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The down operator and expansions of near
rectangular k-Schur functions†

Chris Berg and Franco Saliola and Luis Serrano
Laboratoire de combinatoire et d’informatique mathématique, Université du Québec à Montréal, Montréal, QC,
Canada

Abstract. We prove that the Lam-Shimozono “down operator” on the affine Weyl group induces a derivation of the
affine Fomin-Stanley subalgebra of the affine nilCoxeter algebra. We use this to verify a conjecture of Berg, Bergeron,
Pon and Zabrocki describing the expansion of k-Schur functions of “near rectangles” in the affine nilCoxeter algebra.
Consequently, we obtain a combinatorial interpretation of the corresponding k-Littlewood–Richardson coefficients.

Résumé. Nous montrons que l’opérateur “down”, défini par Lam et Shimozono sur le groupe de Weyl affine, in-
duit une dérivation de la sous-algèbre affine de Fomin-Stanley de l’algèbre affine de nilCoxeter. Nous employons
cette dérivation pour vérifier une conjecture de Berg, Bergeron, Pon et Zabrocki sur l’expansion des k-fonctions de
Schur indexées par les partitions qui sont “presque rectangles”. Par conséquent, nous obtenons une interprétation
combinatoire des k-coefficients de Littlewood–Richardson correspondants.
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1 Introduction
k-Schur functions were first introduced by Lapointe, Lascoux and Morse [13] in the study of Macdonald
polynomials. Since then, their study has flourished (see for instance [9, 12, 10, 14, 15, 16]). In particular
they have been realized as Schubert classes for the homology of the affine Grassmannian. This was done
by identifying the algebra of k-Schur functions with the affine Fomin-Stanley subalgebra of the affine
nilCoxeter algebra A [8]. A natural question is to ask for the expansion of a k-Schur function in terms of
the standard basis of A, which is indexed by affine permutations.

An important related problem is to describe the multiplicative structure constants of the k-Schur func-
tions, called the k-Littlewood–Richardson coefficients due to the similarity with the classical problem of
multiplying Schur functions. Lam [7] pointed out that the k-Littlewood–Richardson coefficients are the
same coefficients that appear in the expansion of a k-Schur function in the standard basis of A (see Section
4.1). Hence, results that give such expansions also give information about the k-Littlewood–Richardson
coefficients. This paper is one such example; others are [7, 1, 3, 2].

†This manuscript has been shortened to fit the guidelines for submission. All substantial proofs have been omitted. A longer
version will appear on the arXiv.
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In early 2011, Berg, Bergeron, Pon and Zabrocki conjectured an expansion for k-Schur functions in-
dexed by a k-rectangle R minus its unique removable cell. Their conjecture combined ideas coming from
two groups: Pon’s [21] description of the generators of the affine Fomin-Stanley subalgebra for arbitrary
affine type; and Berg, Bergeron, Thomas and Zabrocki’s [3] expansion of s(k)

R .
This paper initiates the study of operators on the affine nilCoxeter algebra that stabilize the affine

Fomin-Stanley subalgebra. We study one particular family of operators introduced by Lam and Shimo-
zono [12] and prove that they are derivations of the affine Fomin-Stanley subalgebra (Theorem 3.5). As
an application, we prove the conjecture of Berg, Bergeron, Pon and Zabrocki and provide a combina-
torial interpretation for the corresponding k-Littlewood–Richardson coefficients (Theorem 4.6). Further
properties of such operators and their applications to k-Schur functions will be developed in a companion
article.

2 k-Combinatorics
In this section, we recall the required terminology associated to the affine type A root system, the affine
Weyl group, the connection with bounded partitions and core partitions and the definition of k-Schur
functions. We work with the affine type A root system A

(1)
k . Much of this introduction is borrowed from

[2] which in turn was borrowed from [26].

2.1 Affine symmetric group
I = {0, 1, . . . , k} will denote the set of nodes of the corresponding Dynkin diagram. We say two nodes
i, j ∈ I are adjacent if i− j = ±1 mod (k + 1).

