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Abstract. We discuss some properties of a subposet of the Tamari lattice introduced by Pallo (1986), which we call
the comb poset. We show that three binary functions that are not well-behaved in the Tamari lattice are remarkably
well-behaved within an interval of the comb poset: rotation distance, meets and joins, and the common parse words
function for a pair of trees. We relate this poset to a partial order on the symmetric group studied by Edelman (1989).

Résumé. Nous discutons d’un subposet du treillis de Tamari introduit par Pallo. Nous appellons ce poset le comb
poset. Nous montrons que trois fonctions binaires qui ne se comptent pas bien dans le trellis de Tamari se comptent
bien dans un intervalle du comb poset : distance dans le trellis de Tamari, le supremum et l’infimum et les parsewords
communs. De plus, nous discutons un rapport entre ce poset et un ordre partiel dans le groupe symétrique étudié par
Edelman.
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1 Introduction
The set Tn of all complete binary trees with n leaves, or, equivalently, parenthesizations of n letters, has
been well-studied. Of particular interest here is a partial order on Tn, giving the well-studied Tamari
lattice, Tn. Huang and Tamari (1972) encoded the Tamari order via compenentwise comparison of
bracketing vectors. However, while the meet in Tn is characterized by the componentwise minimum
of bracketing vectors, the same is not true of the join.

Also of interest is graph underlying the Hasse diagram of Tn, which is denoted Rn and called the
rotation graph. The rotation graph is the 1-skeleton of the an (n− 2)-dimensional convex polytope called
the associahedron, Kn+1. The diameter of Rn remains an open question, and understanding meets and
joins in the Tamari lattice does not enable one to compute the rotation distance dRn(T1, T2) between two
trees.

In addition to rotation distance, there is another binary function on Tn, which becomes relevant in
light of an approach to the Four Color Theorem suggested by Kauffman (1990): : the size of the set
ParseWords(T1, T2) consisting of all words w ∈ {0, 1, 2}n which are parsed by both T1 and T2. A word
w is parsed by T if the labeling of the leaves of T by w1, w2, . . . , wn from left to right extends to a proper
3-coloring with colors {0, 1, 2} of all 2n − 1 vertices in T such that no two children of the same vertex
have the same label and such that no parent and child share the same label. See Figure 11 for an example.
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Fig. 1: The comb poset C4

Kauffman (1990) showed that the Four Color Theorem is equivalent to the statement that for all n and all
T1, T2 ∈ Tn, one has |ParseWords(T1, T2)| ≥ 1.

Recent work on the ParseWords function by Cooper, Rowland, and Zeilberger (2010) motivated us to
investigate a subposet of Tn, which we call the (right) comb poset and denote Cn. Pallo (2003) first
defined Cn and showed that it is a meet-semilattice having the same bottom element as Tn. However,
meets in the comb poset do not, in general, coincide with meets in the Tamari lattice. The solid edges the
diagram in Figure 1 the Hasse diagram of C4. The dashed edge lies in T4 but not in C4.

The intervals of Cn has a number of nice properties which can shed light on the Tamari lattice:

• Cn is ranked and locally distributive, meaning each interval forms a distributive lattice (see Corol-
lary 2.9(i)).

• If T1 and T2 have an upper bound in Cn (or equivalently, if they both lie in some interval), the
meet T1 ∧Cn

T2 and join T1 ∨Cn
T2 are easily described, either in terms of intersection or union of

reduced parenthesizations (see Corollary 2.9(i)), or by componentwise minimum or maximum of
their bracketing vectors. These operations also coincide with the Tamari meet ∧Tn

and Tamari join
∨Tn

(see Theorem 4.5).

• When trees T1, T2 have an upper bound in Cn, one has (see Theorem 3.1)

dRn
(T1, T2) = rank(T1) + rank(T2)− 2 · rank(T1 ∧Cn

T2)

= 2 · rank(T1 ∨Cn
T2)− (rank(T1) + rank(T2))

= rank(T1 ∨Cn
T2)− rank(T1 ∧Cn

T2),

where, for any T ∈ Tn, rank(T ) refers to the rank of T in Cn.

