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Abstract. We study the fluctuations of models of random partitions (Pn,ω)n∈N stemming from the representation
theory of the infinite symmetric group. Using the theory of polynomial functions on Young diagrams, we establish a
central limit theorem for the values of the irreducible characters χλ of the symmetric groups, with λ taken randomly
according to the laws Pn,ω . This implies a central limit theorem for the rows and columns of the random parti-
tions, and these “geometric” fluctuations of our models can be recovered by relating central measures on partitions,
generalized riffle shuffles, and Brownian motions conditioned to stay in a Weyl chamber.

Résumé. Nous étudions les fluctuations de modèles de partitions aléatoires (Pn,ω)n∈N issus de la théorie des repré-
sentations du groupe symétrique infini. En utilisant la théorie des fonctions polynomiales sur les diagrammes de
Young, nous établissons un théorème central limite pour les valeurs des caractères irréductibles χλ des groupes
symétriques, avec λ pris aléatoirement suivant les lois Pn,ω . Ceci implique un théorème central limite pour les lignes
et les colonnes des partitions aléatoires, et ces fluctuations “géométriques” de nos modèles peuvent être retrouvées
en reliant les mesures centrales sur les partitions, les battages généralisés de cartes, et les mouvements browniens
conditionnés à rester dans une chambre de Weyl.

Keywords: Random partitions, generalized riffle shuffles, representation theory of the infinite symmetric group.

Let G be a group, and τ be a normalized non-negative trace on G, that is to say that τ is a function
from G to C such that τ(eG) = 1, τ(gh) = τ(hg) for any g and h, and (τ(gig

−1
j ))1≤i,j≤n is Hermitian

non-negative definite for any family (g1, . . . , gn) in G. If G is finite, then τ can be written uniquely as a
non-negative linear combination of the normalized irreducible characters of G:

τ =
∑
λ∈Ĝ

Pτ [λ]χλ,

where Ĝ is the set of classes of isomorphism of irreducible complex linear representations of G, χλ is
the normalized character of a representation of class λ, and the weights Pτ [λ] are non-negative and sum
to 1. The function Pτ : Ĝ → R+ is called the spectral measure of τ ; it is a probability measure on Ĝ.
In the case of the finite symmetric groups Sn, an interesting family of spectral measures can be obtained
by restriction of a trace of the infinite symmetric group S∞ =

⋃∞
n=0 ↑ Sn. Recall that the irreducible

representations of Sn are labelled by the set Pn of integer partitions λ = (λ1 ≥ · · · ≥ λr) of size n. On
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the other hand, the set of normalized traces on S∞ is a compact convex set, and its extremal points have
been classified by Thoma (see [Tho64]). They are labelled by the infinite dimensional Thoma simplex

Ω =

{
ω =

(
(αi)i≥1, (βi)i≥1

) ∣∣∣∣ ∑
i≥1

(αi + βi) = 1− γ ≤ 1

}
,

where α and β are non-increasing sequences of non-negative real numbers. Moreover, the value of the
extremal trace χω of parameter ω on a permutation σµ product of disjoint cycles of lengths µ1, . . . , µr is

χω(σµ) = pµ(ω) = pµ1
(ω) pµ2

(ω) · · · pµr (ω),

where the pk(ω)’s are defined by the specialization of the algebra of symmetric functions p1(ω) = 1 and
pk≥2(ω) =

∑∞
i=1 α

k
i + (−1)k−1βki . We call central measures the spectral measures Pn,ω = Pχω|Sn

associated to the restrictions of the extremal characters χω to the finite symmetric groups Sn. Thus,

χω(σ) =
∑
λ∈Pn

Pn,ω[λ]χλ(σ) for σ ∈ Sn.

The central measures are characterized by a property of harmonicity on the Young graph P =
⊔
n∈N Pn,

and using Frobenius’ formula and Thoma’s theorem for the values of the extremal characters, one obtains
the following abstract formula for the central measures:

Pn,ω[λ] = (dimλ) sλ(ω),

where dimλ is the complex dimension of the Specht module of Sn of label λ (given for instance by the
hook-length formula), and sλ(ω) is the specialization of the Schur function sλ.

The first-order asymptotics of the central measures have been determined by Kerov and Vershik in
[KV81]. They have shown that if a partition λ is chosen according to a central measure Pn,ω , then

1. for any permutation σ ∈ S∞, limn→∞ χλ(σ) = χω(σ).