We let W denote the affine symmetric group with generators si for i ∈ I , and relations s2
i = 1,

sisj = sjsi, when i and j are not adjacent, and sisjsi = sjsisj when i and j are adjacent. An element of
the affine symmetric group may be expressed as a word in the generators si. Given the relations above, an
element of the affine symmetric group may have multiple reduced words, words of minimal length which
express that element. The length of w, denoted `(w), is the number of generators in any reduced word of
w.

The Bruhat order on affine symmetric group elements is a partial order where v < w if there is a
reduced word for v that is a subword of a reduced word for w. If v < w and `(v) = `(w) − 1, we write
v l w. There is another order on W , called the left weak order, which is defined by the covering relation
v ≺· w if w = siv for some i and `(v) = `(w)− 1.

For j ∈ I , we denote by Wj the subgroup of W generated by the elements si with i 6= j. We denote
by W j the set of minimal length representatives of the cosets W/Wj .

2.2 Roots and weights

Associated to the affine Dynkin diagram of type A(1)
k we have a root datum, which consists of a free

Z-module h, its dual lattice h∗ = Hom(h,Z), a pairing 〈·, ·〉 : h × h∗ → Z given by 〈µ, λ〉 = λ(µ), and
sets of linearly independent elements {αi | i ∈ I} ⊂ h∗ and {α∨i | i ∈ I} ⊂ h such that

〈α∨i , αj〉 =

 2 if i = j;
−1 if i and j are adjacent;
0 else.

(1)
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The αi are known as simple roots, and the α∨i are simple coroots. The spaces hR = h⊗R and h∗R = h∗⊗R
are the coroot and root spaces, respectively.

Given a simple root αi, we have actions of W on hR and h∗R defined by the action of the generators of
W as

si(λ) = λ− 〈α∨i , λ〉αi for i ∈ I, λ ∈ h∗R; (2)
si(µ) = µ− 〈µ, αi〉α∨i for i ∈ I, µ ∈ hR. (3)

The action of W satisfies
〈w(µ), w(λ)〉 = 〈µ, λ〉 (4)

for all µ ∈ hR, λ ∈ h∗R and w ∈W .
The set of real roots is Φre = W · {αi | i ∈ I}. Given a real root α = w(αi), we have an associated

coroot α∨ = w(α∨i ) and an associated reflection sα = wsiw
−1 (these are well-defined, and independent

of the choice of w and i). For a Bruhat covering v l w, there exists a unique root αv,w satisfying the
equation v−1w = sαv,w . We denote by α∨v,w the coroot corresponding to the root αv,w.

The fundamental weights are the elements Λi ∈ h∗R satisfying 〈α∨j ,Λi〉 = δij for i, j ∈ I for i, j ∈ I .
They generate the weight lattice P =

⊕
i∈I ZΛi. We let P+ =

⊕
i∈I Z≥0Λi denote the dominant

weights.

2.3 k-bounded partitions, (k + 1)-cores and affine Grassmannian elements
Let λ be a partition. To each box (i, j) (row i, column j) of the Young diagram of λ, we associate its
residue defined by c(i,j) = (j − i) mod (k + 1). We let P(k) denote the set of k-bounded partitions,
namely the partitions λ = (λ1, λ2, . . . ) whose first part λ1 is at most k.

A p-core is a partition that has no removable rim hooks of length p. Lapointe and Morse [15, Theorem 7]
showed that the set P(k) bijects with the set of (k+ 1)-cores. Following their notation, we let c(λ) denote
the (k+ 1)-core corresponding to the partition λ, and p(µ) denote the k-bounded partition corresponding
to the (k + 1)-core µ. We will also use C(k+1) to represent the set of all (k + 1)-cores.
W acts on C(k+1). Specifically, if λ is a (k + 1)-core then

siλ =

 λ ∪ {addable residue i cells} if λ has an addable cell of residue i,
λ \ {removable residue i cells} if λ has a removable cell of residue i,
λ otherwise.

The affine Grassmannian elements are the elements of W 0. These are naturally identified with (k+ 1)-
cores in the following way: to a core λ ∈ C(k+1), we associate the unique element w ∈ W 0 for which
w∅ = λ. For a k-bounded partition µ, we let wµ denote the element of W 0 which satisfies wµ∅ = c(µ).
More details on this can be found in [4].

