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Noncommutative symmetric functions with
matrix parameters
(extended abstract)
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Abstract. We define new families of noncommutative symmetric functions and quasi-symmetric functions depending
on two matrices of parameters, and more generally on parameters associated with paths in a binary tree. Appropri-
ate specializations of both matrices then give back the two-vector families of Hivert, Lascoux, and Thibon and the
noncommutative Macdonald functions of Bergeron and Zabrocki.

Résumé. Nous définissons de nouvelles familles de fonctions symétriques non-commutatives et de fonctions quasi-
symétriques, dépendant de deux matrices de paramètres, et plus généralement, de paramètres associés à des chemins
dans un arbre binaire. Pour des spécialisations appropriées, on retrouve les familles à deux vecteurs de Hivert-
Lascoux-Thibon et les fonctions de Macdonald non-commutatives de Bergeron-Zabrocki.
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1 Introduction
The theory of Hall-Littlewood, Jack, and Macdonald polynomials is one of the most interesting subjects
in the modern theory of symmetric functions. It is well-known that combinatorial properties of symmetric
functions can be explained by lifting them to larger algebras (the so-called combinatorial Hopf algebras),
the simplest examples being Sym (Noncommutative symmetric functions [3]) and its dualQSym (Quasi-
symmetric functions [5]).

There have been several attempts to lift Hall-Litttlewood and Macdonald polynomials to Sym and
QSym [1, 7, 8, 13, 14]. The analogues defined in [1] were similar to, though different from, those of [8].
These last ones admitted multiple parameters qi and ti, which however could not be specialized to recover
the version of [1].

The aim of this article is to show that many more parameters can be introduced in the definition of
such bases. Actually, one can have a pair of n × n matrices (Qn, Tn) for each degree n. The main
properties established in [1] and [8] remain true in this general context, and one recovers the BZ and HLT
polynomials for appropriate specializations of the matrices.

In the last section, another possibility involving quasideterminants is explored.
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2 Notations
Our notations for noncommutative symmetric functions will be as in [3, 10]. The Hopf algebra of non-
commutative symmetric functions is denoted by Sym, or by Sym(A) if we consider the realization in
terms of an auxiliary alphabet. Bases of Symn are labelled by compositions I of n. The noncommutative
complete and elementary functions are denoted by Sn and Λn, and the notation SI means Si1 . . . Sir . The
ribbon basis is denoted by RI .

The notation I � n means that I is a composition of n. The conjugate composition is denoted by
I∼. The graded dual of Sym is QSym (quasi-symmetric functions). The dual basis of (SI) is (MI)
(monomial), and that of (RI) is (FI). The descent set of I = (i1, . . . , ir) is Des (I) = {i1, i1 +
i2, . . . , i1 + · · ·+ ir−1}.

Finally, there are two operations on compositions: if I = (i1, . . . , ir) and J = (j1, . . . , js), the com-
position I.J is (i1, . . . , ir, j1, . . . , js) and I . J is (i1, . . . , ir + j1, . . . , js).

3 Symn as a Grassmann algebra
Since for n > 0, Symn has dimension 2n−1, it can be identified (as a vector space) with a Grassmann
algebra on n− 1 generators η1, . . . , ηn−1 (that is, ηiηj = −ηjηi, so that in particular η2

i = 0). This iden-
tification is meaningful, for example, in the context of the representation theory of the 0-Hecke algebras
Hn(0) (see [2]).

If I is a composition of n with descent set D = {d1, . . . , dk}, we make the identification

RI ←→ ηD := ηd1ηd2 . . . ηdk . (1)

For example, R213 ↔ η2η3. We then have

SI ←→ (1 + ηd1)(1 + ηd2) . . . (1 + ηdk) (2)

and

ΛI ←→
n−1∏
i=1

θi, (3)

where θi = ηi if i 6∈ D and θi = 1 + ηi otherwise. Other bases have simple expression under this
identification, e.g., Ψn, Φn and Hivert’s Hall-Littlewood basis [7].

