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Moment graphs and Kazhdan-Lusztig
polynomials

Martina Lanini1

1Department Mathematik Friedrich-Alexander-Universität Erlangen-Nürnberg

Abstract. Motivated by a result of Fiebig (2007), we categorify some properties of Kazhdan-Lusztig polynomials via
sheaves on Bruhat moment graphs. In order to do this, we develop new techniques and apply them to the combinatorial
data encoded in these moment graphs.

Résumé. Motivés par un resultat de Fiebig (2007), nous categorifions certaines propriétés des polynômes de Kazhdan-
Lusztig en utilisant faisceaux sur les graphes moment de Bruhat. Pour faire ça, nous développons de nouvelles
techniques et les appliquons ensuite aux données combinatoires encodées dans ces graphes moment.
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1 Introduction
Moment graphs, as well as Kazhdan-Lusztig polynomials, straddle the intersection of algebraic com-
binatorics, representation theory and geometric representation theory. While the combinatorial core of
the Kazhdan-Lusztig theory has been investigated for thirty years, after the seminal paper (Kazhdan and
Lusztig, 1979) where these polynomials were defined, moment graphs have not yet been studied as com-
binatorial objects.

It is possible to develop a categorical and very general theory of moment graphs and sheaves on them,
as we have done in (Lanini, 2011). In this extended abstract, however, we are going to focus our attention
on a fundamental class of moment graphs: the regular and parabolic Bruhat (moment) graphs. In order
to get a theory of moment graphs, we first had to choose if we were going to work with moment graphs
on a vector space or on a lattice. The first possibility would enable us to associate a moment graph to
any Coxeter system (cf. Fiebig, 2008b), while the second one has the advantage that a modular theory
could be developed (cf. Fiebig, 2011). We decided to work with moment graphs on a lattice, because
our results in characteristic zero categorify properties of Kazhdan-Lusztig polynomials, while in positive
characteristic they give also information about the stalks of indecomposable parity sheaves (cf. Fiebig and
Williamson, 2010). Thus, from now on we will speak of k-moment graphs, where k is any local ring with
2 ∈ k×. However, our proofs can be adapted to moment graphs on a vector space, by slightly modifying
some definitions.

As unlabelled oriented graphs, moment graphs were introduced by Dyer in 1991 (cf. Dyer, 1991) in
order to study some properties of the Bruhat order on a Coxeter group; already in 1993, he considered
them as edge–labelled oriented graphs. Actually, he was labelling the edges by reflections of the Coxeter
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group (cf. Dyer, 1993), instead of the corresponding positive coroots (see Def.2.2). Even if his definition
seems equivalent to ours, the extra structure coming from the whole root lattice turns out to be funda-
mental when we are considering morphisms between two Bruhat (k-moment) graphs (see §2.2). Since in
this work k-moment graphs will replace the role played by topological spaces in the usual sheaf theory, a
good notion of morphisms between them is essential in order to define the pullback and pushforward func-
tors (§3.3). The most important class of sheaves on a k-moment graph are the Braden-MacPherson—or
canonical—sheaves. As their name suggests, they were introduced by Braden and MacPherson in (Braden
and MacPherson, 2001) in order to give a combinatorial algorithm to compute the equivariant intersection
cohomology of a ”nice” projective algebraic variety X , equipped with an action of an algebraic torus and
having a T -invariant Whitney stratification. Here, ”nice” means that T acts equivariantly formally (cf.
Goresky et al., 1998, §1.2) on X with finitely many 1-dimensional orbits and finitely many fixed points
(all of which are isolated). In (Fiebig, 2008b), Fiebig defined the category, H, whose objects are given
by direct sums and direct summands of the spaces of global sections of Braden-MacPherson sheaves on
a Bruhat k-moment graph and he proved it to be equivalent to the category of special Soergel bimodules,
introduced by Soergel to categorify the Hecke algebra (cf. Soergel, 2007).

