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Bases for modules of differential
operators of order 2 on the classical
Coxeter arrangements

Norihiro Nakashima
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Abstract. It is well-known that the derivation modules of Coxeter arrangements are free. Holm began to study the
freeness of modules of differential operators on hyperplane arrangements. In this paper, we study the cases of the
Coxter arrangements of type A, B and D. In this case, we prove that the modules of differential operators of order
2 are free. We give examples of all the 3-dimensional classical Coxeter arrangements. Two keys for the proof are
“Cauchy–Sylvester’s theorem on compound determinants” and “Saito–Holm’s criterion”.

Résumé. Il est connu que les modules de la dérivation d’arrangements de Coxeter sont libres. Holm a commencé
à étudier les modules libres des opérateurs différentiels sur des compositions d’hyperplans. Dans cet article, nous
étudions les cas des compositions de Coxter les types A, B et D. Dans ce cas, nous prouvons que les modules
d’opérateurs différentiels d’ordre 2 sont libres. Nous donnons des exemples de toutes les compositions de Cox-
eter classiques de dimension 3. Les deux points clefs pour la preuve sont le théorème de Cauchy–Sylvester sur
déterminants composés et le critère de Saito–Holm.
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1 Introduction
This article is an extended abstract of (N). Details of proofs are omitted.

Let K be a field of characteristic zero, and let V be an `-dimensional vector space over K. Let
{x1, . . . , x`} be a basis for the dual space V ∗, and let S := Sym(V ∗) ' K[x1, . . . , x`] be the polynomial
ring. A central (hyperplane) arrangement A is a finite collectin of affine hyperplanes which contain the
origin in V . For each hyperplane H ∈ A fix a linear form pH ∈ V ∗ such that ker(pH) = H , and put
Q(A ) :=

∏
H∈A pH . We call Q(A ) a defining polynomial of A . The study of hyperplane arrange-

ment has been depeloped by many reaserchers. In particular, the study of the freeness of the module of
A -delevations is one of the most important study of hyperplane arrangements. Recently, Holm began to
study the module of A -differential operators.

LetD(m)(S) :=
⊕
|α|=m S∂

α be the module of differential operators (of orderm) of S, where α ∈ N`

is a multi-index. A nonzero element θ =
∑
|α|=m fα∂

α ∈ D(m)(S) is homogeneous of degree i if fα is
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zero or homogeneous of degree i for each α. In this case, we write deg(θ) = i. For a multi-index α, we
put

xα := (x1, . . . , x1, x2, . . . , x2, . . . , x`, . . . , x`),

where the number of xi is αi. We define the module D(m)(A ) of A -differential operators of order m as
follows:

D(m)(A ) :=
{
θ ∈ D(m)(S) | θ(Q(A )S) ⊆ Q(A )S

}
.

In the case m = 1, D(1)(A ) is the module of A -derivations. We say A to be free if D(1)(A ) is a free
S-module.

Holm generalized some elementally propaties which hold in the case m = 1 into the case order m gen-
eral. For example, the module of A -differential operators is the intersection of the modules of differential
operators which preserving the ideal generated by pH :

D(m)(A ) =
⋂
H∈A

D(m)(pHS),

where D(m)(pHS) =
{
θ ∈ D(m)(S) | θ(pHxα) ∈ pHS for any |α| = m− 1

}
for H ∈ A . In the case

m = 1, the property above is well-known (see for example (OT1, Proposition 4.8)).
An another important property is a criterion for knowing whether given elements form a basis for

D(m)(A ). We say this criterion Saito–Holm’s criterion. We introduce Saito–Holm’s criterion in Section
2.

Moreover, Holm showed a expression of the ring of differential operators of the coordinate ring of
arrangements. Let D(R) denote the ring of differential operators of a commutative K-algebra R. Then
Holm (H2) proved that the ring of differential operators of S/Q(A )S express a quotient of the direct sum
of the modules of A -differential operators as an S-module:

D(S/Q(A )S) '
⊕

m≥0D
(m)(A )

Q(A )D(S)
.