Example 2.1 The diagram of the 4-core λ = (5, 2, 1) augmented with its residues, together with the
diagrams of the 4-cores s1λ and s0λ:

λ =

0 1 2 3 0
3 0
2

s1λ =

0 1 2 3 0 1
3 0 1
2
1

s0λ =

0 1 2 3
3
2

.
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2.4 k-Schur functions in non-commutative variables
The nilCoxeter algebra A may be defined via generators and relations with generators ui for i ∈ I , and
relations u2

i = 0, uiuj = ujui when i and j are not adjacent and uiujui = ujuiuj when i and j
are adjacent. Since the braid relations are exactly those of the corresponding affine symmetric group, we
may index nilCoxeter elements by elements of the affine symmetric group, e.g., uw = ui1ui2 · · ·uik ,
whenever si1si2 · · · sik is a reduced word for w.

Definition 2.2 For a subset S ⊂ I , one defines a cyclically decreasing word wS ∈ W to be the unique
element of W for which any (equivalently all) reduced words si1 . . . sim of wS satisfy:

1. each letter from I appears at most once in {i1, . . . , im};

2. if j, j+1 ∈ S, then j+1 appears before j in i1, . . . , im (where the indices are taken modulo k+1).

Furthermore, we let uS = uwS and
hi =

∑
S⊂I
|S|=i

uS ∈ A.

The elements hi are analogues of the ith complete homogeneous symmetric functions.

Example 2.3 Let k = 3. The cyclically decreasing elements of length 2 in the alphabet {u0,u1,u2,u3}
are u2u1, u1u0, u0u3, u3u2, u0u2, and u1u3. Thus,

h2 = u2u1 + u1u0 + u0u3 + u3u2 + u0u2 + u1u3.

Theorem 2.4 (Lam [8]) The elements {hi}i≤k commute and freely generate a subalgebra B of A called
the affine Fomin-Stanley subalgebra. Consequently,

B ∼= Λ(k) := Q[h1, . . . , hk],

where hi denotes the ith complete homogeneous symmetric function.

The k-Schur functions in non-commutative variables are then the images of the k-Schur functions of
Lapointe, Lascoux and Morse [13] under this identification. We take instead the following equivalent
definition (see [8, Definition 6.5] and [11, Theorem 4.6]).

Definition 2.5 The k-Schur function (in non-commutative variables) corresponding to a k-bounded par-
tition λ is the unique element s(k)

λ =
∑
w cwuw of B satisfying:

cwλ = 1; (5)

cw = 0 for all other w ∈W 0. (6)

3 The Lam-Shimozono up and down operators
In [12], Lam and Shimozono studied two graded graphs whose vertex set is the affine Weyl groupW , from
which one constructs two closely-related operators defined on the group algebra of W . In this section, we
recall the construction of these operators and then develop some properties of the corresponding induced
operators on the nilCoxeter algebra A.
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3.1 Dual graded graphs
In [5] and [6], Fomin introduced the notion of dual graded graphs, generalizing the notion of differential
posets in [25]. A graded graph is a triple Γ = (V, ρ,m,E) where V is a set of vertices, ρ is a rank
function on V , E is a multiset of edges (x, y) for x, y ∈ V where ρ(y) = ρ(x) + 1, and every edge has
multiplicity m(x, y) ∈ Z≥0. The set of vertices of the same rank is called a level.

Γ is locally finite if every v ∈ V has finite degree, and we assume this condition for all graphs in this
paper. For a graded graph Γ, the linear down and up operators D,U : ZV → ZV are defined as follows.

DΓ(v) =
∑

(u,v)∈E

m(u, v)u UΓ(v) =
∑

(v,u)∈E

m(v, u)u

In other words, D (respectively U ) maps a vertex v to a linear combination of its neighbors in the level
immediately below (respectively above) v where the coefficients are the multiplicities of the edges.

A pair of graded graphs (Γ,Γ′) is called dual if they have the same set of vertices and same rank func-
tion, but possibly different edges and multiplicities, and satisfies the following (Heisenberg) commutation
relation

DΓ′UΓ − UΓDΓ′ = rId

for a fixed r ∈ Z≥0, called the differential coefficient.
One can find many examples of dual graded graphs in [5] and [6], such as the Young, Fibonacci, and

Pascal lattices, the graphs of Ferrers shapes and shifted shapes, and many more.