A famous conjecture of Soergel on this category may be now rephrased in terms of an explicit formula
relating indecomposable Braden-MacPherson sheaves on a (possibly parabolic) Bruhat k-moment graph
and (Deodhar’s parabolic) Kazhdan-Lusztig polynomials (cf. Deodhar, 1987). In this form, the conjecture
is due to Fiebig and we will briefly discuss it in §4.1. This conjecture motivates our work: we will try to
interpret some properties of Kazhdan-Lusztig polynomials in the moment graph setting. In this extended
abstract we explain to the reader some possible approaches to this problem that we developed in (Lanini,
2011). In particular, after recalling some basics definitions and properties of k-moment graphs and sheaves
on them, we will present several different strategies to lift equalities concerning Kazhdan-Lusztig poly-
nomials at the canonical sheaf level. We will see that, in some particularly favourable situations, it will be
enough to find an isomorphism between the underlying Bruhat k-moment graphs (see Theor.4.1), while
in other situations the solution will be rather difficult (see Theor.5.1).

2 The category of k-moment graphs
From now on, Y will denote a lattice of finite rank, k a local ring such that 2 ∈ k× and Yk := Y ⊗Z k.
We recall the definition of k-moment graphs on a lattice Y , following (Fiebig, 2010b). In (Goresky et al.,
1998), Goresky, Kottwitz and MacPherson used moment graphs on a complex projective space, but the
definition we will be working with will enable us to generalise all constructions to positive characteristic.

Definition 2.1 (Fiebig, 2010b) Let Y be a lattice of finite rank. A moment graph on the lattice Y is given
by (V, E ,E, l), where

(MG1) (V, E) is a directed graph without oriented cycles or multiple edges,

(MG2) E is a partial order on V such that if x, y ∈ V and E : x→ y ∈ E , then x E y,

(MG3) l : E → Y \{0} is a map called the label function.

The fundamental example that we should always keep in mind is the following.

2.1 Moment graphs associated to a symmetrisable Kac-Moody Algebra
Let g be a symmetrisable Kac-Moody algebra, with root datum (Π, h,Π∨) and Weyl groupW . As sub-
group of GL(h∗),W is generated by the set of simple reflections S = {sα|α ∈ Π} and it is known that
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(W,S) is a Coxeter system (cf. Kac, 1983, §3.10). Let us take J ⊆ S and denote byWJ the subgroup
ofW generated by J and byWJ the set of minimal representatives for the equivalence classesWJ \ W .
Finally, denote by ∆re

+ the set of positive real roots and recall that this is an indexing set for the set of all
reflections T ofW .

Definition 2.2 LetW , S and J be as above. Then the parabolic Bruhat (moment) graph GJ = G(WJ) =
(V, E ,≤, l) associated toWJ is a moment graph on Q∨ defined by

(i) V =WJ

(ii) E =
{
x→ y |x < y , ∃α∈∆re

+ , ∃w ∈ WJ : y−1wx = sα
}

(iii) l(x→ wxsα) := α∨, the positive coroot corresponding to α.

A priori, it is not clear that GJ does not have oriented cycles or multiple edges and that its label function
is well–defined. However, it is not hard to verify these using certain properties of parabolic subgroups and
quotients (cf. Bjorner and Brenti, 2005, §2.4) and the following Lemma.

Lemma 2.1 (Lanini, 2011)Let W,S, J be as before. Let x, y, z ∈ W and let yJ = zJ 6= xJ . If there
exist α, β ∈ ∆re

+ such that x = ysα = zsβ , then α = β and so y = z.

We recall the following the definitions.

Definition 2.3 (Lanini) Let G be a moment graph on the lattice Y . We say that G is a k-moment graph on
Y if all labels are non–zero in Yk

Notice that a Bruhat moment graph is always a k-moment graph.