One of the aim of studying the module of A -differential operators is to express the ring of differential
operators of the coordinate rings of arrangements. In this article, we consider that freeness and basis for
the module of A -differential operators of order 2 when A is the classical Coxeter arrangement.

The classical Coxeter arrangements A`−1, B` and D` of type A, B and D are defined as

A`−1 := {Hij = {xi − xj = 0} | 1 ≤ i < j ≤ `} ,
B` := {Hi = {xi = 0} | i = 1, . . . , `}

∪
{
H±1
ij = {xi ± xj = 0} | 1 ≤ i < j ≤ `

}
,

D` :=
{
H±1
ij = {xi ± xj = 0} | 1 ≤ i < j ≤ `

}
.

It is well-known that the Coxeter arrangements are free (see Theorem 6.60 in (OT1)). Coxeter ar-
rangemets were studied by Orlik-Terao (OT2), Solomon-Terao (ST), Terao (T) and so on.

There exists a well-known basis for D(1)(A ) when A is one of the classical Coxeter arrangements
(see for example (JS)). The aim of this paper is to prove that the modules of differential operators of order
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2 on the classical Coxeter arrangements are free by constructing bases. For this purpose, we introduce
Cauchy–Sylvester’s theorem on compound determinants and Saito–Holm’s criterion in Section 2.

We will show that the modules of differential operators of order 2 on the classical Coxeter arrangements
are free in Section 3 and 4. We also give examples of A2, B3 and D3.

2 Preliminaries
In this section, we explain Saito–Holm’s criterion and Cauchy–Sylvester’s theorem on compound deter-
minants. Throughout this paper, assume ` ≥ m.

First, we introduce Saito–Holm’s criterion. Put sm :=
(
`+m−1
m

)
and tm :=

(
`+m−2
m−1

)
, and set

{α(1), . . . ,α(sm)} = {α ∈ N` | |α| = m},

where |α| = α1 + · · ·+ α` for a multi-index α ∈ N`. For operators θ1, . . . , θsm ∈ D(m)(A), define the
coefficient matrix Mm(θ1, . . . , θsm) of the operators θ1, . . . , θsm as follows:

Mm(θ1, . . . , θsm) :=

(
θi

(
xα

(j)

α(j)!

))
1≤i,j≤sm

,

where α! = α1! · · ·α`!. Thus the (i, j)-entry of the coefficient matrix is the polynomial coefficient of
∂α

(j)

in θi.
The following criterion was originally given by Saito (S) in the case m = 1, and was generalized by

Holm (H1) into the case m general.

Proposition 2.1 (Saito–Holm’s criterion) Let θ1, . . . , θsm ∈ D(m)(A ) be homogeneous operators. Then
the following two conditions are equivalent:

(1) detMm(θ1, . . . , θsm) = cQtm for some c ∈ K×.

(2) θ1, . . . , θsm form a basis for D(m)(A ) over S.

When D(m)(A ) is a free S-module, we define the exponents of D(m)(A ) to be the multiset of degrees
of a homogeneous basis {θ1, . . . , θsm} for D(m)(A ), which is denoted by expD(m)(A ):

expD(m)(A ) = {deg(θ1), . . . ,deg(θsm)} .

Next, we explain Cauchy–Sylvester’s theorem on compound determinants. In the rest of this section,
we will follow the notation of the paper by Ito and Okada (IO) as far as possible. We denote by � the
lexicographic order on Zm. That is, for µ = (µ1, . . . , µm) and ν = (ν1, . . . , νm) ∈ Zm, we write µ � ν
if there exist an index k such that

µ1 = ν1, . . . , µk−1 = νk−1, and µk > νk.

Put

Z := {µ = (µ1, . . . , µm) ∈ Zm | 1 ≤ µ1 < µ2 < · · · < µm ≤ `} .
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Then Z is a totally ordered subset of Zm. Put xµ := (xµ1
, . . . , xµm

) ∈ Sm.
Let A = (ai,j)1≤i,j≤` be a square matrix of order `. For µ, ν ∈ Z put

Aµ,ν :=
(
aµi,νj

)
1≤i,j≤m .