• Furthermore, for T1, T2 having an upper bound in Cn, one has (see Theorem 6.6)

ParseWords(T1, T2) = ParseWords(T1 ∧Cn T2, T1 ∨Cn T2),

with cardinality 3 · 2n−1−k, where k = rank(T1 ∨Cn
T2)− rank(T1 ∧Cn

T2).
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There are a number of well-known related order-preserving surjections from the (right) weak order
on the symmetric group Sn to Tn+1. (See, for instance, Loday and Ronco (2002) and Hivert et al.
(2005) for discussion of such maps.) Section 5 discusses how one of these maps restricts to an order-
preserving surjection from En to Cn+1, where En is a subposet of the weak order defined by Edelman
(1989). Additionally, this surjection is a distributive lattice morphism on each interval of Cn+1 (see
Theorem 5.12).

Except when there is risk for confusion, the subscripts will be dropped from ∧, ∨, > and < when
denoting meet, join, greater than and less than, respectively, in Cn. Additionally, rank(T ) will denote the
rank of T in Cn. Much of the notation in Section 6 is from Cooper et al. (2010). This extended abstract
is an announcement of the results of Csar et al. (2010), which is more detailed and contains proofs of the
results given here.

2 The Comb Poset and Distributivity
Pallo (2003) defined the comb poset defined the comb poset via covering relations consisting of a left tree
rotation centered on the right arm of the tree. This section presents a definition of the comb poset in terms
of reduced parenthesizations and discusses some properties of the poset and its intervals.

Definition 2.1 For each binary tree T ∈ Tn, consider the usual parenthesization of its leaves a1, a2, . . . , an.
Then, delete all pairs of parentheses that enclose the leaf an. Call the resulting parenthesization the re-
duced parenthesization of T , denoted RPT . Define an element of RPT to be either an unparenthesized
leaf in RPT , or any pair of parentheses J in RPT (together with all enclosed leaves and internal paren-
thesizations) which is not enclosed by some other pair of parentheses in RPT .

Example 2.2 The reduced parenthesization of the tree in Figure 2 is a1((a2a3)a4)(a5a6)a7. The reduced
parenthesization of this tree has four elements, given by a1, ((a2a3)a4), (a5a6), and a7. Note that an by
itself is always an element of the reduced parenthesization of any tree in Tn.

a4

a5

a7

a6a3a2

a1

Fig. 2: The tree a1((a2a3)a4)(a5a6)a7.

Definition 2.3 Define the (right) comb poset of order n to be the poset whose elements are given by
elements from Tn, with T1 ≤ T2 iff each pair of parentheses in RPT1

appears in RPT2
. Denote the comb

poset by Cn.

One could reverse the inclusion of the parentheses pairs in the above definition and obtain a left comb
poset, for which analogous results hold.

From the definition, one sees that Cn has a unique minimal element–the tree whose reduced parenthe-
sization contains no parentheses. This tree is called the right comb tree, denoted RCT(()n).
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Example 2.4 The Hasse diagram of the right comb poset of order 5 is shown in Figure 3. For the sake of
a cleaner diagram, the leaf ai is labeled by i in Figure 3 for i ∈ {1, 2, 3, 4, 5}.

12345

(12)345 1(23)45 12(34)5

((12)3)45 (1(23))45 (12)(34)5 1((23)4)5 1(2(34))5

(((12)3)4)5 ((1(23))4)5 ((12)(34))5 (1((23)4))5 (1(2(34)))5

Fig. 3: The Hasse diagram of C5

Example 2.5 RCT(5), the right comb tree of order 5, is shown in Figure 4. The nodes labeled a1, . . . , a5
are the leaves of the tree, and b6, . . . , b9 are the internal vertices. Note that the structure of the left comb
tree of order 5 is given by the reflection of the right comb tree about the vertical axis.

