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On singularity confinement for the
pentagram map

Max Glick †

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA

Abstract. The pentagram map, introduced by R. Schwartz, is a birational map on the configuration space of polygons
in the projective plane. We study the singularities of the iterates of the pentagram map. We show that a “typical”
singularity disappears after a finite number of iterations, a confinement phenomenon first discovered by Schwartz.
We provide a method to bypass such a singular patch by directly constructing the first subsequent iterate that is well-
defined on the singular locus under consideration. The key ingredient of this construction is the notion of a decorated
(twisted) polygon, and the extension of the pentagram map to the corresponding decorated configuration space.

Résumé. L’application pentagramme de R. Schwartz est une application birationnelle sur l’espace des polygones dans
le plan projectif. Nous étudions les singularités des itérations de l’application pentagramme. Nous montrons qu’une
singularité “typique” disparaı̂t après un nombre fini d’itérations, un phénomène découvert par Schwartz. Nous four-
nissons une méthode pour contourner une telle singularité en construisant la première itération qui est bien définie.
L’ingrédient principal de cette construction est la notion d’un polygone décoré et l’extension de l’application penta-
gramme á l’espace de configuration décoré.
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1 Introduction
The pentagram map, introduced by R. Schwartz [9], is a geometric construction which produces one
polygon from another. Successive applications of this operation (cf. Fig. 1) define a discrete dynamical
system that has received considerable attention in recent years (see, e.g., [2, 5, 6, 8, 10]) due to its inte-
grability properties and its connections to moduli spaces and cluster algebras. This paper is devoted to
the study of singularity confinement for the pentagram map, a phenomenon first observed experimentally
by Schwartz. Informally speaking, a singularity of a map at a point is said to be confined if some higher
iterate of the map is well-defined at that point. We investigate singularities of the pentagram map and
prove confinement in several cases.

The pentagram map is typically defined for objects called twisted polygons defined by Schwartz [8]. A
twisted polygon is a sequence A = (Ai)i∈Z of points in the projective plane that is periodic modulo some
projective transformation φ, i.e., Ai+n = φ(Ai) for all i ∈ Z. We will place the additional restriction that
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Fig. 1: Three iterations of the pentagram map in the space of 9-gons

every quadruple of consecutive points of A be in general position. Two twisted polygons A and B are
said to be projectively equivalent if there exists a projective transformation ψ such that ψ(Ai) = Bi for
all i. Let Pn denote the space of twisted n-gons modulo projective equivalence.

It is convenient to also allow twisted polygons to be indexed by 1
2 + Z instead of Z. Let P∗n denote the

space of twisted n-gons indexed by 1
2 + Z, modulo projective equivalence.

The pentagram map, denoted T , inputs a twisted polygon A and constructs a new twisted polygon B
defined by Bi =

←−−−−−−→
Ai− 3

2
Ai+ 1

2
∩ ←−−−−−−→Ai− 1

2
Ai+ 3

2
. Note that if A is indexed by Z then B is indexed by 1

2 + Z
and vice versa. The pentagram map preserves projective equivalence, so it induces maps

α1 : P∗n → Pn

α2 : Pn → P∗n

Schwartz [8] gives coordinates x1, . . . , x2n defined generically on Pn and on P∗n. These are naturally
ordered cyclically, so let xi+2n = xi for all i ∈ Z. Expressed in these coordinates, the maps α1 and α2

take a simple form.

Proposition 1.1 ( [8, (7)]) Suppose that (x1, . . . , x2n) are the x-coordinates of A. If A ∈ P∗n then

xj(α1(A)) =

{
xj−1

1−xj−3xj−2

1−xj+1xj+2
, j even

xj+1
1−xj+3xj+2

1−xj−1xj−2
, j odd

(1.1)

Alternately, if A ∈ Pn then

xj(α2(A)) =

{
xj+1

1−xj+3xj+2

1−xj−1xj−2
, j even

xj−1
1−xj−3xj−2

1−xj+1xj+2
, j odd

(1.2)