3.2 The Lam-Shimozono dual graded graphs in affine type A

In [12], Lam and Shimozono introduced pairs of dual graded graphs for arbitrary Kac-Moody algebras.
Here, we specialize to the case of affine type A(1)

k .
Following [12], we define two graded graph structures on W . The first constructs a graph with an edge

from v to w whenever we have a weak cover v ≺· w. We denote this graph by Γw (because its edges
depend on weak Bruhat order). The second construction uses strong order. We fix a dominant integral
weight Λ ∈ P+ and let Γs(Λ) be the graph that has 〈α∨v,w,Λ〉 edges between v and w whenever v l w.

The up and down operators for the dual graded graphs Γw and Γs(Λ) induce operators on A. Specifi-
cally, define U using the up operator on Γw,

U(uw) =
∑
v≺·w

uv,

and define DΛ using the down operator on Γs(Λ),

DΛ(uw) =
∑
vlw
〈α∨v,w,Λ〉uv.

It is clear from the definition and the bilinearity of the pairing 〈·, ·〉 that DΛi+Λj = DΛi + DΛj . With
this in mind, we will assume throughout this paper that Λ is a fundamental weight.

Remark 3.1 Note that the operator U can be realized as left-multiplication by h1 on A. With this in
mind, we define more generally Ui(u) := hiu for u ∈ A.
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Remark 3.2 Our notation differs slightly from that of [12]. Lam and Shimozono defined the operators U
and D as operators on the opposite graphs; D was defined on the weak order graph, and U was defined
on the strong order graph.

Theorem 3.3 (Lam, Shimozono [12], Theorem 2.3) The graphs Γw and Γs(Λ) are dual graded graphs
with differential coefficient 1. In other words, DΛU − UDΛ = Id.

3.3 Properties of the Lam-Shimozono down operator
In this section we further develop properties of the operator DΛ. Our first observation is a generalization
of the Heisenberg relation in Theorem (3.3).

Theorem 3.4 Let Λ be a fundamental weight. For all w ∈W ,

DΛ(hiuw) = hi−1uw + hiDΛ(uw).

In particular, DΛ(hi) = hi−1 and

DΛ ◦ Ui − Ui ◦DΛ = Ui−1.

Next, we study the restrictions of the operators DΛ to the affine Fomin-Stanley subalgebra B. The
following theorem implies that although the operatorsDΛ, for distinct fundamental weights Λ, are distinct
on A, their restrictions to the affine Fomin-Stanley subalgebra B coincide. In fact, the action of DΛ on B
is determined by the conditions that DΛ is a derivation and DΛ(hi) = hi−1.

Theorem 3.5 Let Λ be a fundamental weight. DΛ is a derivation on the affine Fomin-Stanley subalgebra
B. Explicitly, for x, y ∈ B,

DΛ(xy) = DΛ(x)y + xDΛ(y).

In particular, DΛ stabilizes B; that is, DΛ(B) ⊂ B.

Finally, we describe the coefficients of the operator combinatorially. The next result shows that it
suffices to know the value of DΛ on the elements in W j . In the case that j = 0, this says that it suffices
to know the values of DΛ on the affine Grassmannian elements.

Theorem 3.6 Suppose w ∈W j and v ∈Wj . Then

DΛj (uwv) = DΛj (uw)uv.

We now give a combinatorial formula to apply the down operator to the elements of W j . This general-
izes the description of the coefficients given in [10].

Theorem 3.7 Suppose w ∈W j . Then

DΛj (uw) =
∑
ylw

cw,jy uy,

where cw,jy is the number of addable (i`−j)-cells of the (k+1)-core si`−1−j · · · si1−j∅, where sim · · · si2si1
is a reduced expression for w and sim · · · ŝi` · · · si1 is a reduced expression for y.
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These previous two theorems combine to give a combinatorial method for calculating the down operator
on any basis element uw. We illustrate this in the following example.

Example 3.8 Fix k = 3. We calculate DΛ0
(u2u3u0u1u2u3u0u2). By Theorem 3.6,

DΛ0
(u2u3u0u1u2u3u0u2) = DΛ0

(u2u3u0u1u2u3u0)u2

since s2s3s0s1s2s3s0 ∈W 0. Hence, it suffices to calculate DΛ0
(u2u3u0u1u2u3u0).