Definition 2.4 (Fiebig, 2008a) The pair (G, k) is called a GKM -pair if all pairs of distinct edgesE1, E2

containing a common vertex are such that k l(E1) ∩ k l(E2) = {0}.

2.2 Morphisms of moment graphs
In (Lanini) we defined the notion of morphism between two k-moment graphs, that we now recall. Since a
moment graph is an ordered graph, whose edges are labelled by non–zero elements of Y , a morphism will
be given by a morphism of oriented graphs together with a collection of automorphisms of the k-module
Yk, satisfying some technical requirements.

Definition 2.5 A morphism between two k-moment graphs

f : (V, E ,E, l)→ (V ′, E ′,E′, l′) (1)

is given by (fV , {fl,x}x∈V), where

(MORPH1) fV : V → V ′ is any map of posets such that, if x−−−y ∈ E , then either fV(x)−−−fV(y) ∈ E ′,
or fV(x) = fV(y).

For a vertex E : x−−− y ∈ E such that fV(x) 6= fV(y), we define fE(E) := fV(x)−−− fV(y).

(MORPH2) For all x ∈ V and fl,x : Yk → Yk ∈ Autk(Yk) such thatE : x−−−y ∈ E and fV(x) 6= fV(y),
the following two conditions are verified:

(MORPH2a) fl,x(l(E)) = h · l′(fE(E)), for some h ∈ k∗

(MORPH2b) π ◦ fl,x = π ◦ fl,y, where π is the canonical quotient map π : Yk → Yk/l
′(fE(E))Yk.
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If f : G = (V, E ,E, l) → G′ = (V ′, E ′,E′, l′) and g : G′ → G′′ = (V ′′, E ′′,E′′, l′′) are two
morphisms of k-moment graphs, then there is a natural way to define the composition. Namely, g ◦ f :=
(gV′ ◦ fV , {gl′,fV(x) ◦ fl,x}x∈V).

Lemma 2.2 (Lanini, 2011) The composition of two morphisms between k-moment graphs is again a
morphism, and it is associative.

For any k-moment graph G = (V, E ,E, l), we set idG = (idV , {idYk}x∈V). Thus we may give the
following definition.

Definition 2.6 We denote by MG(Yk) the category whose objects are the k-moment graphs on Y and
whose morphisms are as in Def.2.5.

It is possible to give an explicit characterisation of the isomorphisms in this category, namely,

Lemma 2.3 (Lanini, 2011) Let G,G′ ∈ MG(Yk) and f = (fV , {fl,x}x∈V) ∈ HomMG(Yk)
(G,G′). Then

f is an isomorphism if and only if the following two conditions hold.

(ISO1) fV is an isomorphism of posets

(ISO2) for all u→ w ∈ E ′, there exists exactly one x→ y ∈ E such that fV(x) = u and fV(y) = w.

3 The category of sheaves on a k-moment graph
The notion of sheaf on a moment graph is due to Braden and MacPherson (cf. Braden and MacPherson,
2001) and it has been used by Fiebig in several papers (cf. Fiebig, 2008a,b, 2010a,b, 2011).

For any finite rank lattice Y and any local ring k (with 2 ∈ k∗), we denote by S = Sym(Y ) its
symmetric algebra and by Sk := S ⊗Z k its extension. Sk is a polynomial ring and we provide it with
the grading induced by setting (Sk){2} = Yk. From now on, all the Sk-modules will be finitely generated
and Z–graded. Moreover, we will consider only degree zero morphisms between them. Finally, for j ∈ Z
and M a graded Sk–module we denote by M{j} the graded Sk-module obtained from M by shifting the
grading by j, that is M{j}{i} = M{j+i}.

Definition 3.1 (Braden and MacPherson, 2001) Let G = (V, E ,E, l) ∈ MG(Yk), then a sheaf F on G is
given by the data, ({Fx}, {FE}, {ρx,E}), where

(SH1) for all x ∈ V , Fx is an Sk-module;

(SH2) for all E ∈ E , FE is an Sk-module such that l(E) · FE = {0};
(SH3) for x ∈ V , E ∈ E , ρx,E : Fx → FE is a homomorphism of Sk-modules defined whenever x is in
the border of the edge E.