To consider the intervals of Cn, one defines another poset, the reduced pruned poset. Recall that the
right arm of a tree, T , is the connected acyclic group induced by the vertices of T that lie in the left subtree
of no other vertex of T .

There is a well known operation on complete binary trees, called pruning, where one removes all leaves
from an n-leaf binary tree, obtaining an “incomplete” tree on n − 1 vertices. Pruning gives a bijection
between n-leaf trees and (possibly incomplete) binary trees with n− 1 vertices.

Definition 2.6 For a tree T ∈ Tn, the reduced pruned poset of T , denoted PT , is the poset of pairs of
parentheses inRPT ordered by inclusion. Its Hasse diagram is obtained by pruning T , removing the right
arm and removing edges incident to the right arm.

Example 2.7 Consider the tree of Figure 2, given by the reduced parenthesization a1((a2a3)a4)(a5a6)a7.
Figure 5 depicts its “pruned” form and the corresponding reduced pruned poset PT .

a1

b6

a2

b7

a3

b8

a4

b9

a5

Fig. 4: RightCombTree(5)
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a4

a5

a7

a6a3a2

a1

T

T pruned

a2a3

(a2a3)a4

a5a6

PT

Fig. 5: The tree a1((a2a3)a4)(a5a6)a7, its pruned tree and reduced pruned poset.

The following proposition gives a key relationship between PT and Cn.

Proposition 2.8 For any T ∈ Tn, the interval [RCT(n), T ]Cn is isomorphic to the lattice of order ideals
in the reduced pruned poset of T , ordered by inclusion. In other words, for any tree T ,

[RCT(n), T ]Cn
∼= J(PT )

That the principal order ideal in Cn of any tree T is a distributive lattice yields a number of immediate
corollaries.

Corollary 2.9

(i) Any interval in Cn is a distributive lattice, with the reduced parenthesizations of the join and meet
of trees T1 and T2 in an interval given by the ordinary union and intersection of parenthesis pairs
from RPT1

and RPT2
.

(ii) In Cn, T1 covers T2 iff RPT1 can be obtained from RPT2 by adding one parenthesis pair.

(iii) Cn is a ranked poset, with the rank of any tree T in Cn given by the number of parenthesis pairs in
RPT .

(iv) For any two trees T1 and T2 that are in the same interval of Cn, we have

rank(T1) + rank(T2) = rank(T1 ∧ T2) + rank(T1 ∨ T2)

(v) For any tree T ∈ Tn of rank k, the length of the right arm of T is n− 1− k.

The covering relation described in Corollary 2.9(ii) corresponds precisely to the so-called right arm
rotations used by Pallo (2003) to define the comb poset.
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3 Distances in Cn and Rn

The diameter of the Tamari lattice (or, more precisely, the rotation graph Rn) is an open question. Sleator
et al. (1988) show that the diameter is at most 2n− 6. When one restricts one’s attention to trees lying in
the same interval of the comb poset, one can obtain precise information about distances not only in Cn,
but Rn as well.

Theorem 3.1 If T1 and T2 are two trees in some interval in Cn, then the shortest distance between them
along the edges of the rotation graph Rn is given by

dRn(T1, T2) = rank(T1) + rank(T2)− 2 · rank(T1 ∧ T2)
= dRn(T1, T2) = 2 · rank(T1 ∨ T2)− rank(T1)− rank(T2),

where the ranks are those in the comb poset. Moreover, such a shortest path uses only edges in Cn.

It can easily be shown from the above that the diameter of Rn is at most 2n − 4, not quite as tight as
the bound of Sleator et al. (1988).

4 Tamari Meets and Joins for two Trees in Some Interval
Corollary 2.9(i) characterizes the meets and (when they exist) joins in the comb poset. It is natural to ask
how the meets and joins in the comb poset relate to the meets and joins of the Tamari lattice. We will refer
to meets and joins in Tn as the “Tamari meet” and “Tamari join” to avoid confusion.