2. the asymptotic frequences of the rows and columns of λ are given by the parameters αi and βj :

λi/n→ αi and λ′j/n→ βj for i, j ≥ 1.

Here, the convergence holds in probability, and λ′ denotes the conjugate partition of λ. Thus, the central
measures are “concentrated” around their mean value. The purpose of our article is to show that this
concentration is Gaussian; hence, we shall prove that the fluctuations

√
n (χλ(σ)− χω(σ)) ;

√
n (λi/n− αi) ;

√
n (λ′j/n− βj)

all converge towards centered gaussian processes with explicit covariances. A way to do this is to use the
algebra of observables (or polynomial functions) of Young diagrams, in the sense of Kerov and Olshanski.
Hence, in Section 1, we will sketch a proof of the gaussian behaviour of the character values that relies on
the combinatorics of the Ivanov-Kerov algebra O (see [IK99]); see Theorem 1. This result implies that
the rows and the columns also have an asymptotic gaussian behaviour, but only when the two sequences
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of parameters α and β are strictly decreasing (see Theorem 2; using different methods, Bufetov obtained
exactly the same result in [Buf11]).

Unfortunately, the method of polynomial functions cannot be used in the case of equal parameters (for
instance when α1 = α2 = · · · = αm = 1/m). This problem and its solution are related to the following
question: can one explain the asymptotic gaussian behaviour of the central measures by exhibiting inde-
pendent random variables to which the usual central limit theorem applies, and that drive the (asymptotic)
behaviour of the rows and columns of the random partitions? Sections 2 and 3 of our paper provide an
affirmative answer: the independent random variables to be considered will determine choices of decks
of cards in generalized riffle shuffles (in the sense of [Ful02]), and the map that allows to recover the
random partitions is the Robinson-Schensted-Knuth algorithm. Hence, in Section 2, we shall prove by
using the combinatorial algebra FQSym of free quasisymmetric functions that the central measures are
the images by the RSK map of measures on the sets of permutations Sn coming from generalized riffle
shuffles (this result has already appeared in the work of Fulman, but our proof is new). In Section 3, we
then use a result of O’Connell ([O’C03]) to relate the RSK algorithm on random words to a transforma-
tion of (random) paths called Pitman’s transform. This leads to the following correction of Theorem 2:
when some parameters αi or βj are equal, the fluctuations of the corresponding rows and columns have
a gaussian component and an “interaction component” that is distributed like the eigenvalues of a trace-
less gaussian Hermitian matrix (see Theorem 4 for a precise statement). Unfortunately, we are for this
moment only able to prove the correction when γ = 0 and β has a finite number of non-zero parameters;
but we hope that our method can be extended to the general case. In Section 4, we conclude by stating a
conjecture that would improve the results of the first paragraph, and provide new estimates at least for the
random character values. Hence, it is suspected that these values converge not only after scaling by n1/2

to gaussian variables, but in fact after scaling by n2/3 in the (strong) mod-gaussian sense (cf. [JKN11]).

1 An algebraic central limit theorem for random characters
For two partitions λ and µ of sizes n and k, one introduces the renormalized character value

Σµ(λ) =

{
n(n− 1)(n− 2) · · · (n− k + 1)χλ(σµ) if n ≥ k,
0 otherwise,

where σµ denotes as before a permutation product of disjoint cycles of lengths µ1, . . . , µr (see [IO02,
Śni06]). The interest of the renormalization factor n↓k = n(n− 1) · · · (n− k+ 1) is that the symbols Σµ
with µ in P =

⊔
n∈N Pn generate linearly a algebra of functions on Young diagrams, which is denoted

O and is graded by degΣµ = |µ| = µ1 + · · · + µr. In particular, a product of two functions ΣµΣν is
a linear combination

∑
ρ c

µν
ρ Σρ of symbols Σρ with |ρ| ≤ |µ| + |ν|. A combinatorial proof of this fact

can be given by interpreting the elements Σµ as elements of a subalgebra of the combinatorial algebra
of partial permutations ([IK99]). Recall that a partial permutation is a pair (σ, S) with S finite subset
of N∗ and σ permutation of S. The product of two partial permutations is (σ, S)(τ, T ) = (σ ◦ τ, S ∪ T ),
and one can consider the algebra P of formal linear combinations of partial permutations, graded by
deg(σ, S) = cardS. Then, one can identify Σµ with the formal linear combination∑

a11 6=a12 6=···6=arµr

(
(a11, . . . , a1µ1)(a21, . . . , a2µ2) · · · (ar1, . . . , arµr ), {aij}(i,j)∈I(µ)