3.1 Structure on the Grassmann algebra
Let ∗ be the anti-involution given by η∗i = (−1)iηi. The Grassmann integral of any function f is defined
by ∫

dη f := f12...n−1, where f =
∑
k

∑
i1<···<ik

fi1...ikηi1 . . . ηik . (4)

We define a bilinear form on Symn by

(f, g) =

∫
dη f∗g. (5)

Then,
(RI , RJ) = (−1)`(I)−1δI,J̄∼ , (6)

so that this is (up to an unessential sign) the Bergeron-Zabrocki scalar product [1, Eq. (4)].
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3.2 Factorized elements in the Grassman algebra
Now, for a sequence of parameters Z = (z1, . . . , zn−1), let

Kn(Z) = (1 + z1η1)(1 + z2η2) . . . (1 + zn−1ηn−1) . (7)

We then have

Lemma 3.1

(Kn(X),Kn(Y )) =

n−1∏
i=1

(yi − xi) . (8)

3.3 Bases of Sym
We shall investigate bases of Symn of the form

H̃I = Kn(ZI) =
∑
J

k̃IJRJ , (9)

where ZI is a sequence of parameters depending on the composition I of n.
The bases defined in [8] and [1] are of the previous form and for both of them, the determinant of the

Kostka matrix K = (k̃IJ) is a product of linear factors (as for ordinary Macdonald polynomials). This is
explained by the fact that these matrices have the form(

A xA
B yB

)
(10)

where A and B have a similar structure, and so on recursively. Indeed, for such matrices,

Lemma 3.2 Let A,B be two m×m matrices. Then,∣∣∣∣A xA
B yB

∣∣∣∣ = (y − x)m detA · detB . (11)

3.4 Duality
Similarly, the dual vector space QSymn = Sym∗n can be identified with a Grassmann algebra on another
set of generators ξ1, . . . , ξn−1. Encoding the fundamental basis FI of Gessel [5] by

ξD := ξd1ξd2 . . . ξdk , (12)

the usual duality pairing such that the FI are dual to the RI is given in this setting by

〈ξD, ηE〉 = δDE . (13)

Let
Ln(Z) = (z1 − ξ1) . . . (zn−1 − ξn−1) . (14)

Then, as above, we have a factorization identity:

Lemma 3.3

〈Ln(X),Kn(Y )〉 =

n−1∏
i=1

(xi − yi) . (15)
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4 Bases associated with paths in a binary tree
Let y = {yu} be a family of indeterminates indexed by all boolean words of length≤ n−1. For example,
for n = 3, we have the six parameters y0, y1, y00, y01, y10, y11.

We can encode a composition I with descent set D by the boolean word u = (u1, . . . , un−1) such that
ui = 1 if i ∈ D and ui = 0 otherwise.

Let us denote by um...p the sequence umum+1 . . . up and define

PI := (1 + yu1η1)(1 + yu1...2η2) . . . (1 + yu1...n−1ηn−1) (16)

or, equivalently,

PI := Kn(YI) with YI = (yu1
, yu1...2

, . . . , yu) =: (yk(I)) . (17)

Similarly, let

QI := (yw1 − ξ1)(yw1...2 − ξ2) . . . (yw1...n−1 − ξn−1) =: Ln(Y I), (18)

where w1...k = u1 . . . uk−1 uk where uk = 1− uk, so that

Y I := (yw1
, yw1...2

, . . . , yw1...n−1
) =: (yk(I)) . (19)

4.1 Kostka matrices
The Kostka matrix is defined as the transpose of the transition matrices from PI to RJ . This matrix is
recursively of the form of Eq. (10). Thus, its determinant factors completely. For n = 4, it is

(y1 − y0)4(y01 − y00)2(y11 − y10)2(y001 − y000)(y011 − y010)(y101 − y100)(y111 − y110). (20)

Proposition 4.1 The bases (PI) and (QI) are adjoint to each other, up to normalization:

〈QI , PJ〉 = 〈Ln(Y I),Kn(YJ)〉 =

n−1∏
k=1

(yk(I)− yk(J)〉 , (21)

which is indeed zero unless I = J .

From this, it is easy to derive a product formula for the basis PI .

