that P is a simplex. Let vy, v1,...,v7 be
the vertices of P. By using Lemma one has S = {(0,...,0),(a,2),(8,4),(7,5)} and S* =
{(/,3),(8',4),(v,6), (ZZ:O v;,7)}. Write o/ = ZLO r;v; with each 0 < r; < 1. Since (/,3) € S,
thereis 0 < 7 < 7withr; = 1. If thereare 0 < k < £ < 7withr, =, = 1, say, 7o = 1 = 1, then
0 <rq<lforeach2 < ¢ < 7and 21'7:2 r; = 1. Hence (o — vp — v1,1) € S, a contradiction. Thus
there is a unique 0 < j < 7 with r; = 1, say, ro = 1. Then o = 23:1 r;v; and y = E;l(l —7;)v;.
Let F denote the facet of P whose vertices are vy, va, . . ., vy with §(F) = (8),07,...,04) € Z7. Then
0% = 8L = 1. Since §; < §; for each 0 < ¢ < 6, it follows that 6(F) = (1,0, 1,0,0, 1,0). This contradicts
the inequalities 3]

4 Hermite normal forms with a given J-vector

In this section, we give the complete classification of the possible §-vectors with Z?:O d; = 4 by means

of Hermite normal forms. Moreover, it turns out that all the possible §-vectors with Z‘LO d; = 4 can be
chosen to be integral simplices.

Let Z4*4 denote the set of d x d integer matrices. Recall that a matrix A € Z%*? is unimodular if
det(A) = £1. Given integral convex polytopes P and Q in R? of dimension d, we say that P and Q are
unimodularly equivalent if there exists a unimodular matrix U € Z%*? and an integral vector w € Z2,
such that @ = fy(P) + w, where fi; is the linear transformation in R? defined by U, i.e., fy(v) = vU
for all v € R?. Clearly, if P and Q are unimodularly equivalent, then 5(P) = §(Q). Conversely, given
a vector v € Zf{)l, it is natural to ask what are all the integral convex polytopes P under unimodular
equivalence, such that §(P) = v. We focus on this problem for simplices with one vertex at the origin.
In addition, we do not allow any shifts in the equivalence, i.e., integral convex polytopes P and Q of
dimension d are equivalent if there exists a unimodular matrix U, such that @ = fy;(P).

For discussing the representative under this equivalence of the integral simplices with one vertex at the
origin, we consider Hermite normal forms of square matrices.

Let P be an integral simplex in R? of dimension d with the vertices vg,v1,...,vq, Where vg =
(0,...,0). Define M(P) € Z%? to be the matrix with the row vectors vy,...,v4s. Then we have
the following connection between the matrix M (P) and the J-vector of P: |det(M (P))| = Z?:o di.
In this setting, P and P’ are equivalent if and only if M (P) and M (P’) have the same Hermite normal
form, where the Hermite normal form of a nonsingular integral square matrix B is a unique nonnegative
lower triangular matrix A = (a;;) € Z2%% such that A = BU for some unimodular matrix U € Z%*¢
and 0 < a;; < ay; forall 1 < j < 4. (See, e.g., [Z, Chapter 4].) In other words, we can pick the Her-
mite normal form as the representative in each equivalence class. By considering the d-vectors of all the
integral simplices arising from the Hermite normal forms M with det(M) = 4, we obtain the following
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Theorem 4.1 Let 1+t +¢%2 4 ¢ pe a polynomial in t with 1 < i1 < iy < i3 < d. Then there exists an
integral convex polytope P C R? of dimension d whose §-polynomial coincides with 1+t 4 %2 4 % if
and only if (i1,12,13) satisfies

i3 <ip 49, i1+i3 <d+1, i2 <|(d+1)/2] )

and an additional condition
249 < i1 +i3 or ig+iz3<d+1. (6)

Moreover, all integral convex polytopes can be chosen to be simplices.

Note that the inequalities [5] follow from the inequalities [3| and [] that is to say, the condition [3] is
automatically a necessary condition. Thus, the condition [6]is the new necessary condition on J-vectors
when Z?:o 0; = 4.