)
,
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where the sum is taken over injective functions from I(µ) = {(i, j) | 1 ≤ i ≤ `(µ), 1 ≤ j ≤ µi} to
N∗: the relations between the functions on Young diagrams Σµ are the same as the relations(i) between
the linear combinations of partial permutations Σµ. This identification yields an explicit description of
the product of two symbols Σ, see [FM10, §3.4]:

ΣµΣν =
∑

Σρ(p;µ,ν),

where the sum is taken over partial matchings p : I(µ)→ I(ν) (one-to-one functions from a subset to a
subset), and ρ(p;µ, ν) denotes the cycle type of a product of partial permutations of cycle types µ and ν
and supports that intersect according to the partial matching. For instance, Σ2Σ2 is a sum over the seven
partial matchings between two sets of size 2, and is equal to Σ2,2 + 4Σ3 + 2Σ1,1.

Now, let us detail the uses of the symbols Σµ in the asymptotic analysis of the central measures. The
expectation of the random variable Σµ(λ) with λ chosen randomly according to Pn,ω is easy to compute:

En,ω[Σµ] =
∑
λ∈Pn

Pn,ω[λ]n↓|µ| χλ(σµ) = n↓|µ| χω(σµ) = n↓|µ| pµ(ω) 'n→∞ n|µ| pµ(ω).

Because of the explicit product rule (1), it is then natural to compute the (asymptotics of the) moments
En,ω[(Σµ)p], and thus to use a method of moments to prove the convergence of

Xn,ω(σµ) =
√
n (χλ(σµ)− χω(σµ)) '

√
n

(
Σµ(λ)

n|µ|
− pµ(ω)

)
towards a gaussian variable. Actually, it is better to look at the joint cumulants of the observables of
random Young diagrams, defined by

k(r)
n,ω(X1, . . . , Xr) =

∑
[[1,r]]=π1t···tπs set partition

(−1)s−1 (s− 1)!
∏
πj∈π

En,ω

[ ∏
i∈πj

Xi

]
. (1)

Indeed, random variables having moments of all order form a gaussian vector if and only if all their joints
cumulants k(r) with r ≥ 3 are equal to zero; and in this case, the covariance matrix of the gaussian vector
is given by the second cumulants k(2)(X,Y ) = E[XY ] − E[X]E[Y ] = cov(X,Y ). However, one can
show that for any observables X1, . . . , Xr in O ,

k(r)
n,ω(X1, . . . , Xr) = O(ndegX1+···+degXr−(r−1)), (2)

where the constant in the O only depends on X1, . . . , Xr (and not on ω). To prove this, it is sufficient to
do it with the observables Xi = Σli , because they generate the algebra O . Then, one can use a technique
of conditioning to split the problem in two parts (see [Śni06, Proposition 4.1]):

1. showing the estimate for disjoint cumulants k(r),•
n,ω , which are defined by the same formula as (1),

except that the product in O is now the disjoint product(ii) Σµ•Σν = Σµtν . This is easy, as one can
now compute explicitly the joint moments of observables Σµ with respect to this simpler product.

(i) The image in P of the isomorphism of graded algebras underlying this identification is the subalgebra of S∞-invariants for the
action τ · (σ, S) = (τστ−1, τ(S)).

(ii) For two partitions µ and ν, we denote in the following µ t ν the partition whose parts are those of µ and those of ν.
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2. compute the degree of the identity cumulants of observables, which are the observables defined
by

w(r)(X1, . . . , Xr) =
∑

[[1,r]]=π1t···tπs set partition

(−1)s−1 (s− 1)!

•∏
πj∈π

[ ∏
i∈πj

Xi

]
,

to be compared to Formula (1). This degree is of course smaller than degX1 + · · · + degXr, and
by expanding the observables over the basis of symbols (Σµ)µ∈P and using the product rule (1),
one can show that it is in fact degX1 + · · ·+ degXr − (r − 1). Indeed, a product of observables
Σµ(1) · · ·Σµ(r) is a sum over all partial matchings of the sets of indices I(µ1), . . . , I(µr), whereas
the cumulant w(r)(Σµ(1) , . . . , Σµ(r)) is a sum restricted to “connected” matchings. This explains
combinatorially the lost of a factor n−(r−1) in the estimate (2).