Proposition 4.2 Let I and J be two compositions of respective sizes n and m. The product PIPJ is a
sum over an interval of the lattice of compositions

PIPJ =
∑

K∈[I.(m),I·(1m)]

cKIJPK (22)

where

cKIJ =
〈Ln+m(Y K),Kn+m(YI · 1 · YJ)〉

〈QK , PK〉
, (23)

where YI · 1 · YJ stands for the sequence (y1(I), . . . , yn(I), 1, y1(J), . . . , ym(J)).
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4.2 The quasi-symmetric side
As we have seen before, the (QI) being dual to the (PI), the inverse Kostka matrix is given by the simple
construction:

Proposition 4.3 The inverse of the Kostka matrix is given by

(K−1
n )IJ = (−1)`(I)−1

∏
d∈Des (Ī∼)

yd(J)

n−1∏
p=1

1

yp(J)− yp(J)
. (24)

4.3 Some specializations
Let us now consider the specialization sending all yw to 1 if w ends with a 1 and denote by K′ the matrix
obtained by this specialization. Then, as in [8, p. 10],

Proposition 4.4 Let n be an integer. Then

Sn = KnK′n
−1 (25)

is lower triangular. More precisely, let Y ′J be the image of YJ by the previous specialization and define
Y ′J in the same way. Then the coefficient sIJ indexed by (I, J) is

sIJ =

n−1∏
k=1

yk(I)− y′k(J)

y′k(J)− y′k(J)
. (26)

5 The two-matrix family
5.1 A specialization of the paths in a binary tree
The above bases can now be specialized to bases H̃(A;Q,T ), depending on two infinite matrices of
parameters. Label the cells of the ribbon diagram of a composition I of n with their matrix coordinates
as follows:

Diagr (4, 1, 2, 1) =

(1, 1) (1, 2) (1, 3) (1, 4)

(2, 4)

(3, 4) (3, 5)

(4, 5)

(27)

We associate a variable zij with each cell except (1, 1) by setting zij := qi,j−1 if (i, j) has a cell on its
left, and zij := ti−1,j if (i, j) has a cell on its top. The alphabet Z(I) = (zj(I)) is the sequence of the
zij in their natural order.
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Next, if J is a composition of the same integer n, form the monomial

k̃IJ(Q,T ) =
∏

d∈Des (J)

zd(I) . (28)

For example, with I = (4, 1, 2, 1) and J = (2, 1, 1, 2, 2), we have Des (J) = {2, 3, 4, 6} and k̃IJ =
q12q13t14q34.

Definition 5.1 Let Q = (qij) and T = (tij) (i, j ≥ 1) be two infinite matrices of commuting indeter-
minates. For a composition I of n, the noncommutative (Q,T )-Macdonald polynomial H̃I(A;Q,T ) is

H̃I(A;Q,T ) = Kn(A;Z(I)) =
∑
J�n

k̃IJ(Q,T )RJ(A) . (29)

Note that H̃I depends only on the qij and tij with i+ j ≤ n.

5.2 (Q, T )-Kostka matrices
The factorization property of the determinant of the (Q,T )-Kostka matrix, which is valid for the usual
Macdonald polynomials as well as for the noncommutative analogues of [8] and [1] still holds since the
H̃I are specializations of the PI .

Theorem 5.2 Let n be an integer. Then

detKn =
∏

i+j≤n

(qij − tij)e(i,j) , (30)

where e(i, j) =
(
i+j−2
i−1

)
2n−i−j .

5.3 Specializations
For appropriate specializations, we recover (up to indexation) the Bergeron-Zabrocki polynomials H̃BZ

I

of [1] and the multiparameter Macdonald functions H̃HLT
I of [8]:

Proposition 5.3 Let (qi), (ti), i ≥ 1 be two sequences of indeterminates. For a composition I of n,
(i) Let ν be the anti-involution of Sym defined by ν(Sn) = Sn. Under the specialization qij = qi+j−1,

tij = tn+1−i−j , H̃I(Q,T ) becomes a multiparameter version of iν(H̃BZ
I ), to which it reduces under the

further specialization qi = qi and ti = ti.
(ii) Under the specialization qij = qj , tij = ti, H̃I(Q,T ) reduces to H̃HLT

I .