While Cn is a meet semilattice, so any two trees do have a meet in Cn, their meet does not nec-
essarily coincide with their Tamari meet. For example, consider T1 = (((a1a2)a3)a4)a5 and T2 =
((a1(a2a3))a4)a5. Their Tamari meet is T2, while their meet in Cn is the right comb tree.

However, if we, once again, restrict our attention to trees lying in some interval of the comb poset, i.e.
pairs of trees that have a join in Cn, the meet and join in the comb poset do coincide with the Tamari meet
and join.

To see this relationship, one characterizes the meet and join not in terms of parenthesis pairs as before,
but using bracketing vectors, as introduced by Huang and Tamari (1972).

Recall that one can prune an n-leaf binary tree to obtain a (possibly incomplete) binary tree on n − 1
vertices. Furthermore, there is a well-known natural numbering of the vertices of the pruned tree using
1, 2, . . . , n− 1, in which a vertex receives a higher number than any vertex in its left subtree, but a lower
one than any vertex in its right subtree. This labeling is unique. It is called the in-order labeling of a
pruned tree on n− 1 vertices.

Example 4.1 Figure 6 shows a pruned tree on 8 vertices, corresponding to the 9-leaf binary tree whose
reduced parenthesization is ((a1a2)(a3a4))a5(a6(a7a8))a9, is labeled in the in-order labeling.

Definition 4.2 Consider the “pruned” binary tree representation of some tree T ∈ Tn, and number the
n− 1 vertices by the in-order labeling. Then, the bracketing vector for T , 〈T 〉 = 〈b1(T ), . . . , bn−1(T )〉,
has bj(T ) equal to the number of vertices in the left subtree of the vertex labeled j in the pruned tree. In
particular, the first coordinate of a bracketing vector is always 0.

Example 4.3 The bracketing vector for the tree in Figure 6 is the 8-tuple (0, 1, 0, 3, 0, 0, 0, 2).
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4

2 5

1 3
8

6

7

Fig. 6: The pruned tree for ((a1a2)(a3a4))a5(a6(a7a8))a9 labeled with the in-order labeling.

Theorem 4.4 (Pallo (1986, Theorem 2)) For two n-leaf binary trees T and T ′, one has T ≤ T ′ if and
only if the bracketing vector of T is component-wise less than or equal to the bracketing vector of T ′.
Furthermore, the bracketing vector for the meet of two trees in the Tamari lattice corresponds to the
componentwise minimum of the bracketing vectors of the two trees.

It is not the case in general that the componentwise maximum of bracketing vectors corresponds to the
Tamari join. However, when two trees lie in an interval of the comb poset, this property holds.

Theorem 4.5 Let 〈T 〉 denote the bracketing vector for T . Let T1 and T2 be arbitrary trees in the same
interval of Cn. Then, their meet and join in Cn are given by the trees corresponding respectively to the
componentwise minimum and the componentwise maximum of 〈T1〉 and 〈T2〉. Moreover, their meet and
join in the comb post coincide with their Tamari meet and join.

5 Relation with a Poset of Edelman
Connections between the Tamari lattice and weak order on Sn have been the subject of much previous
study. In particular, it is well-known (see, for instance, Hivert et al. (2005)) that the subposet of the weak
order induced by the 231-avoiding permutations is isomorphic to the Tamari lattice. It should be noted
that Hivert et al. (2005) and Loday and Ronco (2002) consider the dual lattice to Tn.

Edelman (1989) introduced a subposet of the right weak order on the symmetric group Sn. Although
this poset is not a lattice, the intervals are each known to be distributive lattices, as is the case for the comb
poset.

Definition 5.1 The right weak order on Sn is a partial ordering of the elements of Sn defined as the
transitive closure of the following covering relation: a permutation σ covers a permutation τ if σ is
obtained from τ by a transposition of two adjacent elements of the one line notation of τ introducing an
inversion.