We will be interested in T k, the kth iterate of the pentagram map. Defined on Pn it takes the form
T k = · · · ◦ α2 ◦ α1 ◦ α2︸ ︷︷ ︸

k

and has image in either Pn or P∗n depending on the parity of k. By (1.1) and

(1.2), T k is a rational map. The purpose of this paper is to better understand the singularities of the
pentagram map and its iterates. For us, a singular point of a rational map is an input at which one of the
components of the map has a vanishing denominator.
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Let A ∈ Pn be a singular point of the pentagram map. Then typically A will be a singular point of
T k for all k less than some m, but not of Tm. This phenomenon is known as singularity confinement
and was identified by Grammaticos, Ramani, and Papageorgiou [4] as a feature common to many discrete
integrable systems. Now, the pentagram map is a discrete integrable system as proven by Ovsienko,
Schwartz, and Tabachnikov [5,6] and Soloviev [10]. That singularity confinement holds in this setting has
been observed experimentally by Schwartz. The current paper seeks to understand singularity confinement
for the pentagram map from both an algebraic and geometric perspective.

Algebraically, (1.2) suggests that a polygon A ∈ Pn is a singular point of the pentagram map whenever
x2i(A)x2i+1(A) = 1 for some i ∈ Z. To check how many steps the singularity persists, one must
determine for which k the rational expression for T k has a vanishing denominator at the given point. We
use generating function formulas for these denominators from [2] to better understand when this occurs.

What we discover is that the behavior of a singularity seems to depend on the set S of integers i
for which x2i(A)x2i+1(A) = 1. We call S the type of the singularity and attempt to understand when
singularity confinement holds for generic polygons of a given type. The simplest case is when S consists
of a single element, in which event the singularity is confined to two iterations (i.e. A is a singular point
of T and T 2 but not of T 3). More generally, suppose S is a finite arithmetic progression with common
difference equal to 1 or 2. We prove that generic singularities of these types are confined to l + 1 steps
where l is the size of the arithmetic progression.

We do not have as complete an understanding of the situation for other singularity types. If the number
of sides n of the polygon is odd, we show that singularity confinement holds generically for every type
except the worst case S = {1, . . . , n}. In addition we have an upper bound for the number of iterations
such singularities last. The case of n even seems to be more complicated and we only have a conjectural
answer as to which types exhibit singularity confinement.

From a geometric perspective, the condition x2i(A)x2i+1(A) = 1 indicates that the triple of vertices
Ai−2,Ai, andAi+2 are collinear. As such, a polygonA is a singular point of T if and only if this condition
holds for some i. Although one can construct B = T (A) in this case, the result will violate the condition
that quadruples of consecutive vertices be in general position. In fact, Bi− 3

2
, Bi− 1

2
, Bi+ 1

2
, and Bi+ 3

2

will be collinear making it impossible to carry the construction any further. The notion of singularity
confinement also has a geometric interpretation. If A has a singularity which vanishes after m steps, then
one can approximate A by nonsingular polygons, apply the construction Tm to them, and take a limit
to find Tm(A). Since A is a regular point of Tm, the result of this procedure does not depend on the
approximations of A.

Our main result on the geometric side is a straightedge construction of the first defined iterate Tm(A)
of a polygon A of certain singularity types. The basic idea is to fix, up to the first order, a family of
approximations of A by nonsingular polygons. The data needed to accomplish this is encoded by a
collection of points and lines which we call a decoration of A. With this done, the iterates between A
and Tm(A) become well-defined. To determine Tm(A), we iterate a procedure which constructs these
intermediate polygons one by one.

This paper is organized as follows. Section 2 reviews previous work on the pentagram map, including
a non-recursive formula for T k as a rational map of the x-coordinates. This map factors into polynomials,
some properties of which are given in Section 3. Section 4 identifies a hierarchy of singularity types of the
pentagram map and establishes that generic polygons of these types exhibit singularity confinement. The
remainder of the paper addresses the problem of moving past singularities by constructing Tm(A) from
A when A is a singular point of T, T 2, . . . , Tm−1. An approach which works for the simplest singularity
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type is given in Section 5. Section 6 introduces decorated polygons which will serve as the underlying
objects of the main construction. Section 7 states the main construction itself and discusses what is needed
to prove its correctness for a given singularity type. Detailed proofs of all statements given in this paper
can be found in the full version [3].

