FPSAC 2012, Nagoya, Japan DMTCS proc. AR, 2012, 375-386

Bases for modules of differential
operators of order 2 on the classical
Coxeter arrangements

Norihiro Nakashima

Department of Mathematics, Graduate School of Science, Hokkaido University, Sapporo, 060-0810, Japan

Abstract. It is well-known that the derivation modules of Coxeter arrangements are free. Holm began to study the
freeness of modules of differential operators on hyperplane arrangements. In this paper, we study the cases of the
Coxter arrangements of type A, B and D. In this case, we prove that the modules of differential operators of order
2 are free. We give examples of all the 3-dimensional classical Coxeter arrangements. Two keys for the proof are
“Cauchy—Sylvester’s theorem on compound determinants” and “Saito—Holm’s criterion”.

Résumé. 11 est connu que les modules de la dérivation d’arrangements de Coxeter sont libres. Holm a commencé
a étudier les modules libres des opérateurs différentiels sur des compositions d’hyperplans. Dans cet article, nous
étudions les cas des compositions de Coxter les types A, B et D. Dans ce cas, nous prouvons que les modules
d’opérateurs différentiels d’ordre 2 sont libres. Nous donnons des exemples de toutes les compositions de Cox-
eter classiques de dimension 3. Les deux points clefs pour la preuve sont le théoreme de Cauchy—Sylvester sur
déterminants composés et le critere de Saito—Holm.
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1 Introduction

This article is an extended abstract of (N). Details of proofs are omitted.

Let K be a field of characteristic zero, and let V' be an /-dimensional vector space over K. Let
{z1,...,z¢} be abasis for the dual space V*, and let S := Sym(V*) ~ K|[zq, ..., x,] be the polynomial
ring. A central (hyperplane) arrangement <7 is a finite collectin of affine hyperplanes which contain the
origin in V. For each hyperplane H € .« fix a linear form py € V* such that ker(py) = H, and put
Q(H) := [lycy ru. We call Q(<7) a defining polynomial of .«7. The study of hyperplane arrange-
ment has been depeloped by many reaserchers. In particular, the study of the freeness of the module of
o7 -delevations is one of the most important study of hyperplane arrangements. Recently, Holm began to
study the module of .«7-differential operators.

Let D(™)(S) = D) |=m SO be the module of differential operators (of order m) of S, where o € N*

is a multi-index. A nonzero element ¢ = 3_, _,, fa0% € D(™)(S) is homogeneous of degree i if fo is
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zero or homogeneous of degree ¢ for each «. In this case, we write deg(6) = i. For a multi-index o, we
put

T = (X1y ooy L1, X2y ey Ty e sy Tpy e vy Ty),

where the number of 2; is a;. We define the module D" (.7 of .o/ -differential operators of order m as
follows:

D () := {0 € D™(8) | 9(Q()S) € Q()S } .

In the case m = 1, DY) (.e7) is the module of .o -derivations. We say .7 to be free if D(1)(.o7) is a free
S-module.

Holm generalized some elementally propaties which hold in the case m = 1 into the case order m gen-
eral. For example, the module of o7 -differential operators is the intersection of the modules of differential
operators which preserving the ideal generated by py:

Do) = () D™ (pusS),
Heo

where D™ (pyS) = {6 € D™ (S) | 6(px®™) € py S for any || = m — 1} for H € /. In the case
m = 1, the property above is well-known (see for example (OT'1, Proposition 4.8)).

An another important property is a criterion for knowing whether given elements form a basis for
D(™)(o7). We say this criterion Saito—Holm’s criterion. We introduce Saito—Holm’s criterion in Section
2l

Moreover, Holm showed a expression of the ring of differential operators of the coordinate ring of
arrangements. Let Z(R) denote the ring of differential operators of a commutative K-algebra R. Then
Holm (H2) proved that the ring of differential operators of S/Q(27)S express a quotient of the direct sum
of the modules of .of -differential operators as an S-module:

N(S/Q(0)8) = T gL

One of the aim of studying the module of <7 -differential operators is to express the ring of differential
operators of the coordinate rings of arrangements. In this article, we consider that freeness and basis for
the module of o7 -differential operators of order 2 when o7 is the classical Coxeter arrangement.