5.4 The quasi-symmetric side
Families of (Q,T )-quasi-symmetric functions can now be defined by duality by specialization of the (QI)
defined in the general case. The dual basis of (H̃J) in QSym will be denoted by (G̃I). We have

G̃I(X;Q,T ) =
∑
J

g̃IJ(q, t)FJ(X) (31)

where the coefficients are given by the transposed inverse of the Kostka matrix: (g̃IJ) = t(k̃IJ)−1.
Let Z ′(I)(Q,T ) = Z(I)(T,Q) = Z(Ī∼)(Q,T ). Then, thanks to Proposition 4.3 and to the fact that

changing the last bit of a binary word amounts to change a q into a t, we have



Noncommutative symmetric functions with matrix parameters 525

Proposition 5.4 The inverse of the (Q,T )-Kostka matrix is given by

(K−1
n )IJ = (−1)`(I)−1

∏
d∈Des (Ī∼)

z′d(J)

n−1∏
p=1

1

zp(J)− z′p(J)
. (32)

6 Multivariate BZ polynomials
In this section, we restrict our attention to the multiparameter version of the Bergeron-Zabrocki polyno-
mials, obtained by setting qij = qi+j−1 and tij = tn+1−i−j in degree n.

6.1 Multivariate BZ polynomials
As in the case of the two matrices of parameters, Q and T , one can deduce the product in the H̃ basis
by some sort of specialization of the general case. However, since tij specializes to another t where n
appears, one has to be a little more cautious to get the correct answer.

Theorem 6.1 Let I and J be two compositions of respective sizes p and r. Let us denote by K = I.J̄∼

and n = |K| = p+ r. Then

H̃IH̃J =
(−1)`(I)+|J|∏

k∈Des (K)(qk − tn−k)

∑
K′

∏
k∈Des (K)

(−1)`(K)(zk(K ′)− z′k(K ′))H̃K′ (33)

where the sum is computed as follows. Let I ′ and J ′ be the compositions such that |I ′| = |I| and either
K ′ = I ′ ·J ′, or K ′ = I ′ . J ′. If I ′ is not coarser than I or if J ′ is not finer than J , then H̃(K ′) does have
coefficient 0. Otherwise, zk(K ′) = qk if k is a descent of K ′ and tn−k otherwise. Finally, z′k(K ′) does
not depend on K ′ and is (Z(I), 1, Z(J)).

6.2 The ∇ operator
The ∇ operator of [1] can be extended by

∇H̃I =

(
n−1∏
d=1

zd(I)

)
H̃I . (34)

Then,

Proposition 6.2 The action of∇ on the ribbon basis is given by

∇RI = (−1)|I|+`(I)
∏

d∈Des (I∼)

qd
∏

d∈Des (Ī∼)

td
∑
J≥Ī∼

∏
i∈Des (I)∩Des (J)

(ti + qn−i)RJ . (35)

Note also that if I = (1n), one has

∇Λn =
∑
J�n

∏
j∈Des (J)

(qj + tn−j)RJ =
∑
J�n

∏
j 6∈Des (J)

(qj + tn−j − 1)ΛJ . (36)

As a positive sum of ribbons, this is the multigraded characteristic of a projective module of the 0-
Hecke algebra. Its dimension is the number of packed words of length n (called preference functions in
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[1]). Let us recall that a packed word is a word w over {1, 2, . . . } so that if i > 1 appears in w, then i− 1
also appears in w. The set of all packed words of size n is denoted by PWn.

Then the multigraded dimension of the previous module is

Wn(q, t) = 〈∇Λn, F
n
1 〉 =

∑
w∈PWn

φ(w) (37)

where the statistic φ(w) is obtained as follows.
Let σw = std(w), where w denotes the mirror image of w. Then

φ(w) =
∏

i∈Des (σ−1
w )

xi (38)

where xi = qi if w↑i = w↑i+1 and xi = tn−i otherwise, where w↑ is the nondecreasing reordering of w.
For example, with w = 22135411, σw = 54368721, w↑ = 11122345, the recoils of σw are 1, 2, 3, 4,

7, and φ(w) = q1q2t5q4t1.