Example 3.1 (cf. Braden and MacPherson, 2001, §1) Let G = (V, E ,E, l) ∈ MG(Yk), then its structure
sheaf Z is given by

• for all x ∈ V , Zx = Sk

• for all E ∈ E , ZE = Sk/l(E)Sk

• for all x ∈ V and E ∈ E , such that x is in the border of the edge E, ρx,E : Sk → Sk/l(E) is the
canonical quotient map
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Definition 3.2 (Fiebig, 2009) Let G = (V, E ,E, l) ∈ MG(Yk) and let F = ({Fx}, {FE}, {ρx,E}),
F ′ = ({F ′x}, {F ′E}, {ρ′x,E}) be two sheaves on it. A morphism ϕ : F −→ F ′ is given by the data,

(i) for all x ∈ V , ϕx : Fx → F ′x is a homomorphism of Sk-modules

(ii) for all E ∈ E , ϕE : FE → F ′E is a homomorphism of Sk-modules such that, for any x ∈ V on the
border of E ∈ E , the following diagram commutes

Fx

ϕx

��

ρx,E // FE

ϕE

��
F ′x

ρ′x,E // F ′E

(2)

Definition 3.3 Let G ∈ MG(Yk). We denote by Shk(G) the category, whose objects are the sheaves on G
and whose morphisms are as in Def.3.2.

Even if Shk(G) is not a category of sheaves in the topological meaning, we may define, following
(Fiebig, 2008a), the notion of sections.

Definition 3.4 Let G = (V, E ,E, l) ∈ MG(Yk), F = ({Fx}, {FE}, {ρx,E}) ∈ Shk(G) and I ⊆ V .
Then the set of sections of F over I is denoted Γ(I,F) and defined as

Γ(I,F) :=

{
(mx)x∈I ∈

⊕
x∈I
Fx
∣∣∣ ρx,E(mx) = ρy,E(my)
∀x, y ∈ I, x−−− y ∈ E

}
(3)

We will denote Γ(F) := Γ(V,F), that is the set of global sections of F .

3.1 Flabby sheaves on a k-moment graph
Following (Braden and MacPherson, 2001), we define a topology on the set of vertices of a k-moment
graph G. We state a result about a very important class of flabby (with respect to this topology) sheaves:
the BMP-sheaves. This notion, due to Fiebig and Williamson (cf. Fiebig and Williamson, 2010)), gener-
alises the original construction of Braden and MacPherson.

Definition 3.5 (Braden and MacPherson, 2001) Let G = (V, E ,E, l) ∈ MG(Yk), then the Alexandrov
topology on V is the topology whose basis of open sets is given by the collection {D x} := {y ∈ V | y D
x}, for all x ∈ V .

A classical question in sheaf theory is to ask if a sheaf is flabby, that is whether or not any local section
over an open set extends to a global one.

3.2 Braden-MacPherson sheaves
Definition 3.6 (Fiebig and Williamson, 2010, Def. 6) Let G ∈ MG(Yk) and let B ∈ Shk(G). We say that
B is a Braden-MacPherson sheaf if it satisfies the following properties:

(BMP1) for any x ∈ V , Bx is a graded free Sk-module

(BMP2) for any E : x→ y ∈ E , ρy,E : By → BE is surjective with kernel l(E)By

(BMP3) for any open set I ⊆ V , the map Γ(B)→ Γ(I,B) is surjective
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(BMP4) for any x ∈ V , the map Γ(B)→ Bx is surjective.

Hereafter, Braden-MacPherson sheaves will be referred to also as BMP-sheaves or canonical sheaves.
An important theorem, characterising Braden-MacPherson sheaves, is the following one.