The following notation will be used throughout. If a, b, k ∈ Z, a ≤ b, k ≥ 1 and a ≡ b (mod k) then
let [a, b]k denote the arithmetic progression

[a, b]k = {a, a+ k, a+ 2k, . . . , b}

Twisted polygons will be denoted by capital letters with individual vertices indexed by either Z or 1
2 +

Z. The sides of a polygon (i.e. lines passing through two consecutive vertices) will be denoted by the
corresponding lowercase letter and indexed using the opposite indexing scheme. For instance, if A is
a twisted polygon indexed by Z then its vertices are denoted Ai for i ∈ Z and its sides are denoted
aj =

←−−−−−−→
Aj− 1

2
Aj+ 1

2
for j ∈ ( 12 + Z).

2 Pentagram map background
The cross ratio of four real numbers a, b, c, d is defined to be

χ(a, b, c, d) =
(a− b)(c− d)
(a− c)(b− d)

This definition extends to the projective line, on which it gives a projective invariant of four points. We
will be interested in taking the cross ratio of four collinear points in the projective plane, or dually, the
cross ratio of four lines intersecting at a common point.

Let A be a twisted polygon. The x-coordinates of A are defined by Schwartz [8] as follows. For each
index k of A, let

x2k(A) = χ(Ak−2, Ak−1, B,D)

x2k+1(A) = χ(Ak+2, Ak+1, C,D).

whereB =
←−−−−−→
Ak−2Ak−1∩

←−−−−→
AkAk+1, C =

←−−−−→
Ak−1Ak∩

←−−−−−→
Ak+1Ak+2, andD =

←−−−−−→
Ak−2Ak−1∩

←−−−−−→
Ak+1Ak+2. Now

xj+2n = xj for all j ∈ Z, and as mentioned in the introduction, x1, . . . , x2n give a set of coordinates on
Pn and on P∗n.

In [2], we work with related quantities called the y-parameters and denoted yj for j ∈ Z. For each
index k of A,

y2k(A) = −
(
χ(
←−−−−→
AkAk−2,

←−−−−→
AkAk−1,

←−−−−→
AkAk+1,

←−−−−→
AkAk+2)

)−1
(2.1)

y2k+1(A) = −χ(B,Ak, Ak+1, E) (2.2)

where B =
←−−−−−→
Ak−2Ak−1 ∩

←−−−−→
AkAk+1 and E =

←−−−−→
AkAk+1 ∩

←−−−−−→
Ak+2Ak+3 (see Fig. 2). As with the xj , we have

that yj+2n = yj for all j. One can check that y2k = −(x2kx2k+1)
−1 and y2k+1 = −x2kx2k+1 for all k.

Hence, y1, . . . , y2n do not give a set of coordinates as they satisfy the relation y1y2 · · · y2n = 1.
The y-parameters transform under the pentagram map according to the Y -pattern dynamics of a certain

cluster algebra. We used results of Fomin and Zelevinsky [7] to give formulas for the iterates of the
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Fig. 2: The points and lines used in the definitions of y2k(A) (left) and y2k+1(A) (right)

pentagram map in terms of the F -polynomials Fj,k of this cluster algebra. The Fj,k can be defined
recursively by Fj,−1 = Fj,0 = 1 and

Fj,k+1 =
Fj−3,kFj+3,k +

(∏k
i=−k y3i+j

)
Fj−1,kFj+1,k

Fj,k−1
(2.3)

for k ≥ 0.

Theorem 2.1 ( [2, Theorem 4.2]) Let A ∈ Pn, xj = xj(A), and yj = yj(A). Then

xj(T
k(A)) =


xj−3k

(
k−1∏
i=−k

yj+1+3i

)
Fj+2,k−1Fj−3,k
Fj−2,k−1Fj+1,k

, j + k even

xj+3k

(
k−1∏
i=−k

yj+1+3i

)
Fj−3,k−1Fj+2,k

Fj+1,k−1Fj−2,k
, j + k odd

(2.4)

The Fj,k are polynomials in the yj (hence Laurent polynomials in the xj) with positive coefficients. We
found [2, Theorem 6.6] a simple combinatorial description of these polynomials as generating functions
of order ideals of certain posets Pk first studied by Elkies, Kuperberg, Larsen, and Propp [1].