We define the m-th compound matrix A(m) by

A(m) := (detAµ,ν)µ,ν∈Z ,

where the rows and columns are arranged in the increasing order on Z.
The following was obtained by Cauchy and Sylvester (see for example (IO, Proposition 3.1)).

Proposition 2.2 (Cauchy–Sylvester) Let A = (ai,j)1≤i,j≤` be a square matrix. Then the determinant of
the m-th compound matrix A(m) is given by

detA(m) = (detA)(
`−1
m−1) . (1)

Put

Λ := {λ = (λ1, . . . , λm) ∈ Zm | `−m ≥ λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0} .

We regard Λ as a totally ordered subset of Zm by the order �. Then the map

Z 3 (µ1, . . . , µm) 7−→ (`−m+ 1− µ1, `−m+ 2− µ2, . . . , `− µm) ∈ Λ

is a bijection between Λ and Z, and this bijection reverses the ordering on Λ and Z.
For λ ∈ Λ, we define the following symmetric polynomials and a Laurent polynomial:

sAλ :=
det(t

λj+m−j
i )1≤i,j≤m

det(tm−ji )1≤i,j≤m
∈ S[t1, . . . , tm], (2)

sBλ :=
det(t

2(λj+m−j)+1
i )1≤i,j≤m

det(t
2(m−j)
i )1≤i,j≤m

∈ S[t1, . . . , tm], (3)

sDλ :=
det(t

2(λj+m−j)−1
i )1≤i,j≤m

det(t
2(m−j)
i )1≤i,j≤m

∈ S[t±1
1 , . . . , t±1

m ]. (4)

The polynomial sAλ is the Schur polynomial corresponding to the partition λ. We remark that sDλ is a
symmetric polynomial if λm ≥ 1. Now the degrees of these Laurent polynomials are as follows:

deg sAλ = |λ|, deg sBλ = 2|λ|+m, deg sDλ = 2|λ| −m, (5)

where |λ| := λ1 + · · ·+ λm.
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Proposition 2.3 We have the following determinant identities:

det
(
sAλ (xµ)

)
λ∈Λ
µ∈Z

=

 ∏
1≤i<j≤`

(xi − xj)

( `−2
m−1)

, (6)

det
(
sBλ (xµ)

)
λ∈Λ
µ∈Z

= (x1 · · ·x`)(
`−1
m−1)

 ∏
1≤i<j≤`

(x2
i − x2

j )

( `−2
m−1)

, (7)

det
(
sDλ (xµ)

)
λ∈Λ
µ∈Z

=
1

(x1 · · ·x`)(
`−1
m−1)

 ∏
1≤i<j≤`

(x2
i − x2

j )

( `−2
m−1)

. (8)

3 Type A and B

Let A be an arbitrary arrangement. By (H2, Proposition 2.3) and (H2, Theorem 2.4), we have

D(m)(A ) =
⋂
H∈A

D(m)(pHS), (9)

where D(m)(pHS) =
{
θ ∈ D(m)(S) | θ(pHxα) ∈ pHS for any |α| = m− 1

}
for H ∈ A .

Recall that the defining polynomials of Coxeter arrangements A`−1 and B` of types A and B are

Q(A`−1) =
∏

1≤i<j≤`

(xi − xj),

Q(B`) = x1 · · ·x`
∏

1≤i<j≤`

(x2
i − x2

j ).

We introduce some operators inD(m)(A`−1) andD(m)(B`). By using these operators, we construct bases
for the modules D(2)(A`−1) and D(2)(B`) of differential operators of order 2 on A`−1 and B`.

Let k = 1, . . . , `, and put hAk := (xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − x`) and hBk :=
xk(x2

k − x2
1) · · · (x2

k − x2
k−1)(x2

k − x2
k+1) · · · (x2

k − x2
`). We define operators ηAk and ηBk in D(m)(S) as

follows:

ηAk := hAk
1

m!
∂mk , ηBk := hBk

1

m!
∂mk .

Then deg ηAk = `− 1 and deg ηBk = 2`− 1.