Theorem 3.1 (Fiebig and Williamson, 2010, Theor. 6.3) Let G ∈ MG(Yk)

(i) For any w ∈ V , there is, up to isomorphism, a unique Braden-MacPherson sheaf B(w) ∈ Shk(G) with
the following properties.

(BMP0) B(w) is indecomposable in Shk(G).
(BMP1a) B(w)w ∼= Sk and B(w)x = 0, unless x ≤ w.

(ii) Let B be a Braden-MacPherson sheaf. Then there are w1, . . . , wr ∈ V and l1 . . . lr ∈ Z such that

B ∼= B(w1)[lr]⊕ . . .⊕ B(wr)[lr] (4)

3.3 Direct and inverse images
Let f = (fV , {fl,x}) : G = (V, E ,E, l)→ G′ = (V, E ,E, l) be a homomorphism of k-moment graphs. It
is possible to define (cf. Lanini, 2011, §2.2), in analogy with classical sheaf theory, two functors

Shk(G)

f∗

88
Shk(G′)

f∗

xx
.

We do not want to recall the definitions, but only the fact that if F ∈ Shk(G′), then for any v ∈ V ,
f∗Fv ∼= FfV(v) as graded Sk-modules and that the following fundamental property holds.

Lemma 3.1 (Lanini) Let G,G′ ∈ MG(Yk) and let f : G −→ G′ be an isomorphism. Let w ∈ V
and w′ = fV(w), then, if B(w) and B′(w′) are the corresponding indecomposable BMP-sheaves, then
B(w) ∼= f∗B′(w′) in Shk(G).

This result will provide us with an important technique to compare indecomposable canonical sheaves
on different k-moment graphs, that we will use in what follows.

4 KL-properties of canonical sheaves
In this section, we recall a conjecture, due to Fiebig, that motivates our work, and we try to explain some
techniques we partially developed in (Lanini) to categorify some equalities concerning Kazhdan-Lusztig
polynomials.

4.1 The multiplicity conjecture
In 1979 Kazhdan and Lusztig (cf. Kazhdan and Lusztig, 1979) introduced a family of polynomials {Py,w}
indexed by pairs of elements in a Coxeter groupW with S, the set of simple reflections. Some years later,
Deodhar generalised this notion to the parabolic setting, defining two families of polynomials {P J,−1x,y }
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and {P J,qx,y}, where y and w are now varying inWJ , for J ⊆ S (see §2.1). IfW was a Weyl group, these
polynomials were related to the intersection cohomology of the corresponding Schubert variety in partial
flag variety (cf. Kazhdan and Lusztig, 1979, 1980) and to the representation theory of the complex Lie
algebras (cf. Kazhdan and Lusztig, 1979), resp. of the semisimple, simply connected, reductive algebraic
groups over a field of positive characteristic (cf. Lusztig, 1980b), whose Weyl group isW .

The following conjecture motivates our work.

Conjecture 4.1 (Fiebig, 2010b, Conj. 4.4) Let y, w ∈ WJ and let k be such that (GJ|[y,w]
, k) is a GKM-

pair. Then rk (B(w)J)y = P J,−1y,w .

Here, B(w)J denotes the indecomposable Braden–MacPherson sheaf on the Bruhat moment graph GJ ,
corresponding to the vertex w ∈ WJ , rk is the graded rank of a graded (finitely generated) Sk-module
and P J,−1y,w Deodhar’s parabolic analogue of Kazhdan-Lusztig polynomials, corresponding to the pair y, w
and to the parameter u = −1 (cf. Deodhar, 1987).

This conjecture is proved in characteristic zero and in this case it is equivalent to Kazhdan-Lusztig’s
conjecture (cf. Fiebig, 2008a). In characteristic p it is proved for p bigger than a large (but explicit) bound
and it implies Lusztig’s conjecture (cf. Fiebig, 2011, 2010b). Our goal is now to interpret combinatorial
properties of Kazhdan-Lusztig polynomials in term of Braden-MacPherson sheaves.