The estimate for cumulants follows then from the relation

k(r)
n,ω(X1, . . . , Xr) =

∑
[[1,r]]=π1t···tπs set partition

k(s),•
n,ω

(
w(|π1|)(Xi∈π1

), . . . , w(|πs|)(Xi∈πs)
)
.

We refer to [Śni06, FM10] for more details on these techniques; notice that our result (2) is not the same
as [Śni06, Theorem 3.1], because the gradation on O studied here is different from the one considered
in Śniady’s paper (actually, our case is much simpler). One obtains then that the r-th joint cumulant of
variables Xn,ω(σ) is always a O(n1−r/2), thus goes to zero when r ≥ 3. When r = 2, the computation
of the limiting covariances amounts to understanding what are the two leading terms of a product ΣµΣν
with respect to the gradation degΣµ = |µ| on O . This is a simple application of the product rule (1):

ΣµΣν = Σµtν +
∑

a∈µ,b∈ν

abΣµtνt(a+b−1)\{a,b} + (terms of degree lower than |µ|+ |ν| − 2).

This leads to the following algebraic central limit theorem, which can be seen as the analogue of Kerov’s
central limit theorem (cf. [IO02, §6]) in the case of central measures:

Theorem 1 For any parameter ω ∈ Ω, the random process (Xn,ω(σ))σ∈S∞ converges in finite dimen-
sional laws to a centered gaussian process (X∞,ω(σ))σ∈S∞ . If σ and τ have cycle types µ and ν, then

cov(X∞,ω(σ), X∞,ω(τ)) =
∑

a∈µ, b∈ν

ab pµtν\{a,b}(ω) (pa+b−1(ω)− pa(ω) pb(ω)).

In particular, for two cycles of length k and l, cov(X∞,ω(ck), X∞(cl)) = kl (pk+l−1(ω)− pk(ω) pl(ω)).

Notice that the covariances are non-zero, except when ω = (0, 0). In this case corresponding to Planche-
rel measures, Theorem 1 is not sufficiently precise, and the renormalization factor n1/2 have in fact to be
replaced by nk/2 for the study of the fluctuations of χλ(ck); see again [IO02].

Now, Theorem 1 gives a lot of information on the geometry of the random partitions λ. Indeed, the
algebra of observables of Young diagrams linearly generated by the symbols Σµ, also contains the func-
tions

pk(λ) =

d∑
i=1

(λi − i+ 1/2)k + (−1)k−1(λ′i − i+ 1/2)k =

d∑
i=1

ai(λ)k + (−1)k−1bi(λ)k,



392 Pierre-Loı̈c Méliot

where d is the size of the diagonal of the Young diagram of λ (see [IO02, §1-4]; the ai(λ)’s and the
bi(λ)’s are called the modified Frobenius coordinates of λ). Moreover, pk − Σk is always an observable
of degree smaller than k− 1; for example, p4−Σ4 = 4Σ2,1 + 5

2Σ2. As a consequence, Theorem 1 holds
with X∞,ω(ck) replaced by

√
n (n−k pk(λ)− pk(ω)), and it follows that the random discrete probability

measure

Xλ =

d∑
i=1

(ai(λ)/n) δ(ai(λ)/n) + (bi(λ)/n) δ(−bi(λ)/n)

is asymptotically gaussian, in the following sense. Denote Xω =
∑∞
i=1 αi δαi + βi δ−βi + γ δ0. For any

function f ∈ C 1([−1, 1]), Yn,ω(f) =
√
n (Xλ(f) − Xω(f)) converges to a centered gaussian variable

Y∞,ω(f), with covariances

cov(Y∞,ω(f), Y∞,ω(g)) = Xω((xf(x))′(xg(x))′)−Xω((xf(x))′)Xω((xg(x))′).

Choosing adequate test functions f and g, when all the Dirac weights appearing in Xω are distinct (i.e., α
and β are strictly decreasing), this leads to the following geometric counterpart of Theorem 1:

Theorem 2 Suppose α and β decreasing. Then, the random variables ∆n,i =
√
n (λi/n − αi) and

∆′n,j =
√
n (λj/n− βj) converge jointly to a gaussian process (∆∞,i,∆

′
∞,j)i,j≥1, with covariances

cov(∆∞,i,∆∞,k) = δik αi − αiαk ; cov(∆∞,i,∆
′
∞,j) = −αiβj ;

cov(∆′∞,j ,∆
′
∞,l) = δjl βj − βjβl.