3 The F -polynomials
According to (1.1) and (1.2), the pentagram map has singularities for polygons with xjxj+1 = 1, i.e.,
yj = −1, for some j. According to (2.4), the iterate T k has a singularity whenever Fj,k−1 = 0 or
Fj,k = 0 for some j. In this section we examine under which circumstances having yj = −1 for certain
j forces an F -polynomial to vanish. Results along these lines will indicate how many steps a given
singularity persists.

For the purpose of this section, relax the assumptions yi+2n = yi for all i and y1y2 · · · y2n = 1. Instead
consider the Fj,k as polynomials in the countable collection of variables {yi : i ∈ Z}. By way of notation,
if S ⊆ Z let Fj,k|S be the polynomial in {yi : i ∈ Z \ S} obtained by substituting yi = −1 for all i ∈ S
into Fj,k.
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Proposition 3.1 Fix l ∈ [−(k − 1), k − 1]2. Let S ⊆ Z be either

1. [j + l − 2(k − 1), j + l + 2(k − 1)]4 or

2. [j + 2l − (k − 1), j + 2l + (k − 1)]2.

Then Fj,k|S ≡ 0.

Proposition 3.2 Let S ⊆ Z be either [a, b]4 or [a, b]2 with a ≡ j + k + 1 (mod 2) and |S| < k. Then
Fj,k|S 6≡ 0.

Propositions 3.1 and 3.2 give a complete picture as to when Fj,k|S ≡ 0 for S of the form [a, b]4 or
[a, b]2. We will use these results to establish confinement for certain singularity types in the next section.
There, we will assume that n is large relative to |S| so that the relations among the y-variables do not
enter into play. In contrast, the following proposition pertains to a more severe singularity type, so we
will reintroduce those relations at this point.

Proposition 3.3 Suppose that n is odd and S = [2, 2n − 2]2. Assume that yi+2n = yi for all i ∈ Z,
yi = −1 for all i ∈ S, and y1 · · · y2n = 1. Let j, k ∈ Z with j + k odd and k ∈ {n, n + 1}. Then
evaluated at this input, Fj,k 6= 0 provided y0 6= −1 and yi 6= 0 for all i.

4 Singularity patterns
For i ∈ Z let

Xi = {A ∈ Pn : y2i(A) = −1}
For j ∈ ( 12 + Z), let

Yj = {A ∈ Pn : y2j(A) = −1}
The reason for the different notation is as follows.

Lemma 4.1 ( [2, Lemma 7.2]) Let A ∈ Pn, i ∈ Z, j ∈ ( 12 + Z).

1. A ∈ Xi if and only if Ai−2, Ai, and Ai+2 are collinear.

2. A ∈ Yj if and only if aj−2, aj , and aj+2 are concurrent.

Define in the same way subvarieties Xj ⊆ P∗n for j ∈ ( 12 + Z) and Yi ⊆ P∗n for i ∈ Z.
For S ⊆ Z or S ⊆ ( 12 + Z) let XS =

⋂
i∈S Xi and YS =

⋂
i∈S Yi. For instance, X{3,5} = X3 ∩X5 is

the set of twisted polygons A for which A1, A3, A5, A7 are all collinear. On XS , we have that y2i = −1
for all i ∈ S. Therefore we can replace the Fj,k in (2.4) with Fj,k|2S where 2S = {2i : i ∈ S}. If all of
these restricted polynomials are nonzero, then the corresponding iterate of the pentagram map is defined
generically on XS .