Edelman imposed an additional constraint on this ordering, under which σ covers τ , if, after the trans-
position of xj and xj+1 as above, nothing to the left of xj+1 in σ is greater than xj+1. This restriction
results in a subposet of the right weak ordering on Sn. Denote this poset by En.

Example 5.2 Figure 7 depicts the Hasse diagram of E3, with an additional dashed edge indicating the
extra order relation in the right weak order on S3.

There are several closely-related maps connecting the weak order to the Tamari lattice, sending per-
mutations to pruned binary trees. Here, we will use the map inserting a permutation into a binary search
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(1,2,3)

(2,1,3) (1,3,2)

(2,3,1) (3,1,2)

(3,2,1)

Fig. 7: Edelman’s Poset E3.

tree. (This is nearly the map of Hivert et al. (2005), but they first reverse the permutation since they care
considering the dual to our Tamari lattice.)

Definition 5.3 Define a map p : Sn → {pruned trees on n vertices} recursively as follows. For x ∈ S1,
p(x) is the tree with a single vertex. Then, for n > 1 and x ∈ Sn, define

p(x) =

p(x<) p(x>)

where x< = (xi1 , . . . , xik) where i1 < · · · < ik are the indices of all elements of x less than x1 and x>
is defined similarly for elements of x greater than x1. Extend p to a map Sn → Tn+1, also called p, by
attaching leaves to p(x) to give a binary tree (in other words, “unpruning” p(x)).

Remark 5.4 Amending the definition of p slightly so that the root of p(x) is labeled by x1 results in the
pruned tree having the in-order labeling (see Section 4), i.e. the result of inserting x into a binary search
tree. (See Knuth (1973).)

Example 5.5 Figure 8 shows p : S4 → {pruned trees with 4 vertices}. Permutations having the same
image are circled.

Theorem 5.6 The map p : Sn → Tn+1 gives an order-preserving surjection from En to Cn+1.

The map p is a lattice morphism between principal ideals in En and principal ideals in Cn+1, which can
be understood as the Birkhoff-Priestly dual to two posets associated with a permutation. Edelman (1989)
defined the following order on the inversion set of a permutation σ.

Definition 5.7 For a permutation σ, define I(σ) := {(j, i) : j > i and σ−1(j) < σ−1(i)}. Order I(σ),
with (k, `) ≥ (j, i) if and only if k ≥ j and σ−1(`) ≤ σ−1(i). In a slight abuse of notation, the poset
(I(σ), <) shall be referred to as I(σ) as well.

Theorem 5.8 (Edelman (1989, Theorem 2.13)) [e, w]En
' J(I(w)), where [e, w]En

= {v ∈ Sn :
v ≤En

w}, via v 7→ I(v).
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4321

3421

3241

3214 2341

2431

4231

2314

2134

1234

2143

2413

4213

1243

1423

4123

1324

3124 1342

3142

3412

4312

1432

4132

p

Fig. 8: The map p : S4 → {pruned trees with 4 vertices}.

Definition 5.9 Fix a permutationw ∈ Sn. Let Tw be the image ofw under the pruned tree map, p. Recall
the reduced pruned poset from Definition 2.6. Here it will be useful to label its vertices by the labels they
have in Tw, rather than by parentheses. Define a map f : PTw

→ I(w) as follows: f(j) = (i, j), where i
is the smallest label of a vertex of Tw such that j lies in the left subtree of i.

Example 5.10 Suppose w = (4, 9, 2, 1, 8, 3, 6, 7, 5) ∈ S9. Figure 9 depicts Tw, PTw and I(w), with the
image of f indicated in I(w).

One can now understand how p relates intervals in En to intervals in Cn+1.