Actually, it is clear from the proof that Theorem 2 remains true if one only considers the fluctuations of
rows and columns corresponding to isolated parameters αi and βj , meaning that αi−1 > αi > αi+1 or
that βj−1 > βj > βj+1. The remaining of the paper is devoted to get rid of these hypotheses.

2 From central measures to generalized riffle shuffles
A point ω ∈ Ω being fixed, consider a deck of cards ordered from 1 to n, and the following random

algorithm:

1. First, we split the deck in ordered blocks of sizes d1 + d2 + · · ·+ e1 + e2 + · · ·+ f = n, the sizes
of the blocks being chosen randomly according to the multinomial law of parameter (α, β, γ):

P[d1, d2, . . . , e1, e2, . . . , f ] =

(
n

d1, d2, . . . , e1, e2, . . . , f

) ∏
i≥1

αdii

 ∏
j≥1

β
ej
j

 γf .

2. In the blocks of size e1, e2, . . ., we reverse the order of the cards. In the block of size l, the order of
the cards is randomized, so that every permutation of the l last cards becomes equiprobable.

3. Finally, we randomly shuffle the blocks back together, so that every shuffle that conserves the order
of each block is equiprobable with probability 1/

(
n

d1,d2,...,e1,e2,...,f

)
.
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We denote by Qn,ω the probability measure on Sn that corresponds to this random algorithm, called
generalized riffle shuffle of parameter ω. On the other hand, recall that the RSK algorithm yields a
bijection between permutations σ ∈ Sn, and pairs (P (σ), Q(σ)) of standard tableaux of same shape
Λ(σ) ∈ Pn. The underlying partition Λ = Λ(σ) is related to the Greene invariants of σ:

Λ1 + Λ2 + · · ·+ Λr = max{`(w1) + `(w2) + · · ·+ `(wr)} for r ≥ 1, (3)

where the maximum is taken over r-tuples (w1, . . . , wr) of disjoint increasing subwords of σ.

Theorem 3 The image of the probability measure Qn,ω by the RSK map Λ : Sn → Pn is Pn,ω .

This result appears in [Ful02, Theorem 13], and it can be given an elegant proof by using the combi-
natorial Hopf algebra FQSym, also known as the Malvenuto-Reutenauer algebra (see [DHT01, §3.6],
which states the simpler case when β = γ = 0). This Hopf algebra is linearly generated by elements Fσ
labelled by all the permutations in S =

⊔
n∈N Sn, with the following product rule:

Fσ Fτ =
∑

υ∈σ�τ

Fυ,

where σ � τ denotes the product of shifted shuffle of σ ∈ Sn and τ ∈ Sp, that is to say the set of
permutations that are obtained by shuffling the two words σ(1) · · ·σ(n) and (n+τ(1)) · · · (n+τ(p)). The
scalar product 〈Fσ | Fτ 〉 = 1|σ|=|τ | 1στ−1=id endows FQSym with a structure of noncommutative self-
dual graded Hopf algebra, whose coproduct can be written in terms of the operations of deconcatenation
and standardization (see e.g. [DHT01, §2.1] for details on the operation of standardization of words):

∆(Fσ) =
∑
σ=τ ·ν

FStd(τ) ⊗ FStd(ν).

For instance, ∆(F4132) = 1⊗F4132 +F1⊗F132 +F21⊗F21 +F312⊗F1 +F4132⊗ 1. Now, an impor-
tant result is that FQSym admits a realization as an algebra of formal power series in noncommutative
variables. If X = {x1, x2, . . .} is an alphabet of noncommutative variables, we view each monomial
xi1xi2 · · ·xir as a word w = i1i2 . . . ir. Then, the identification

Fσ−1 = Gσ =
∑

w | Std(w)=σ

w

provides a realization of FQSym, see [DHT01]. As a consequence, to any sequence α = (αi)i≥1 of
complex numbers whose series is absolutely convergent, one can associate the specialization of FQSym
given by Fσ(α) = Fσ(α1, α2, . . .) — one replaces each variable xi by αi. On the other hand, other
specializations FQSym→ C are given by the so-called “exponential alphabet” and its multiples:

Fσ(γE) =
γ|σ|

|σ|!
, where |σ| = n if σ ∈ Sn.