The classical Coxeter arrangements A;_1, B, and Dy of type A, B and D are defined as

Agfl I:{Hij :{$Z—$J:0} | 1 S’L<]§£},
U{H = {x;tz; =0} |1 <i<j<{},
Dy :={H" ={x;+2; =0} |1 <i<j<(}.
It is well-known that the Coxeter arrangements are free (see Theorem 6.60 in (OT1)). Coxeter ar-
rangemets were studied by Orlik-Terao (OT2), Solomon-Terao (ST), Terao (T)) and so on.

There exists a well-known basis for D(")(.e7) when .o/ is one of the classical Coxeter arrangements
(see for example (JS)). The aim of this paper is to prove that the modules of differential operators of order
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2 on the classical Coxeter arrangements are free by constructing bases. For this purpose, we introduce
Cauchy-Sylvester’s theorem on compound determinants and Saito—Holm’s criterion in Section

We will show that the modules of differential operators of order 2 on the classical Coxeter arrangements
are free in Section[3]and 4] We also give examples of A, B3 and Ds.

2 Preliminaries

In this section, we explain Saito—Holm’s criterion and Cauchy—Sylvester’s theorem on compound deter-
minants. Throughout this paper, assume ¢ > m.

First, we introduce Saito—Holm’s criterion. Put s,,, := (”:Tl) and t,, = (efn"if), and set
{aV . alm)} ={a e N ||a] =m},
where || = a; + - -+ +  for a multi-index o« € N¥. For operators 61, ..,60,, € D) (A), define the

coefficient matrix M., (61, ..., 0,,,) of the operators 61, ..., 6, as follows:

Lol
My (0r,....,0,, ) = (91- <a<m>> ’
1<i,j<sm

where a! = ay!---«ayl. Thus the (i, j)-entry of the coefficient matrix is the polynomial coefficient of
@ .
80(

in 6;.
The following criterion was originally given by Saito (S) in the case m = 1, and was generalized by
Holm (H1)) into the case m general.

Proposition 2.1 (Saito-Holm’s criterion) Let6,,...,0, € D) (o) be homogeneous operators. Then
the following two conditions are equivalent:

(1) det M,,(01,...,0s,) = cQt™ for some c € K*.
(2) 61,...,0,,, forma basis for D™ (o) over S.

When D™ (/) is a free S-module, we define the exponents of D™ (&) to be the multiset of degrees
of a homogeneous basis {f1,...,0,, } for D) (o), which is denoted by exp D™ (&7):

exp D™ (o7) = {deg(61), ..., deg(6s,,)} .

Next, we explain Cauchy—Sylvester’s theorem on compound determinants. In the rest of this section,
we will follow the notation of the paper by Ito and Okada (IO) as far as possible. We denote by > the
lexicographic order on Z™. That is, for u = (1, ..., i) and v = (v1, ..., vy,) € Z™, we write p = v
if there exist an index k such that

1 =V1,.eo, k-1 = Vg—1, and g > vg.
Put

Z::{ﬂ:(ula"'aﬂm)ezm|1§U1<U2<"'<Nm§€}-
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Then Z is a totally ordered subset of Z™. Put x, := (zp,, ..., Zpu,,) € S™.
Let A= (a;j),; j<¢ be a square matrix of order £. For i, € Z put

Apw = Qs ) 1< jem

We define the m-th compound matrix A(™ by

A(m) = (det A/L,V)p, veZ’

where the rows and columns are arranged in the increasing order on Z.
The following was obtained by Cauchy and Sylvester (see for example (IO, Proposition 3.1)).

Proposition 2.2 (Cauchy-Sylvester) Let A = (a; ;) ; <y be asquare matrix. Then the determinant of

the m-th compound matrix A" is given by
det A = (det A)(mn—1) . (1)

Put
A={A=A1,..., ) EZ™ [ L—m> X > Xy > >\, >0}

We regard A as a totally ordered subset of Z™ by the order . Then the map
Z3(payeeespim) — (C=m+1—p, b—m+2—pg,....0—py) €A

is a bijection between A and Z, and this bijection reverses the ordering on A and Z.
For A € A, we define the following symmetric polynomials and a Laurent polynomial:

Aj+m—j
det(;” i,j<m
4, detlls Nsigm ¢ gt )

det(t" ) 1<i j<m
det(L2AuFm=D+y
g, de (t; )i<inj<m € Sltr, ... ], (3)

det(t7" ) 1<ij<m

S

_ detlt; IESRE e S[tE, ... k). (4)

r¥m

>

det (17" ) 1<i j<m

The polynomial sf is the Schur polynomial corresponding to the partition \. We remark that s¥ is a
symmetric polynomial if \,,, > 1. Now the degrees of these Laurent polynomials are as follows:

degsyt = A, degsf =2A[+m, degsy =2[A|—m, 5)

where |A] := A1 4+ -+ + A
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Proposition 2.3 We have the following determinant identities:

(m2)
det (sf(x#))AeA = H (i — ;) , (6)
nez 1<i<j<t
('fn:21)
det (s8(2,)) ren = (21 - czg)(m) I -2 7 (7)
nez 1<i<j<e
. (m3)
det (s2(,0)) rep = ————= @-ab| ®)
A = Mgz (171 e xe)(m—l) 1Sl];[j§£ J

3 Type Aand B

Let <7 be an arbitrary arrangement. By (H2| Proposition 2.3) and (H2, Theorem 2.4), we have

D7) = () D™(piS), ©
Heo

where D(™) (py ) = {§ € D™(S) | O(pya®) € py S for any |a| =m — 1} for H € o.
Recall that the defining polynomials of Coxeter arrangements .4,_; and B, of types A and B are

QA= I @—=,

1<i<j<t

Q(By) =x1 x4 H (osff:c?)

1<i<j<t

We introduce some operators in D™ (A,_1) and D" (B,). By using these operators, we construct bases
for the modules D(?)(A,_;) and D) (B,) of differential operators of order 2 on .A;_; and By.

Letk = 1,...,4 and put hft := (v, — 1) (¥ — Tp—1)(Tk — Tpy1) - (2 — 70) and BE =

wp(a? —ad) - (2 —a?_y)(xf — a2 ,,) - (x} — x7). We define operators 7! and n? in D™ () as

follows:
1 1
A ._ 1 A m B ._ 1B m
N = hy 7m!ak , Mg = hy 7m!ak .

Then degn,;4 =/{—1anddeg n,lf =20—1.
Proposition 3.1 Fork = 1,...,{, we have that n{* € D) (A,_,) and n? € D™ (By).

For a Laurent polynomial f(t,...,t,) € S[t!,... tE!] satisfying f(zq) € S for any a with
|| = m, we define an operator

Op = > f(za) iaa.

la|=m
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We call a Laurent polynomial f(¢1,...,%,,) is symmetric if
Ft ooty ooty stm) = Fltr, ooty tm)

for all pairs (3, 7).

Lemma 3.2 Assume that f(t1,...,t,,) is a symmetric Laurent polynomial. Then we have that 0y €
D™ (Ap_y).

For A € A, define operators

1 (62 1 (o2
N Z 5P () a@ , 05 = Z s5 (xq) aa .

la|=m la|=m
Then deg 05 = ||, deg 68 = 2|\| + m by the formula (5).
Proposition 3.3 For \ € A, we have 05* € D™ (A,_1) and 6§ € D™ (B,).
Theorem 3.4 Let m = 2.
(1) The set
Ca={nfli=1,...0u{o| e}
forms an S-basis for D® (Ay_1). Hence
expD@(Ap_y) ={0—1,....0 =1} U{|\ | A € A}.
(2) The set
Cp={nfli=1,...03U{05 | xeA}
forms an S-basis for D\?)(By,). Hence
expDP(By) ={20—1,...,20 =1} U{2|A| + 2| A € A}.

We give examples of A5 and Bs. It is convenient to write f = g for f,g € S'if f = cg for some ¢ € K*.