Definition 5.11 Let P1, P2 be two posets and suppose φ : P1 → P2 is order-preserving. Then φ induces
a map J(φ) : J(P2)→ J(P1) defined by J(φ)(I) = φ−1(I). One calls J(φ) the Birkhoff-Priestley dual
to f . In fact, J(φ) is a lattice morphism.
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(6,5)=f(5) (2,1)=f(1)(4,3)=f(3)

(4,1)

(4,2)=f(2)

(7.5)

(8,5)

(8,7)=f(7)

(9,7) (8,6)=f(6)

(9,6) (8,3)

(9,3)

f(8)=(9,8)

(9,1)

(9,2)

1

2

3

5 7

6

8

1

2

3

4

9

8

6

5 7

Fig. 9: Tw, PTw and I(w) with the image of f indicated.

Theorem 5.12 For each w ∈ Sn, the map f : PTw
→ I(w) defined in Definition 5.9 is order-preserving

and Birkhoff-Priestley dual to the map p : [e, w]En → J(PTw). In particular, p : En → Cn+1 becomes a
lattice morphism when restricted to any interval in En.

Example 5.13 Figure 10 depicts Theorem 5.12 on the interval [e, 4213]En
.

6 The ParseWords Function for the Comb Poset
Recall that w ∈ ParseWords(T ) means that T admits a labeling of its vertices by 0, 1, 2 such that the
leaves are labeled by the word w, the children of each vertex have distinct labels and no vertex has the
same label as either of its children. Kauffman (1990) showed that the Four Color Theorem is equivalent
to ParseWords(T1, T2) 6= ∅ for all T1, T2 ∈ Tn for any n ∈ N. It was further recent work by Cooper
et al. (2010) seeking a “small” proof of the Four Color Theorem that led us to first consider the comb
poset. The number of parsewords for any two trees having a common upper bound in Cn can be computer
precisely.

Example 6.1 An example of two trees both parsing 010 is shown in Figure 11.

Example 6.2 The common parsewords for the trees in Figure 11 are 101, 202, 010, 212, 020, 121.
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4213=w

2413

2143

2134 1243

1234

(4,2)=f(2)

(4,1)

(4,3)=f(3) (2,1)=f(1)

1 3

2

Fig. 10: p|[e,4213] and J(f) for the interval [e, 4213]En .

0

1 0

1

2

T1

0 1

0

1

2

T2

Fig. 11: Both trees parse 010.

Proposition 6.3 For T ∈ Tn, one has |ParseWords(T )| = 3 · 2n−1.

To simplify notation, let T≤b be the subtree of a tree T having the vertex b as its root.

Proposition 6.4 (Common root property, Cooper et al. (2010, Proposition 2)) If two trees T1, T2 ∈ Tn

parse the same word, then their roots receive the same label when the trees are labeled with a common
parseword. Hence, if for T1, T2 ∈ Tn, there are vertices bi in T1 and bj in T2 such that T1≤bi

and T2≤bj

have precisely the same leaves (i.e. both the dangling subtrees contain precisely the leaves m1 through
m2, for some natural numbers m1 < m2 ≤ n), then bi and bj receive the same label if we label the trees
with a common parse word.

In particular, for any two trees that differ by a rotation (be it on the right arm or not) there is a set of
leaves such that both trees have a subtree with precisely these leaves. With this in mind, one can compute
the number of common parsewords for two trees lying in an interval of Cn.

Theorem 6.5 Suppose T1 < T < T2 in Cn. Then ParseWords(T1, T2) = ParseWords(T1, T2, T ).

Theorem 6.6 Suppose T1 and T2 have an upper bound in Cn. Then

ParseWords(T1, T2) = ParseWords(T1 ∧ T2, T1 ∨ T2).
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Furthermore, if rank(T1 ∨ T2)− rank(T1 ∧ T2) = k, then

|ParseWords(T1, T2)| = |ParseWords(T1 ∧ T2, T1 ∨ T2)| = 3 · 2n−1−k.

In particular, since Cn has n ranks, any two trees with an upper bound in Cn have a common parseword.
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