By using the Hopf algebra structure, one can then associate to any ω ∈ Ω a specialization F 7→ F (ω) of
FQSym:

F (ω) = [(id⊗ S ⊗ id) ◦ (∆⊗ id) ◦∆]F (α,−β, γE),
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where S is the antipode of FQSym, and (α,−β, γE) is the tensor product of the aforementioned spe-
cializations, and therefore a morphism of algebras from FQSym⊗3 to C. These specializations have the
two following important properties:

(i) Denote π the morphism from FQSym to C[[X]] that makes the variables x1, x2, . . . commutative.
The image of FQSym by π is the algebra of quasisymmetric functions QSym, and for any partition
λ ∈ Pn,

(dimλ) sλ =
∑

σ∈Sn | Λ(σ)=λ

π(Fσ) =
∑

σ∈Sn | Λ(σ)=λ

π(Gσ).

As a consequence, since π commutes with the specializations associated to the points ω ∈ Ω,

Pn,ω[λ] = (dimλ) sλ(ω) =
∑

σ∈Sn | Λ(σ)=λ

Gσ(ω).

(ii) For any σ ∈ Sn, Gσ(ω) = Qn,ω(σ). This can be proved by interpreting the three steps of the
random algorithm as linear operations between FQSym and tensor products of it — one identifies a
probability measure P on permutations as the element

∑
σ∈Sn P[σ]Fσ of FQSym. More precisely:

1. The operation of cutting the deck in random blocks is related to the coproduct of FQSym and
to the specializations α and −β.

2. The randomization of the last block is related to the specialization γE, and the reversal of some
blocks is related to the antipode of FQSym — indeed, S(F12···n) = ±Fn···21.

3. The shuffle of the blocks is obviously related to the multiplication of the algebra.

These two points proves immediately Theorem 3, and they also give an abstract formula for Qn,ω(σ)
as a specialization of a certain element in FQSym, or of its commutative version QSym. Notice that
Theorem 3 gives a combinatorial motivation for the study of the models of random partitions (Pn,ω)n∈N:
indeed, Formula (3) shows that these models encode the structure of increasing subwords in shuffles.

3 Fluctuations of the rows and columns of the random partitions
The combinatorial interpretation of the central measures shown in the previous paragraph yields a

second “geometric” central limit theorem, which solves the case of equal parameters at the expense of
the hypothesis(iii) β = γ = 0. To state this result, it is convenient to rewrite the sequence (αi)i≥1 as
(pm1

1 > pm2
2 > · · · ), where each parameter pi appears with multiplicity mi, so p1 = α1 = · · · = αm1

,
p2 = αm1+1 = · · · = αm1+m2 , etc. We reindex similarly the rows of λ, and write the parts

λ = (λ1,1 ≥ λ1,2 ≥ · · · ≥ λ1,m1
≥ λ2,1 ≥ · · · ≥ λ2,m2

≥ · · · ).

Theorem 4 We assume β = γ = 0, and we denote ∆n,i,j =
√
n (λi,j/n − pi) the fluctuations of the

m = m1 + · · ·+mr first rows. These fluctuations converge in joint laws towards the random variables

∆∞,i,j =
√
pi (Xi + Yi,j)

(iii) Notice however that one can rigourously adapt Theorem 4 to the case when β has a finite number of non-zero parameters.
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where (X1, . . . , Xr) is a centered gaussian vector of covariance matrix (δik/mi −
√
pipk)1≤i,k≤r, and

for each i ∈ [[1, r]],

(Yi,1, . . . , Yi,mi) ∼ 1y1≥y2≥···≥ymi
y1+y2+···+ymi=0

∏
1≤j<l≤mi(yj − yl)

2

1! 2! · · · (mi − 1)! (2π)
mi−1

2

e−
‖y‖2

2 dmi−1y

and is independent of the gaussian vector and of the other vectors (Yk,1, . . . , Yk,mk). In other words, each
vector Yi is distributed as the eigenvalues of a gaussian traceless Hermitian matrix Mi of size mi ×mi

and covariance matrix E[tr ((AMi)(BMi)
†)] = ((m2

i − 1)/mi) tr (AB†).