4.2 Three techniques
From now on, G will denote the regular Bruhat moment graph, that is G∅. Moreover, if w ∈ W , we will
write B(w) instead of B(w)∅.

We mainly use three strategies to prove our claims.

a) Pullback of canonical sheaves. We look for isomorphisms of k-moment graphs and then, via the pull-
back functor (see Lemma 3.1), we get the desired equality between stalks of Braden-MacPherson
sheaves.

b) Looking at the set of invariants. For any s ∈ S we define an involution σs of the set of local sections of
a canonical sheaf on an s–invariant interval of G. In this case, the study of the space of the invariants
gives us the property we wanted to show.

c) Flabbiness of the structure sheaf. It is known (cf. Fiebig, 2010a) that the so–called structure sheaf
(see Example 3.1) is isomorphic to an indecomposable Braden-MacPherson sheaf if and only if it is
flabby and this is the case if and only if the corresponding Kazhdan–Lusztig polynomials evaluated
in 1 are all 1. We prove in a particularly explicit way that the structure sheaf is flabby in order to
categorify the fact that the associated polynomials evaluated in 1 are 1.

4.3 Some applications
From now on, G will denote the regular Bruhat moment graph, that is G∅. Moreover, if w ∈ W , we will
write B(w) instead of B(w)∅. Using the techniques we listed above, it is possible to prove the following
results.

Theorem 4.1 Lanini Let y, w ∈ W , then

(i) B(w)y ∼= B(w−1)y
−1

.
Let s ∈ S be such that ws < w, then
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(ii) if y 6≤ ws, B(w)y ∼= B(sw)sy

All isomorphisms are isomorphisms of Sk-modules, for any k.

Proof: (Idea) In both cases, we use the strategy a). It is indeed possible to define isomorphisms between
the corresponding k-moment graphs. This is done only using the combinatorics of G. 2

The theorem above categorifies two elementary properties of regular Kazhdan-Lusztig polynomials.
Namely, for any pair y, w ∈ W it holds Py,w = Py−1,w−1 and, if s ∈ S is such that sw < w but y 6≤ sw,
Py,w = Psy,sw. We want to stress the fact that Theorem 4.1 holds for any local ring k with 2 ∈ k×.

Remark 4.1 Observe that we are not simply looking for isomorphisms of the underlying (intervals of)
Bruhat graphs and that it is not trivial at all to lift isomorphisms of graphs to isomorphisms of moment
graphs. If it were possible, indeed, to prove that any isomorphism between the corresponding intervals of
Bruhat graphs induces an isomorphism between k-moment graphs, at least for k = Q, the Lusztig-Dyer
combinatorial invariance conjecture would follow. See (Brenti et al., 2006) for partial results on this
conjecture.

Clearly not all equalities concerning Kazhdan-Lusztig polynomials come from k-isomorphisms of the
underlying Bruhat graphs. Inspired by a theorem of Deodhar (cf. Deodhar, 1987), we prove a relation
between indecomposable canonical sheaves on a regular Bruhat graph G and the ones on the corresponding
parabolic Bruhat graphs GJ , for J such that the subgroupWJ = 〈J〉 is finite. Consider the epimorphism
πJ : G → GJ induced by the action ofWJ onW .

Theorem 4.2 (Lanini) Letw ∈ WJ and letwJ be the longest element ofWJ . If (GJ|≤w , k) is a GKM-pair,
then πJ(BJ(w)) ∼= B(wJw).

Proof: (Idea) Here we use the second technique we quoted. In particular, we are able to define an action of
WJ on the set of global sections of B(w) and to prove that the data we need to build the indecomposable
canonical sheaf are contained in the invariants with respect to this action. 2

Using the third technique it is possible to prove the following result.