Theorem 4.2 Let i,m ∈ Z with 1 ≤ m < n/3− 1. Let

S = [i− (m− 1), i+ (m− 1)]2

S′ =

[
i− 1

2
(m− 1), i+

1

2
(m− 1)

]
1

Then the map T k is singular on XS for 1 ≤ k ≤ m + 1, but Tm+2 is nonsingular at generic A ∈ XS .
Moreover, Tm+2(A) ∈ YS′ for such A.
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The roles of S and S′ can be interchanged in Theorem 4.2. This is apparently an instance of projective
duality.

Theorem 4.3 Let S and S′ be as in Theorem 4.2. Then the map T k is singular onXS′ for 1 ≤ k ≤ m+1,
but Tm+2 is nonsingular at generic A ∈ XS′ . Moreover, Tm+2(A) ∈ YS for such A.

We now have singularity confinement on XS for S an arithmetic sequence whose terms differ by 1
or 2. Generally, if S is a disjoint union of such sequences which are far apart from each other, then the
corresponding singularities do not affect each other. Hence singularity confinement holds and the number
of steps needed to get past the singularity is dictated by the length of the largest of the disjoint sequences.

Not all singularity types are of this form. However, it would seem that singularity confinement does
hold for all types, outside of some exceptional cases. If n is odd, the only exceptional type is S = [1, n]1.
Moreover, for any other S and generic A ∈ XS the corresponding singularity lasts at most n steps. We
establish this by considering the worst case where |S| = n− 1.

Proposition 4.4 Suppose n is odd and let S = [1, n]1\{i} for some i ∈ [1, n]1. Then Tn+1 is nonsingular
at generic A ∈ XS .

Corollary 4.5 Suppose that n is odd and that S ( [1, n]1. Then Tn+1 is nonsingular for genericA ∈ XS .

Of course for general S, it will usually be the case that Tm is defined on XS for some m < n+1. The
corollary only ensures that n + 1 steps will be sufficient. This appears to also be true for n even outside
of some exceptional cases. We state this as a conjecture.

Conjecture 4.6 Suppose that n is even.

• Singularity confinement holds generically on XS unless [1, n− 1]2 ⊆ S or [2, n]2 ⊆ S.

• Whenever singularity confinement holds for a type, there exists an m ≤ n such that generic singu-
larities of that type last m steps (i.e. Tm is singular but Tm+1 is not).

5 Straightedge constructions: a first attempt
Let A ∈ Pn be a singular point of T k for 1 ≤ k < m but not of Tm. The remainder of this paper focuses
on the problem of constructing B = Tm(A).

Suppose we choose a one-parameter family A(t) of twisted polygons varying continuously with t such
that

1. A(0) = A and

2. A(t) is a regular point of T k for all t 6= 0 and k ≤ m.

For small t 6= 0, we can obtain B(t) = Tm(A(t)) by iterating the geometric construction defining T . By
continuity, B is given by limt→0B(t) which can be found numerically. Although this limit process gives
a correct description of B, more satisfying would be a finite construction. Away from singularities, the
pentagram map can be carried out with a straightedge alone, so it seems likely that there is a straightedge
construction producing B from A in the present setting.

In this section we introduce an iterative approach to finding such a straightedge construction, which
works in simple situations. The idea is to attempt to make sense of the polygon T k(A) for k < m despite
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the presence of the singularity. Let A(t) be as above, and fixing k < m, let C(t) = T k(A(t)). For each
appropriate index i, let

Ci = lim
t→0

(Ci(t))

We say that Ci is well-defined if this limit always exists and is independent of the choice of the curveA(t)
through A. We can define sides cj of T k(A) in the same way. In fact it is possible that each of the Ci and
cj are well-defined, despite the singularity. This would simply indicate that the resulting polygon C fails
to satisfy the property that quadruples of consecutive vertices be in general position, which is needed for
all the x-coordinates to be defined.

As before, supposeA ∈ Pn is a singular point of T k for 1 ≤ k < m but not of Tm. In addition, assume
that all of the vertices and sides of T k(A) for 1 ≤ k < m are well-defined. Then it should be possible
to construct the components of these intermediate polygons successively. Ideally, each individual side or
vertex can be constructed by a simple procedure depending only on nearby objects.