Theorem 6.3 Denote by dI the number of permutations σ with descent composition C(σ) = I . Then, for
any composition I of n,

∇RI = (−1)|I|+`(I)θ(σ)
∑

w∈PWn; ev(w)≤I

RC(σ−1
w )

dC(σ−1
w )

, (39)

where σ is any permutation such that C(σ−1) = Ī∼, and

θ(σ) =
∏

d∈Des (Ī∼)

td . (40)

The behaviour or the multiparameter BZ polynomials with respect to the scalar product

[RI , RJ ] := (−1)|I|+`(I)δI,J̄∼ (41)

is the natural generalization of [1, Prop. 1.7]:

[H̃I , H̃J ] = (−1)|I|+`(I)δI,J̄∼

n−1∏
i=1

(qi − tn−i) . (42)

7 Quasideterminantal bases
7.1 Quasideterminants of almost triangular matrices
Quasideterminants [4] are noncommutative analogs of the ratio of a determinant by one of its principal
minors. Thus, the quasideterminants of a generic matrix are not polynomials, but complicated rational
expressions living in the free field generated by the coefficients. However, for almost triangular matrices,
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i.e., such that aij = 0 for i > j + 1, all quasideterminants are polynomials, with a simple explicit
expression. We shall only need the formula (see [3], Prop.2.6):∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 . . . a1n

−1 a22 a23 . . . a2n

0 −1 a33
. . .

...
...

. . . . . . . . . an−1n

0 . . . 0 −1 ann

∣∣∣∣∣∣∣∣∣∣∣∣
= a1n +

∑
1≤j1<···<jk<n

a1j1aj1+1j2aj2+1j3 . . . ajk+1n. (43)

Recall that the quasideterminant |A|pq is invariant by scaling the rows of index different from p and the
columns of index diffrerent from q. It is homogeneous of degree 1 with respect to row p and column q.
Also, the quasideterminant is invariant under permutations of rows and columns.

The quasideterminant (43) coincides with the row-ordered expansion of an ordinary determinant

rdet (A) :=
∑
σ∈Sn

ε(σ)a1σ(1)a2σ(2) · · · anσ(n) (44)

which will be denoted as an ordinary determinant in the sequel.

7.2 Quasideterminantal bases of Sym
Many interesting families of noncommutative symmetric functions can be expressed as quasi-determinants
of the form

H(W,G) =

∣∣∣∣∣∣∣∣∣∣∣

w11G1 w12G2 . . . w1n−1Gn−1 w1nGn
w21 w22G1 . . . w2n−1Gn−2 w2nGn−1

0 w32 . . . w3n−3Gn−3 w3nGn−2

...
...

. . .
...

...
0 0 . . . wnn−1 wnnG1

∣∣∣∣∣∣∣∣∣∣∣
(45)

(or of the transposed form), where Gk is some sequence of free generators of Sym, and W an almost-
triangular (wij = 0 for i > j + 1) scalar matrix. For example, Sn over the ΛI and the ΨI (see [3,
(37)-(41)]), or over the ΘI , where Θn(q) = (1− q)−1Sn((1− q)A) (see [10, Eq. (78)]). These examples
illustrate relations between sequences of free generators. Quasi-determinantal expressions for some linear
bases can be recast in this form as well. For example, the formula for ribbons [3, (50)] can be rewritten as
follows. Let U and V be the n× n almost-triangular matrices

U =


1 1 . . . 1 1
−1 −1 . . . −1 −1
0 −1 . . . −1 −1
...

...
. . .

...
...

0 0 . . . −1 −1

 V =


1 1 . . . 1 1
−1 0 . . . 0 0
0 −1 . . . 0 0
...

...
. . .

...
...

0 0 . . . −1 0

 (46)

Given the pair (U, V ), define, for each composition I of n, a matrix W (I) by

wij(I) =

{
uij if i− 1 ∈ Des (I),

vij otherwise,
(47)
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and set
HI(U, V ;A) := H(W (I), S(A)) . (48)

Then,
(−1)`(I)−1RI = HI(U, V ) . (49)

Indeed, HI(U, V ;A) is obtained by substituting in (43)

ajp+1,jp+1
=

{
−Sjp+1−jp if jp ∈ Des (I),
0 otherwise.