Theorem 4.3 (Lanini, 2011) Let g = ŝl2 and J = {α} the (unique) positive simple root of A1. If vj ≤ vi
and (GJ|[vj,vi] , k) is a GKM-pair, then (BJ(vi))

vj ∼= Sk.

Proof: (Idea) In this case the corresponding k-moment graph has an explicit description. It is a complete
graph, whose set of vertices is totally ordered and indexed by Z. Moreover, the edge joining n and m is
labelled by the positive coroot corresponding to α+(n+m)δ. It is then possible to show that the structure
sheaf is flabby via direct calculations. 2

5 The stabilisation phenomenon
Let g be an affine Kac-Moody algebra, with Weyl group W . Let J be the corresponding set of finite
simple reflections. We will write Gpar, resp. Bpar, resp. P pary,w , instead of GJ , resp. BJ , resp. P J,−1y,w . In
this case, we can identify theW with its set of alcoves A andWJ with the set of alcoves A+ lying in the
fundamental chamber C+.
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The aim of this section is to interpret in the moment graph setting a result in (Lusztig, 1980a). In
particular, Lusztig proved that, for any pair of alcoves A,B ∈ A+, there exists n0 ∈ N such that, for all
n,m ∈ N, with n,m > n0

P parA+nρ,B+nρ = P parA+mρ,B+mρ = QA,B . (5)

where ρ is half the sum of the positive finite coroots and QA,B is called the generic polynomial of the pair
A,B. The QA,B’s turn out to have a realisation very similar to the one of the regular Kazhdan-Lusztig
polynomials. Indeed, Lusztig in (Lusztig, 1980a) associated to every affine Weyl group W its periodic
module M, that is, the free L = Z[q1/2, q−1/2]–module with set of generators—or standard basis—
indexed by the set of all alcoves A. It is possible to define an involution and to prove that there exists a
self–dual basis of M: the canonical basis. In this setting, the generic polynomials are the coefficients of
the change basis matrix. Our interest in the periodic module was motivated by the fact that M governs
the representation theory of the affine Kac–Moody algebra, whose Weyl group isW , at the critical level
(Arakawa and Fiebig).

The aim of this section is to study the behaviour of indecomposable Braden-MacPherson sheaves on
finite intervals of the parabolic Bruhat graph far enough in C+. In particular, we claim the following.

Theorem 5.1 Lanini (2011) Let k be a filed of characteristic 0. Let I = [B,A] be an interval far
enough in the fundamental chamber and (Gpar|[A,B]

, k) be a GKM-pair. Then, for all µ ∈ C+, B(A)B ∼=
B(A+ µ)B+µ

Our first hope was that we could define an isomorphism of the corresponding k-moment graphs and
then conclude by applying the technique of the pullback. Actually, via a very explicit description of finite
intervals far enough in the fundamental chamber, we discovered that such an isomorphism does not exist.

5.1 Parabolic intervals far enough in the fundamental chamber
The following result tells us that finite intervals of Gpar far enough in C+ are very regular.

Lemma 5.1 Lanini (2011) Let A,B ∈ A+, then there exists an integer n0 = n0(A,B) such that for any
λ ∈ X ∩ nρ + C+ , with n ≥ n0, for any pair C,D ∈ [A + λ,B + λ] there is an edge C −−−D if and
only if there exists α ∈ ∆re

+ such that

(i) either D = Csα

(ii) or D = C + aα∨ for some a ∈ Z \ {0}

Proof: (idea) The fundamental step in the proof is to show that there exists a K > 0, depending only on
the root system, such that if λ ∈ C+ and dλ is the minimum of the distances of λ from the borders of C+,
then if µ ∈ C+ such that λ = w(µ + xα∨), for x ∈ R, α a positive fine root and w in a the finite Weyl
group, and |λ− µ| ≤ K · dλ, then λ = µ+ tβ∨, for some t ∈ R and β finite positive root. 2

We immediately get a corollary.