Proposition 3.1 For k = 1, . . . , `, we have that ηAk ∈ D(m)(A`−1) and ηBk ∈ D(m)(B`).

For a Laurent polynomial f(t1, . . . , tm) ∈ S[t±1
1 , . . . , t±1

m ] satisfying f(xα) ∈ S for any α with
|α| = m, we define an operator

θf :=
∑
|α|=m

f (xα)
1

α!
∂α.
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We call a Laurent polynomial f(t1, . . . , tm) is symmetric if

f(t1, . . . , ti, . . . , tj , . . . , tm) = f(t1, . . . , tj , . . . , ti, . . . , tm)

for all pairs (i, j).

Lemma 3.2 Assume that f(t1, . . . , tm) is a symmetric Laurent polynomial. Then we have that θf ∈
D(m)(A`−1).

For λ ∈ Λ, define operators

θAλ :=
∑
|α|=m

sAλ (xα)
1

α!
∂α, θBλ :=

∑
|α|=m

sBλ (xα)
1

α!
∂α.

Then deg θAλ = |λ|,deg θBλ = 2|λ|+m by the formula (5).

Proposition 3.3 For λ ∈ Λ, we have θAλ ∈ D(m)(A`−1) and θBλ ∈ D(m)(B`).

Theorem 3.4 Let m = 2.

(1) The set

CA :=
{
ηAi | i = 1, . . . `

}
∪
{
θAλ | λ ∈ Λ

}
forms an S-basis for D(2)(A`−1). Hence

expD(2)(A`−1) = {`− 1, . . . , `− 1} ∪ {|λ| | λ ∈ Λ}.

(2) The set

CB :=
{
ηBi | i = 1, . . . `

}
∪
{
θBλ | λ ∈ Λ

}
forms an S-basis for D(2)(B`). Hence

expD(2)(B`) = {2`− 1, . . . , 2`− 1} ∪ {2|λ|+ 2 | λ ∈ Λ}.

We give examples of A2 and B3. It is convenient to write f .
= g for f, g ∈ S if f = cg for some c ∈ K×.

Example 3.5 Let ` = 3, and m = 2. In this case, s2 =
(

3+2−1
2

)
= 6 and t2 =

(
3+2−2

2−1

)
= 3. Then

Λ = {(λ1, λ2) | 1 ≥ λ1 ≥ λ2 ≥ 0} = {(1, 1), (1, 0), (0, 0)}.

First, we consider D(2)(A2). The Schur polynomials are as follows:

sA(1,1) = t1t2, sA(1,0) = t1 + t2, sA(0,0) = 1.
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Thus we obtain the operators of the set CA:

ηA1 = (x1 − x2)(x1 − x3)
1

2
∂2

1 ,

ηA2 = (x2 − x1)(x2 − x3)
1

2
∂2

2 ,

ηA3 = (x3 − x1)(x3 − x2)
1

2
∂2

3 ,

θA(1,1) = x2
1

1

2
∂2

1 + x2
2

1

2
∂2

2 + x2
3

1

2
∂2

3 + x1x2∂1∂2 + x1x3∂1∂3 + x2x3∂2∂3,

θA(1,0) = 2x1
1

2
∂2

1 + 2x2
1

2
∂2

2 + 2x3
1

2
∂2

3 + (x1 + x2)∂1∂2 + (x1 + x3)∂1∂3 + (x2 + x3)∂2∂3,

θA(0,0) =
1

2
∂2

1 +
1

2
∂2

2 +
1

2
∂2

3 + ∂1∂2 + ∂1∂3 + ∂2∂3.