By Theorem 3.7, the coefficient of u2u3u1u2u3u0 inDΛ0(u2u3u0u1u2u3u0) is the number of addable
0-cells in the 4-core s1s2s3s0 · ∅ = (2, 1, 1, 1), which is 2 (as indicated by the shaded cells in Figure 1).

0 1
3
2
1

Fig. 1: The addable 0-cells in the 4-core (2, 1, 1, 1).

Similarly, one computes all the other coefficients:

DΛ0
(u2u3u0u1u2u3u0) = 3u3u0u1u2u3u0 + 2u2u0u1u2u3u0 + 2u1u2u3u1u2u0

+ u2u3u0u1u3u0 + u2u3u0u1u2u0 + u2u3u0u1u2u3.

4 Expansions of k-Schur functions and k-Littlewood–Richardson
coefficients for “near” rectangles

This section describes the connection between expansions of k-Schur functions in the standard basis of
A and the k-Littlewood–Richardson rule. We then recall the expansions of the k-Schur functions for
k-rectangles, from which we deduce expansions of the k-Schur functions for the “near” rectangles.

4.1 Expansion of s(k)λ and the k-Littlewood–Richardson coefficients
An important problem in the theory of k-Schur functions is to understand the multiplicative structure
coefficients cν,(k)

λ,µ , called the k-Littlewood–Richardson coefficients:

s
(k)
λ s(k)

µ =
∑
ν

c
ν,(k)
λ,µ s(k)

ν .

Another difficult problem is determining an expansion for s(k)
λ in terms of the natural basis {uw}w∈W

of A. In other words, to find the coefficients dwλ in the expansion:

s
(k)
λ =

∑
w∈W

dwλuw.

Lam [7] proved that these two problems are actually equivalent. We reformulate his theorem as follows.
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Theorem 4.1 [7, Proposition 42] The coefficient cν,(k)
λ,µ is nonzero only if wµ is less than wν in left weak

order, and in this case cν,(k)
λ,µ = d

wνw
−1
µ

λ .

The main application in this paper of the down operator is to give the coefficients dwλ via explicit com-
binatorics when λ is a “near” rectangle. From this viewpoint our result gives a combinatorial description
of the corresponding k-Littlewood–Richardson coefficients. A previous result of [3] will be reviewed in
the next section. It contains the combinatorics of the coefficients that appear in the expansion of a k-Schur
function corresponding to a rectangle and is needed to prove our main result.

4.2 Expansions of rectangular k-Schur functions

In [3], Berg, Bergeron, Thomas and Zabrocki gave a combinatorial formula for the expansion of the k-
Schur function s(k)

R indexed by a k-rectangle R. We recall their result here; it will be a stepping stone for
our main result.

Let ν and µ be k-bounded partitions. For the skew shape ν/µ, let word(ν/µ) ∈W be the word formed
by the residues of the cells in ν/µ, reading each row from right to left and taking the rows from bottom to
top. See Example 4.3.

Theorem 4.2 (Berg, Bergeron, Thomas, Zabrocki [3]) Suppose R = (cr) with c + r = k + 1. The
k-Schur function s(k)

R in non-commutative variables has the expansion:

s
(k)
R =

∑
λ⊂R

uword((R∪λ)/λ),

where uword((R∪λ)/λ) is the monomial in the generators ui corresponding to word((R ∪ λ)/λ).

Example 4.3 LetR = (3, 3) and k = 4. Then s(4)
R is the sum of all the monomials in ui corresponding to

the reading words of the skew-partitions (R ∪ λ)/λ, where λ is a partition contained inside the rectangle
R, as shown:

0 1 2
4 0 1

1 2
4 0 1
3

2
4 0 1
3 4

1 2
0 1

3
2

2
0 1

3 4
2

u1u0u4u2u1u0 u3u1u0u4u2u1 u4u3u1u0u4u2 u2u3u1u0u2u1 u2u4u3u1u0u2

4 0 1
3 4 0

2
1

3 4
2 3

0 1
3 4 0
2

1
3 4 0
2 3

3 4 0
2 3 4

u0u4u3u1u0u4 u3u2u4u3u1u2 u2u0u4u3u1u0 u3u2u0u4u3u1 u4u3u2u0u4u3
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4.3 k-Schur functions for “near” rectangles
Proposition 4.4 SupposeR = (cr) with c+r = k+1 and let S = (cr−1, c−1) be the partition obtained
from R by removing its bottom-right corner. Let Λ be a fundamental weight. Then DΛ(s

(k)
R ) = s

(k)
S .