Example 3.5 Let / = 3, and m = 2. In this case, so = (3%71) =6andty = (3;312) = 3. Then
A= {(A17>\2) | 1 Z A1 2 /\2 Z O} = {(17 1)7 (130)7 (070)}
First, we consider D®) (As2). The Schur polynomials are as follows:

sy =tta, she =ttt s =1
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Thus we obtain the operators of the set C 4:

1
nit = (v1 — @2) (21 — 503)53%,

1
ng' = (v2 — 1) (w2 — $3)§3§»

1
gt = (23 — 1) (3 — 902)53:?7
1

1
011y = 1507 + $§2

1
15 95 + $§§3§ + 21220102 + 11230103 + 12230203,

1 1 1
04 0) = 2:515812 + 2x2§8§ + 2x3§8§ + (21 4 22)0102 + (w1 + 3)0103 + (w2 + 3)0203,

1 1 1
06.0) = 5612 + 58% + §a§ + 8105 + 0105 + 0y05.
Then the determinant of the coefficient matrix of operators above is

det M2 (7714’ 77547 77??‘7 9{-]‘_71)7 eé’o)a 6{(‘),0))

(1 — z2)(x1 — 3) 0 0 %x% 1 %
0 (x2 — 1) (T2 — 3) 0 %xg ) :
_ 0 0 (x5 —x1)(x3 —22) 523 T 5
0 0 0 r1x2 T1+twe 1
0 0 0 Ty x +ag 1
0 0 0 Tory watwz 1
T1To T1+ X2 1
= — (z1 — 20)%(w1 — x3)% (22 — 23)? |m123 o1 + 23 1
Toxs To+x3 1

=Q(As)?

by Proposition Hence the operators 17{‘, 7754, n3, 0(‘} 1) 9{} 0y’ 92‘8 O)form an S-basis for D) (As) by
Proposition 2. 1]

Next, we give a basis for D(?) (Bs). After calculating polynomials sf\;, we obtain

5?171) = 313, 5?170) = tita(t7 + 13), 3?070) = t1ta.
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Then
nt = a1 (af — 23)(z
5 = wa(as —x7)(z

B

5 = x3(af —af) (23 —a

% - xB) ala
% - xs)iazv
3 a3) 0%,

Norihiro Nakashima

1
9(81,1) = x(fé(% + 2232 + 953233 + 23230102 + 23250105 + 23250,03,

0.0y = 29:1231 + 215

82 + 2333283

+ z1w0(x? + m2)8182 + zyw3(2? + £2)0105 4+ wow3 (23 + 2)0x0s,

1
9(%,0) = x%ial +z 2232 + 503233 + 21220102 + 1230105 + £2230205.

Thus the determinant of the coefficient matrix of operators above is

det Mo (77{37 ngv U?a 9%31)1), 95,0)’ 9%30))

xl(x% —»x%)(w% —»x%)
0 zg(w%
_ 0
o 0
0
0
=— xlxgxg(xf - x%)%x%

=Q(B2)°.

4 Type D

— T

2

— 3

oo ocorho

) (x

2 2
2 — T3

)(z5 — 23)

)2

ris

ria

3.3
Lal3

r132(2? + 23)
z1z3(2f + 23)
row3 (23 + 23)

1 6 4 1,..2
i 3 71
I§I§ xlxg(x%4fx%) 1T
x%wg wlxg(x%4—x%) T173
xzsxy  wows3(xs +23) wow3

T1T2

r1x3

T3

In this section, we assume m = 2, and we construct a basis for D(®)(D,). Recall the defining polynomial

Q(Dy)
Set

= H1§i<j§e(%2 -

A={\=

x?) of the Coxeter arrangement of type D.

A, A2) [£—22> X > A > 1},

A i={A=0OnA) [ £=2>X 20,0 =0}.



Bases for modules of differential operators

Then A = A" UA”. Put A®) := (0,0). We define operators 6% as follows:

1 !/
07 =Y sg(xa)aaa if e A,

|a|=2

1 o . "
0% = (z1 - x¢) Z s (xa)aa if e A"\ {AO},

|| =2

1., .
0% := (z1 - a0)? Z 5% (Ta) a@ if A =\O),

o] =2

If\ e A/, then we have
o det (£ 20 —142- ])+1)

1<i,5<2
sP = <ij<2 _ B

A—1>

det(t7*)1<i j<a
where A\ —1 = (A1 — 1, Ay — 1).
IfAe A"\ {\©}, then

20 4+1 -1 2X1 41 ,—
0oty i 'tl 1 Zt 2(/\1 —3)
2 — 13 T it 4

Thus (z1 - - 2¢)sY (2o is a polynomial for any multi-index a with || = 2.
We have

D=

4

9A(°>—( 1 - w)? 22 2312 Z

i=1 1<i<j<t

0:0;

TiTyj

Hence 9? for any A € A. The degrees of these operators are as follows:
degfP =2[A| —2=2X\ +2)0, —2 if AeA,
degf? =2)\ — 2+ if Ae A\ {A O},
degh? =20—2 if A=\,

Proposition 4.1 For A\ € A, we have 0 € D?)(Dy).