A sketct of a proof of this theorem is as follows:

e On the “If” part, we may construct integral simplices whose 6-polynomials look like 14¢" ¢%2 4¢3
satisfying[5)and[6] By characterizing the possible d-vectors of all the integral simplices arising from
the Hermite normal forms M with det(M) = 4, we can find such integral simplices.

e On the “Only if” part, we may show that if a polynomial 1 + %1 + ¢%2 4 ¢% satisfies [5| but does
not satisfy [6] then i1 > 1, i.e., an integral convex polytope with this d-polynomial is always a
simplex. By characterizing the possible d-vectors of all the integral simplices arising from the
Hermite normal forms M with det(M) = 4, we can say that there exists no integral simplex whose
d-polynomial is equal to 1 4 ¢ 4 ¢¥2 4 ¢3 not satisfying@

Example 4.2 As we see in Example the integer sequence (1,0, 1,0, 1, 1,0, 0) cannot be the §-vector
of any integral convex polytope of dimension 7. In fact, since 8 = 2i5 > ¢; +493 = 7and 9 = i3 +143 > 8§,
there exists no integral convex polytope of dimension 7 whose 6-polynomial is 1-+¢2+t*+#5. On the other
hand, there exists an integral convex polytope of dimension 8 whose §-vector is (1,0,1,0,1,1,0,0,0)
since 9 =iy +i3 =d + 1.

Remark 4.3 We see that all the possible J-vectors can be obtained by integral simplices when Zf:[) 0; <
4. However, the §-vector (1,3, 1) cannot be obtained from any integral simplex, while this is a possible
d-vector of some integral convex polytope of dimension 2. In fact, suppose that (1,3, 1) can be obtained
from a simplex. Since min{i : 4; # 0,7 > 0} = 1 and max{i : d; # 0} = 2, one has min{s : §; # 0,7 >
0} = 3 — max{i : §; # 0}, which implies that the assumption of [5, Theorem 2.3] is satisfied. Thus the
d-vector must be shifted symmetric, a contradiction.

5 Ehrhart polynomials of integral simplices with prime volumes

From the previous two sections, we know that all the possible d-vectors with Z?:o d; < 4 can be obtained
by integral simplices, while this does not hold when E?:o 0; = 5. Therefore, for the further classifications
of the §-vectors with Z?:o 0; > b, it is natural to investigate the d-vectors of integral simplices. In this
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section, we establish the new equalities and inequalities on §-vectors for integral simplices when Z?:o 05
is prime. Moreover, by using them, we classify all the possible J-vectors of integral simplices with
¢ 6 =5and 7.

The following equalities or inequalities are new constraints on the §-vectors of integral simplices when
Z?:o d; is prime.
Theorem 5.1 Let P C RY be an integral simplex of dimension d and 5(P) = (89,01, ..,064) its 6-

vector. L.{S'uppo;e that Z;izo 0 =0p ils an odd prime number. Let i1, . .. ,i,_1 be the positive integers such
thaty ;o 0it' =1+t + - Ftr-twithl <iy <--- <ip_1 < d. Then
(a)
i tip-1 =iz +ip-2 =" =ip-1)/2 Hipryz Sdtl
(b)

I +ig >ipye for 1<k<l<p—1with k+{<p-—1.

Example 5.2 When Zj:o 0; is not prime, Theorem is not true. In fact, by virtue of Theorem
(1,1,0,2,0,0) is the d-vector of some integral simplex of dimension 5. However, one has 2 = i1 + 41 <
12 = 3.

A proof of this theorem is given by considering the additive group S (appeared in Section 2) associated
with an integral simplex with prime normalized volume. Since the order of .S is equal to the normalized
volume of P, S is nothing but a cyclic group Z/pZ. By studying S and the degrees of its elements,
we obtain the statements (a) and (b). Note that (b) follows from [6, Theorem 2.2], known as Cauchy—
Davenport theorem.

As an application of Theorem [5.1} we give a complete characterization of the possible §-vectors of
integral simplices when Z?:o 0; =5and 7.

Corollary 5.3 Given a finite sequence (00,91, ..,04) of nonnegative integers, where 6, = 1, which

satisfies Z?:o 8; = b, there exists an integral simplex P C R? of dimension d whose §-vector coincides
with (80,01, ...,0q) ifand only if i1, . .., i4 satisfy

11+Z4:12+’63§d+1, 2112’&2 and i1+’i22i3,

where i1, ..., 14 are the positive integers such that Z?:o Sttt =14+t -t withl <4 <--- <
ig < d.
Corollary 5.4 Given a finite sequence (o,01,...,04) of nonnegative integers, where 69 = 1, which

satisfies Z?:o 8; = 7, there exists an integral simplex P C R? of dimension d whose §-vector coincides
with (00,01, ...,0q) ifand only if i1, . .., ig satisfy

i1+ig=1do+i5=1d3+is <d+1, i1+i>dpqp1 for 1 <L <3 and 2is > iy,

where i1, . .., ig are the positive integers such that Z?:o Sitt =14+t 4ot withl <iyp < -+ <
i < d.

By virtue of Theorem [5.1] the “Only if” parts of Corollary[5.3]and Corollary [5.4] are obvious.
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