For λ ⊂ R and a cell x ∈ λ, we let word(R, λ, x) denote the word corresponding to the diagram
(R ∪ λx)/λ, where λx denotes the diagram with the cell x removed.

Example 4.5 Let k = 4, let R = (3, 3), λ = (2, 1) ⊂ R and x = (1, 2) ∈ λ. Then word(R, λ, x) =
s2s3s1s0s2.

2
0 1

3
2

Theorem 4.6
s

(k)
(cr−1,c−1) =

∑
λ⊂R

∑
x∈λ

uword(R,λ,x).

Proof: This follows from Theorem 3.7 and the application of Proposition 4.4 with the fundamental weight
Λr. 2

Example 4.7 Let k = 4 and λ = (3, 2). Using Example 4.3, we can realize s(4)
3,2 as DΛ3(s

(4)
3,3). DΛ3

acts on the pictures by deleting a bold letter from a term in the expansion of s(4)
3,3. In particular, the first

diagram of s(4)
3,3 has no bold letters, so it does not contribute any terms to s(4)

3,2.
The second diagram gives a term:

1 2
4 0 1
3

7−→

1 2
4 0 1

u1u0u4u2u1

The third and fourth diagrams each give two terms:

2
4 0 1
3 4

7−→

2
4 0 1

4

2
4 0 1
3

u4u1u0u4u2 u3u1u0u4u2

1 2
0 1

3
2

7−→

1 2
0 1

2

1 2
0 1

3

u2u1u0u2u1 u3u1u0u2u1
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The fifth and sixth diagrams gives 3 terms each:

2
0 1

3 4
2

7−→

2
0 1
4

2

2
0 1

3
2

2
0 1

3 4

u2u4u1u0u2 u2u3u1u0u2 u4u3u1u0u2

4 0 1
3 4 0

7−→
4 0 1
3 4

4 0 1
3 0

4 0 1
4 0

u4u3u1u0u4 u0u3u1u0u4 u0u4u1u0u4

The seventh and eigth diagrams give 4 terms each:

2
1

3 4
2 3

7−→

2
1

3 4
2

2
1

3 4
3

2
1

3
2 3

2
1

4
2 3

u2u4u3u1u2 u3u4u3u1u2 u3u2u3u1u2 u3u2u4u1u2

0 1
3 4 0
2

7−→
0 1

3 4 0
0 1

3 4
2

0 1
3 0
2

0 1
4 0

2

u0u4u3u1u0 u2u4u3u1u0 u2u0u3u1u0 u2u0u4u1u0

The ninth diagram gives 5 terms:

1
3 4 0
2 3

7−→
1

3 4 0
2

1
3 4 0

3

1
3 4
2 3

1
3 0
2 3

1
4 0

2 3

u2u0u4u3u1 u3u0u4u3u1 u3u2u4u3u1 u3u2u0u3u1 u3u2u0u4u1
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The tenth and final diagram gives six terms:

3 4 0
2 3 4

7−→

3 4 0
2 3

3 4 0
2 4

3 4 0
3 4

u3u2u0u4u3 u4u2u0u4u3 u4u3u0u4u3

3 4
2 3 4

3 0
2 3 4

4 0
2 3 4

u4u3u2u4u3 u4u3u2u0u3 u4u3u2u0u4

Then s(4)
3,2 is a sum of the 30 words above.

Corollary 4.8 Let S = (cr−1, c− 1) with c+ r = k + 1. Then the coefficient cν,(k)
λ,S is either 0 or 1.

Example 4.9 Continuing the example above, we compute c(3,3,1,1),3
(2,1),(3,2). The element u = u2u3u1u0u2

satisfies u (2, 1) = (3, 3, 1, 1). Therefore the coefficient c(3,3,1,1),3
(2,1),(3,2) is the coefficient of u in the expansion

of s(4)
3,2, which is 1.
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