Let us sketch the proof of this result; we shall even assume that ω = (α, 0) has only a finite number
m of non-zero parameters, but this is only in order to simplify the notations, and not really required by
the proof. To begin with, notice that the shape Λ(σ) of the partition associated to a shuffle σ of blocks
of size d1, . . . , dm only depends on the original blocks of each letter σ(1), σ(2), etc., and not on the
precise values σ(1), σ(2), etc. Indeed, the permutation σ is equal to the standardized of the word that
encodes the original blocks, and the standardization does not change the shape of the tableaux. Consider
then independent random variables w1, w2, . . . such that P[wj = i] = αi for any indices i, j ≥ 1. The
previous discussion and Theorem 3 show that a way to realize a random partition λ ∼ Pn,ω is to apply the
RSK map Λ to the word w1w2 . . . wn. We then associate to any random word w = w1w2 . . . a random
walk (X(n))n∈N in Zm by setting

X(0) = (0, . . . , 0) ; X(n) −X(n−1) = ei = (01, . . . , 0i−1, 1i, 0i+1, . . . , 0m)

if wn = i. On the other hand, we denote by λ(n) = (λ
(n)
1 , . . . , λ

(n)
m ) the shape of the tableaux obtained

from w1 . . . wn by the RSK algorithm (possibly with the last parts equal to 0). These two discrete random
paths interpolate continuous piecewise affine paths (X(t))t∈R+

and (λ(t))t∈R+
in C 0(R+,Rm).

A theorem due to O’Connell ([O’C03, BBO05]) explains how to go from (X(t))t∈R+ to (λ(t))t∈R+ by
using Pitman transforms. To each simple root δi = ei−ei+1 of the root system of typeAm−1, we attach
an operator Pi : C 0(R+,Rm)→ C 0(R+,Rm) defined by

(Piγ)(t) = γ(t)− (min{〈δi | γ(s)〉 | s ≤ t}) δi.

These operators satisfy the braid relations of Sm; as a consequence, if a permutation σ ∈ Sm has a
decomposition of minimal length σ = si1si2 · · · sil with si = (i, i + 1), then Pσ = Pi1Pi2 · · ·Pil does
not depend on the decomposition and is thus well defined. In particular, one can considerGm = Pω0 with
ω0 = m(m− 1) . . . 21, and this operator has the following fundamental properties:

P1 It is idempotent with values in C 0(R+, C), whereC = {x | x1 ≥ x2 ≥ · · · ≥ xm}. Also, it stabilizes
C 0(R+, H), where H = {x | x1 + x2 + · · ·+ xm = 0}— this is true for any Pi.

P2 It transforms a standard (m− 1)-dimensional Brownian motion on H into a Brownian motion condi-
tioned in Doob’s sense to stay in the Weyl chamber C ∩H , see [BBO05, Theorem 5.6]. The densities
of such a conditioned Brownian motion are given (up to a scalar) by the formula of Theorem 4.

P3 The effect of the RSK map is given by the relation λ(t) = (GmX)(t), cf. [O’C03, Theorem 3.1].
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Example. We have drawn below:
1. the recentered random walk X(t) − t e1+e2+e3

3 associated to a random word of parameters α1 =
α2 = α3 = 1/3;

2. its image by Pitman’s transform G3, which is also λ(t) − t e1+e2+e3
3 (both curves stay in the hyper-

plane H = {x1 + x2 + x3 = 0}, the second curve stay in a Weyl chamber).

1

2

In the case when all the parameters are equal (α1 = · · · = αm = 1/m), P2 and P3 imply readily our
theorem, after some transformations of X(t) and λ(t) and by applying Donsker’s theorem that states that
the random process based on the rescaled means of i.i.d. random variables converge to a Brownian motion.
When different parameters p1 > · · · > pr appear with multiplicities m1 + · · ·+mr = m, one has first to
show the following technical lemma:

Gm(X1, . . . , Xm)− (Gm1
(X1, . . . , Xm1

), . . . , Gmr (Xm1+···+mr−1+1, . . . , Xm))

have all its coordinates that remain almost surely bounded. This is mainly because in each block of
coordinates of size mi, the Xj’s have a different rate of growth pi. As a consequence, each Pitman
operator Pk with k = m1 + · · ·+mj∈[[1,r−1]] modifies the random process (X(t))t∈Rd only by an almost
surely bounded process. This allows to simplify the operator Gm and split it (up to a bounded process)
in Gm1

⊗Gm2
⊗ · · · ⊗Gmr . Then, one can use the same techniques as in the case when all the αi’s are

equal, which proves Theorem 4.