Consider the simplest case m = 1 of Theorem 4.2, and without loss of generality let i = 3. If A ∈ X3

(meaning A1, A3, and A5 are collinear), then the theorem implies that D = T 3(A) ∈ Y3 (i.e. d1, d3, and
d5 are concurrent). For such A, let B = T (A) and C = T 2(A).

Proposition 5.1 All of the vertices and sides of B, C, and D are well-defined and each of them can be
constructed from A using a straightedge.

The construction alluded to in Proposition 5.1 is pictured in Fig. 3. Two parts of the construction require
explanation, namely how to find the vertex C3 and the side d3, the latter being needed to construct D2.5

and D3.5. We use a generalization of the cross ratio called the triple ratio defined as follows. The triple
ratio of six collinear points P1, . . . , P6 is

[P1, P2, P3, P4, P5, P6] =
P1P2

P2P3

P3P4

P4P5

P5P6

P6P1

where PiPj denotes the signed distance from Pi to Pj . Define using projective duality the triple ratio of
six concurrent lines.

Now the vertex C3 is the unique point on the line common to A1, A3, and A5 such that

[B1.5, B2.5, A3, B4.5, B3.5, C3] = −1

Similarly, the side d3 of D can be constructed as the unique line passing through C2 satisfying

[c1.5, c3.5, b3, c4.5, c2.5, d3] = −1

The next simplest case,m = 2, of Theorem 4.2 concerns a singularity which disappears after four steps.
Specifically, taking i = 4 there is a map T 4 : X{3,5} → Y{3.5,4.5}. SupposeA ∈ X{3,5} which means that
A1, A3, A5, and A7 are collinear. Then E = T 4(A) ∈ Y{3.5,4.5}, i.e., e1.5, e3.5, e5.5 are concurrent and
e2.5, e4.5, e6.5 are also concurrent. Here, not all of the intermediate polygons are completely well-defined.

Proposition 5.2 LetA ∈ X{3,5} and letA(t) be a curve inPn withA(0) = A. LetC = limt→0 T
2(A(t)).

Then the vertex C4 of C depends not only on A but also on the choice of the curve A(t).

The fact that an intermediate vertex is not well-defined causes great difficulty in the current approach
to devising straightedge constructions. In the following sections, we demonstrate how enriching the input
A with first-order data counteracts this difficulty and leads to a general algorithm.
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Fig. 3: Illustrations of the three steps of the construction of D = T 3(A) for A ∈ X3
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6 Decorated polygons
Let A be a twisted polygon which is a singular point of T k. As explained in the previous section, we can
attempt to define T k(A) as a limit of T k(A(t)) where A(t) is a curve in the space of polygons passing
through A = A(0). As we saw, the result sometimes depends on the choice of the curve. This suggests a
different approach to constructing the first nonsingular iterate Tm(A). Start by fixing arbitrarily the one-
parameter family A(t). With respect to this choice the intermediate polygons T k(A) are well-defined.
Constructing them in turn we eventually get Tm(A). Since A is not a singular point of Tm, the final
result will not depend on the choice of A(t).

Working with curves themselves would be difficult. However, all that will actually matter will be the
first order behavior of the curve near t = 0. This information can be encoded using geometric data which
we call decorations.

Let A be a point in the projective plane, and let γ be a smooth curve with γ(0) = A. Define the
associated decoration of A, denoted A∗, to be the tangent line of γ at A:

A∗ = lim
t→0

←−−→
Aγ(t)

When defined, A∗ is a line passing through A.
By the same token, if a is a line in the projective plane then a can be thought of as a point in the dual

plane. Given a curve γ through that point we can define the decoration a∗ as

a∗ = lim
t→0

a ∩ γ(t)

When defined, a∗ is a point lying on a.
Finally, let A be a twisted polygon and γ a curve in the space of twisted polygons with γ(0) = A. Then

γ determines a curve in the plane through each vertex of A and a curve in the dual plane through each
side of A. By the above, we can define decorations on each of these individual objects.

Definition 6.1 A decorated polygon is a twisted polygon A together with the decorations of each of its
vertices and sides induced by some curve γ in the space of twisted polygons with γ(0) = A.