(50)

This yields

Sn +
∑
k

∑
{j1<···<jk}⊆Des (I)

Sj1(−Sj2−j1) . . . (−Sn−jk)

=
∑

Des (K)⊆Des (I)

(−1)`(K)−1SK = (−1)`(I)−1RI .
(51)

For a generic pair of almost-triangular matrices (U, V ), the HI form a basis of Symn. Without loss of
generality, we may assume that u1j = v1j = 1 for all j. Then, the transition matrix M expressing the HI

on the SJ where J = (j1, . . . , jp) satisfies:

MJ,I := x1j1−1xj1j2−1 . . . xjpn. (52)

where xij = uij if i− 1 is not a descent of I and vij otherwise.
As we shall sometimes need different normalizations, we aslo define for arbitrary almost triangular

matrices U, V

H ′(W,G) = rdet


w11G1 w12G2 . . . w1n−1Gn−1 w1nGn
w21 w22G1 . . . w2n−1Gn−2 w2nGn−1

0 w32 . . . w3n−3Gn−3 w3nGn−2

...
...

. . .
...

...
0 0 . . . wnn−1 wnnG1

 (53)

and
H ′I(U, V ) = H ′(W (I), S(A)) . (54)

7.3 Expansion on the basis (SI)

For a composition I = (i1, . . . , ir) of n, let I] be the integer vector of length n obtained by replacing
each entry k of I by the sequence (k, 0, . . . , 0) (k − 1 zeros):

I] = (i10i1−1i20i2−1 . . . ir0
ir−1) . (55)

Proposition 7.1 The expansion of H ′(W,S) on the S-basis is given by

H ′(W,S) =
∑
I�n

ε(σI)w1σI(1) · · ·wnσI(n)S
I . (56)
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7.4 Expansion of the basis (RI)

Proposition 7.2 For I = (i1, . . . , ir) be a composition of n, denote byWI the product of diagonal minors
of the matrix W taken over the first i1 rows and columns, then the next i2 ones and so on. Then,

H ′(W,S) =
∑
I�n

WIRI . (57)

7.5 Examples

7.5.1 A family with factoring coefficients
Theorem 7.3 Let U and V be defined by

uij =


xj − yj if i = 1,
aqi−1x

j−i+1 − yj−i+1 if 1 < i < j + 2,

0 otherwise,
(58)

vij =


xj − yj if i = 1,

xj−i+1 − bun+1−iy
j−i+1 if 1 < i < j + 2,

0 otherwise.
(59)

Then the coefficients WJ of the expansion of H ′I(U, V ) on the ribbon basis all factor as products of
binomials.

The formula for the coefficient of Rn is simple enough: if one orders the factors of det(U) and det(V )
as

Zn = (x− aq1y, x− aq2y, . . . , x− aqn−1y) (60)

and
Z ′n = (y − bun−1x, y − bun−2x, . . . , y − bu1x), (61)

then, the coefficient of Rn in H ′I(U, V ) is

(x− y)
∏

d∈Des (I)

z′d
∏

e 6∈Des (I)

ze . (62)

A more careful analysis allows one to compute directly the coefficient of RJ in H ′I .
For example,

H ′3(U, V )

(x− y)
=(x− aq1y)(x− aq2y)R3 + (x− aq1y)(aq2x− y)R21

+ a(x− y)(q1x− q2y)R12 + (aq1x− y)(aq2x− y)R111.

(63)

H ′21(U, V )

(x− y)
=(x− aq1y)(bu1x− y)R3 + (x− aq1y)(x− bu1y)R21

+ (abq1u1x− y)(x− y)R12 + (aq1x− y)(x− bu1y)R111.

(64)
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7.5.2 An analogue of the (1− t)/(1− q) transform
Recall that for commutative symmetric functions, the (1− t)/(1− q) transform is defined in terms of the
power-sums by

pn

(
1− t
1− q

X

)
=

1− tn

1− qn
pn(X) . (65)

With the specialization x = 1, y = t, qi = qi, ui = 1, a = b = 1, one obtains a basis such that for a hook
composition I = (n−k, 1k), the commutative image of H ′I(U, V ) becomes the (1− t)/(1−q) transform
of the Schur function sn−k,1k .

7.5.3 An analogue of the Macdonald P -basis
With the specialization x = 1, y = t, qi = qi, ui = ti, a = b = 1, one obtains an analogue of the
Macdonald P -basis, in the sense that for hook compositions I = (n − k, 1k), the commutative image of
H ′I is proportional to the Macdonald polynomial Pn−k,1k(q, t;X).
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