4 Perspectives (mod-gaussian convergence)
To conclude this paper, let us evoke a possible improvement of the techniques detailed in Section 1,

that relies on the estimate (2) and on the notion of mod-gaussian convergence ([JKN11, DKN11]). A
sequence of centered random variables (Zn)n∈N is said to converge in the mod-gaussian sense with
parameters (tn)n∈N and Φ if for all u ∈ R,

e
tnu

2

2 E[eiuZn ]→ Φ(u), (4)
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where Φ is a continuous function with Φ(0) = 1, and the convergence in (4) holds locally uniformly in
u. A typical case is when Zn = Xn + Yn with Xn gaussian of variance tn, and Yn independent of Xn

and that converges in law towards a random variable of characteristic function Φ; however, this situation
is not at all generic. Notice that one allows the “variances” (tn)n∈N to go to infinity; the idea being of
rescaling differently the random variables under study and to go beyond the usual central limit theorem.
We refer to [JKN11] for various examples of this new type of convergence of random variables (including
examples from number theory and combinatorics), and to [DKN11] for a generalization of the notion and
for the probabilistic consequences of the hypothesis of mod-gaussian convergence. In a few words, when
mod-gaussian convergence is satisfied with (tn)n∈N growing to infinity, one gets:

MG1 a central limit theorem:
(
Zn√
tn

)
n∈N

converges to a centered gaussian variable of variance 1.

MG2 a local limit theorem: for any real numbers a < b, P[a ≤ Zn ≤ b] is equivalent to b−a√
2πtn

(this is
not a direct consequence of the central limit theorem).

MG3 a principle of large deviations. We assume that the characteristic functions E[ezZn ] are well
defined on a band Bc,d = {z | − c < Re z < d}, and not only on the line z = iu with u ∈ R. We
also assume that for z ∈ Bc,d,

e−
tnz

2

2 E[ezZn ]→ Ψ(z),

with Ψ analytic on the band and the convergence that is locally uniform in z (strong mod-gaussian
convergence). Then, one has the following (precise) principle of large deviations:

P

[
Zn√
tn
≥
√
tn x

]
' Ψ(x)√

2πtnx2
e−

tnx
2

2 for x ∈]0, d[.

We refer e.g. to [DKN11] for proofs of these facts. Now, let us see why this notion is interesting in the
setting of central measures. In Section 1, we have only used the asymptotic vanishing of the cumulants
k(r) of order r ≥ 3 to prove the asymptotic gaussian behaviour of the variables n1/2 (χλ(σ)−χω(σ)); but
we have not used the precise estimate (2), and in particular the fact that the leading power of n of the r-th
cumulant of a scaled observable X/ndegX is strictly decreasing in r. A careful use of this fact leads to
the following conjecture. Fix an integer k ≥ 2, and consider the variable Zn,k = n2/3 (χλ(ck)−χω(ck)).
Then, its r-th cumulant is of order O(n1−r/3), so, if we had a good control (in r ≥ 4) of the constant
involved in the O, we could prove the locally uniform convergence

log En,ω[ezZn,k ]− n1/3 c2,k(ω) z2 → c3,k(ω) z3,

where 2 c2,k = k2 (p2k−1 − pk,k) and 6 c3,k = k3 ((3k − 2)p3k−2 − (6k − 3)p2k−1,k + (3k − 1)pk,k,k)

are the leading coefficients of the cumulants k(2)
n,ω(Σk, Σk) and k(3)

n,ω(Σk, Σk, Σk). Thus, precise bounds
of the constants involved in (2) would imply the following conjecture:

Conjecture 5 For any ω ∈ Ω, the rescaled character values Zn,k with λ ∼ Pn,ω converge in the (strong)
mod-gaussian sense with parameters tn ∝ n1/3 and Ψ(x) = exp(c3,k(ω)x3).

Then, by using MG2 and MG3, one would get new estimates on the distribution of the random characters,
and possibly also on the distribution of the rows and columns. Notice that an analoguous conjecture can
be made in the special case ω = (0, 0) (Plancherel measures), but this time with Zn,k = nk/2+1/6 χλ(ck)
when k is odd and Zn,k = nk/2+1/4 χλ(ck) when k is even.



398 Pierre-Loı̈c Méliot
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