Decorated polygons will be denoted by the appropriate script letter. For instance if the underlying
polygon is A then the decorated polygon will be called A.

Proposition 6.2 Let A(t) be a curve in the space of polygons and let B(t) = T (A(t)) for all t. Let A
and B be the corresponding decorations of A = A(0) and B = B(0) respectively. Then B is uniquely
determined by A. Moreover, B can be constructed from A using only a straightedge.

The map taking A to B above should be though of as a lift of the pentagram map to the space of
decorated polygons. To distinguish this operation from the original map, write B = T̃ (A).
Remark 6.3 We will only be using decorated polygons and the map T̃ as tools in our straightedge con-
structions. However, these are likely interesting objects to study in their own right. Some immediate
questions come to mind such as

• What would be a good set of coordinates on the space of decorated polygons?

• In such coordinates, does the map T̃ take a nice form?
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• Does T̃ define a discrete integrable system?

A degenerate polygon is a collection of vertices and sides which can be realized as a limit of twisted
polygons. Nearby vertices can be collinear, and even equal to each other. If A is a degenerate polygon
and A(t) is a curve with A(0) = A and A(t) generic for t 6= 0, we can define decorations on A as above.
The result is a degenerate decorated polygon A.

A degenerate decorated polygon does not always have a well-defined image under the pentagram map.
However, given two such polygons which occur as consecutive iterates of the pentagram map, it is usually
possible to determine the iterate immediately following the second one.

Proposition 6.4 LetA(t) be a curve in the space of twisted polygons that is generic away from t = 0. Let
B(t) = T (A(t)) and C(t) = T (B(t)) for t 6= 0. Let A, B, and C be the decorated polygons associated
to these curves. Suppose that

∀j, (Bj−1 = Bj+1 =⇒ Aj− 1
2
= Aj+ 1

2
= Bj−1) (6.1)

∀i, (ci− 1
2
= ci+ 1

2
=⇒ bi−1 = bi+1 = ci− 1

2
) (6.2)

where j and i run over the vertex indices of B and C respectively. Then C is uniquely determined by A
and B. Moreover, C can be constructed using only a straightedge.

More specifically, it is always possible to determine the sides of C, but if (6.1) fails for some j then
the decoration of cj is not well-defined. If we choose these unknown decorations arbitrarily, then we can
determine the vertices of C. However, if (6.2) fails for some i then C∗i is not well-defined.

In the context of Proposition 6.4, write C = T̃2(A,B). Extend the construction T̃2 to pairs A,B that
fail to satisfy (6.1) and/or (6.2) by choosing random decorations when necessary.

7 The main algorithm
The goal of our main algorithm is to construct B = Tm(A) from A when the usual construction fails, i.e.
when A is a singular point of various T k for k < m. According to the previous section, it is typically
possible to construct and decorate T 2(A) from A, T (A), and the corresponding decorations, even when
singularities arise. The main construction, given in Algorithm 1, simply iterates this procedure.

Algorithm 1 main(A,m)
A := DecorateRandomly(A)
Iterates[0] := A
Iterates[1] := T̃ (A)
for k := 2 to m do

Iterates[k] := T̃2(Iterates[k − 2], Iterates[k − 1])
end for
B := Iterates[m]
return B

Given S ⊆ {1, 2, . . . , n} such that singularity confinement holds on XS , let m be the smallest positive
integer such that Tm is generically defined on XS . We want to say that for generic A ∈ XS , the main
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algorithm given A and m as input produces Tm(A). For the simplest singularity types, S = {i}, this
result can be proven using Propositions 6.2 and 6.4.

For more complicated S, a difficulty arises because the assumptions (6.1) and (6.2) in Proposition 6.4
will not hold at every step. Hence, some applications of T̃2 in the main algorithm will produce random
decorations. To prove correctness of the algorithm for such S, it is necessary to determine at which steps
this occurs and to demonstrate that the outcome is independent of the random choices. Using this method,
we have verified that the algorithm works for the singularity types of Theorem 4.2 when |S| is small. In
general, experimental evidence suggests that the algorithm behaves correctly for many, but not all, types.
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