We introduce other operators h? of D®)(Dy). For k = 1,...,0 put h? := (22 — 22)---

o} )@} —at) (2 —ad), and define

hD

D ._ Nk 42 -1
M = 2ap I — (1) *9,\(0>
The coefficient of 92 in n? is
hi e (@we)® O hE = (D) TN @ mpg @)
— (- — = es.
2x 2xy, -y, 2x,

Hence we obtain 7 € D®)(S), and degnP = 2¢ — 2.

383
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Proposition 4.2 For k = 1,...,{, we have that nF € D® (D).
Theorem 4.3 Assume m = 2. The set
={nPli=1,...0U{6Y | XA}
forms an S-basis for D?)(Dy). Hence

exp DB (Dy) ={20—2,...,20 =2} U{2X\1 +2Xa — 2| £ —2> X1 > Ny > 1}
U{2\ =242 0—2> X\ > 1)U {20 -2}

We give a example of Ds.

Example 4.4 Let ¢ = 3,m = 2. We have

11 + 13 1
D _ D _ 4 2 D
8(1,1) = t1t27 8(1,0) = 7t1t2 s S(O,O) = @

Then

1 1 1
D 3 2 2y 4 a2 21 o 2l o 2 2
ny = (x7 — a5 — x125) =07 — x1$3§82 — x1m2§83 — 29250109 — 25230103 — T129w30203,

2
1 1 1
772D = —ach?))iaf + (—x%mg + mg — x2x§)§8§ — x%mi@g — x1x§8182 — T1T9w30103 — x%xgagag,
1
773? = —x§x3§a§ — x%ngag + (—2iz3 — mx% + x§)§8§ — 109130109 — x1x§8183 — l‘%.%‘gagag,,

1
9(1 H = I%ial +x 2262 +x 3283 + 21220105 + x1230103 + l‘gxgagag,
G(DLO) = 2(1‘1$2$3)§81 + 2(:51@:03)583 + 2(3:1x21:3)§8§,
+ xg(:vf + x3)010, + xz(zf + 22)0105 + 21 (23 + 12)0203,

1
9(13,0 = w303 281 3585 + 237} 253 + 21222350103 + 1125230105 + 21 22230503.
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We have the following determinant identity:

det M (0P, 0817081, 08 o). 0530,

1 2 2 1 2 1,2 1.2 1,22
5(:21:1:2 + 125 — :1::1‘) 5273 ?:erg ?371 T1T2T3 ?:1:213
1 1
79011‘% 5(1‘%:02 — g%’ + zzxg) L 51}%:{:32 , ?xg T1T2T3 ?xixg
- 5T1T3 5TT2 §(m1x3 + xoxs — x3) 523 T1T2T3 STiTs
1’2([% mlmg T12T2%3 T1T2 mg(m% + mg) :legfﬂg
I%Ig x1§2x3 x%x% T1T3 To (:ci + xg) xéaz%:r,‘g
T1T2T3 xzix3 xixs xoxz  w1(xd +x3) wiwows
(23 —23) (23 —23) 1 1
1 2x1 1 3 0 0 E:z:% T1x2x3 Exgzg
(z3—a) (@3 —a3) 1.2 1,22
0 T 0 525 T1X2T3 5TITS
- (23 —2}) (23 —x3) 1 1
= 0 0 3 1m3 3 -2 Eccg T1T2T3 ix%zg
0 0 0 T129 1‘3(:13% + m%) CEle:r%
0 0 0 T1T3 :1:2(1:% + Ig) $1I%x3
0 0 0 Tox3 :cl(xg +23) a:%:vgzg,
2 2
x4 1
2 212(,.2 2\2(,.2 212 T2 ol o
. (a1 — @3)* (21 — 23)° (23 — 23) 3 z2+ad 1
= (z12233)° |23 BT22 —L
(z12273) Gos,
ToTT3
TaZ3 T213 T3
- 3
=Q(D2)

by Proposition Hence the operators nP ,n% nP . 08 1) H(Dl 0y 9(% 0) form an S-basis for D) (Ds) by
Proposition 2. 1]
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