Corollary 5.1 Lanini (2011) For any pair A,B ∈ A+, B ≤ A and for any pair λ1 = n1ρ, λ2 = n2ρ ∈
X∩nρ+C+ (n1, n2 ≥ n0(A,B)) then Gpar|[A+λ1,B+λ1]

and Gpar|A+λ2,B+λ2]
are isomorphic as oriented graphs.

2

We say that the edges of type (i), that is given by reflections, are stable, while the ones of type (ii), that
is given by translations, are non–stable. We denote the corresponding sets ES , resp. ENS .
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Remark 5.1 We want to stress the fact that in Lemma 5.1 we are not proving the existence of an isomor-
phism of moment graphs, but only between the underlying oriented graphs, that is, we are not considering
labels. We are going to see that this isomorphism does not induce an isomorphism of moment graphs.

Using a combinatorial property of affine Weyl groups it is possible to prove the following result.

Lemma 5.2 Lanini (2011) Let A ∈ A+, t ∈ T , α ∈ ∆re
+ and n ∈ Z be such that A,At,A+ nα∨, At+

nα∨ ∈ A+. Then, l(A−−−At) = l(A+ nα∨ −−−At+ nα∨) = αt
∨.

Moreover, let β ∈ ∆re
+ be such that A,A + bβ∨, A + nα∨, A + nα∨, A + bβ∨ + nα∨ ∈ A+. Then,

l(A−−−A+ bβ∨) 6= l(A+ nα∨ −−−A+ bβ∨ + nα∨).

5.2 The stable moment graph
Now it is clear that we cannot use technique a), but it is easy to see that there is a subgraph of Gpar such
that any finite interval is invariant by root translation (as a moment graph). Here we define the stable
moment graph Gstab as follows. This is the moment graph having as set of vertices the alcoves in the
fundamental chamber (that we identify with the corresponding elements of the Weyl group), equipped
with the induced Bruhat order: we connect two vertices A and B if and only if there exists an affine
reflection t such that A = Bt, and in this case we set l(A−−−Bt) := αt

∨.
Then we have.

Lemma 5.3 (Lanini, 2011) For any Bruhat interval [A,B] ⊂ A+ and for any µ ∈ Q∨ there exists an
isomorphism of k-moment graphs Gstab|[A,B]

−→ Gstab|[A+µ,B+µ]
for all k.

We have just showed that the two moment graphs Gpar|[A,B]
and Gpar|[A+µ,B+µ]

are in general not isomorphic,

while there is always an isomorphism of moment graphs between Gstab|[A,B]
and Gstab|[A+µ,B+µ]

. Since the stable

moment graph is a subgraph of Gpar, there is a monomorphism Gstab ↪→ Gpar. The following diagram
summarises this situation.

Gpar|[A,B]
Gpar|[A+µ,B+µ]

Gstab|[A,B]

?�

i

OO

// Gstab|[A+µ,B+µ]

?�

iµ

OO

We then get a functor i∗ = ·stab : ShGpar|[A,B]

→ ShGstab|[A,B]

. The following theorem is our main result

Theorem 5.2 (Lanini, 2011) Let k be a field of characteristic 0. The functor ·stab : Shk(Gpar|[A,B]
) →

Shk(Gstab|[A,B]
) preserves indecomposable Braden-MacPherson sheaves.

Proof: (idea) In the case of g = ŝl2, we are able to prove the claim via the third technique mentioned
above, that is, for any finite interval of Gstab, we show that in characteristic zero its structure sheaf is
flabby, so it is invariant by weight translation for all integral weights µ ∈ C+. On the other hand, we know
already that the structure sheaf for Gpar(ŝl2) is flabby (see Theorem 4.3) and this concludes the sl2-case.

For the general case, we apply a localisation technique due to Fiebig , that enables us to use the sl2-case,
together with other results of (Fiebig, 2011). 2

The stabilisation property follows by applying the technique of the pullback to Theorem 5.2.
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