Then the determinant of the coefficient matrix of operators above is

detM2

(
ηA1 , η

A
2 , η

A
3 , θ

A
(1,1), θ

A
(1,0), θ

A
(0,0)

)

=

∣∣∣∣∣∣∣∣∣∣∣∣

(x1 − x2)(x1 − x3) 0 0 1
2x

2
1 x1

1
2

0 (x2 − x1)(x2 − x3) 0 1
2x

2
2 x2

1
2

0 0 (x3 − x1)(x3 − x2) 1
2x

2
3 x2

1
2

0 0 0 x1x2 x1 + x2 1
0 0 0 x1x3 x1 + x3 1
0 0 0 x2x3 x2 + x3 1

∣∣∣∣∣∣∣∣∣∣∣∣
=− (x1 − x2)2(x1 − x3)2(x2 − x3)2

∣∣∣∣∣∣
x1x2 x1 + x2 1
x1x3 x1 + x3 1
x2x3 x2 + x3 1

∣∣∣∣∣∣
.
=Q(A2)3

by Proposition 2.3. Hence the operators ηA1 , η
A
2 , η

A
3 , θ

A
(1,1), θ

A
(1,0), θ

A
(0,0) form an S-basis for D(2)(A2) by

Proposition 2.1.

Next, we give a basis for D(2)(B3). After calculating polynomials sBλ , we obtain

sB(1,1) = t31t
3
2, sB(1,0) = t1t2(t21 + t22), sB(0,0) = t1t2.
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Then

ηB1 = x1(x2
1 − x2

2)(x2
1 − x2

3)
1

2
∂2

1 ,

ηB2 = x2(x2
2 − x2

1)(x2
2 − x2

3)
1

2
∂2

2 ,

ηB3 = x3(x2
3 − x2

1)(x2
3 − x2

2)
1

2
∂2

3 ,

θB(1,1) = x6
1

1

2
∂2

1 + x6
2

1

2
∂2

2 + x6
3

1

2
∂2

3 + x3
1x

3
2∂1∂2 + x3

1x
3
3∂1∂3 + x3

2x
3
3∂2∂3,

θB(1,0) = 2x4
1

1

2
∂2

1 + 2x4
2

1

2
∂2

2 + 2x4
3

1

2
∂2

3

+ x1x2(x2
1 + x2

2)∂1∂2 + x1x3(x2
1 + x2

3)∂1∂3 + x2x3(x2
2 + x2

3)∂2∂3,

θB(0,0) = x2
1

1

2
∂2

1 + x2
2

1

2
∂2

2 + x2
3

1

2
∂2

3 + x1x2∂1∂2 + x1x3∂1∂3 + x2x3∂2∂3.

Thus the determinant of the coefficient matrix of operators above is

detM2

(
ηB1 , η

B
2 , η

B
3 , θ
B
(1,1), θ

B
(1,0), θ

B
(0,0)

)

=

∣∣∣∣∣∣∣∣∣∣
x1(x2

1 − x2
2)(x

2
1 − x2

3) 0 0 1
2
x6
1 x4

1
1
2
x2
1

0 x2(x2
2 − x2

1)(x
2
2 − x2

3) 0 1
2
x6
2 x4

2
1
2
x2
2

0 0 x3(x2
3 − x2

1)(x
2
3 − x2

2)
1
2
x6
3 x4

2
1
2
x2
3

0 0 0 x3
1x

3
2 x1x2(x2

1 + x2
2) x1x2

0 0 0 x3
1x

3
3 x1x3(x2

1 + x2
3) x1x3

0 0 0 x3
2x

3
3 x2x3(x2

2 + x2
3) x2x3

∣∣∣∣∣∣∣∣∣∣
=− x1x2x3(x2

1 − x2
2)2(x2

1 − x2
3)2(x2

2 − x2
3)2

∣∣∣∣∣∣
x3

1x
3
2 x1x2(x2

1 + x2
2) x1x2

x3
1x

3
3 x1x3(x2

1 + x2
3) x1x3

x3
2x

3
3 x2x3(x2

2 + x2
3) x2x3

∣∣∣∣∣∣
.
=Q(B2)3.

4 Type D

In this section, we assume m = 2, and we construct a basis for D(2)(D`). Recall the defining polynomial
Q(D`) =

∏
1≤i<j≤`(x

2
i − x2

j ) of the Coxeter arrangement of type D.

Set

Λ
′

:= {λ = (λ1, λ2) | `− 2 ≥ λ1 ≥ λ2 ≥ 1} ,

Λ
′′

:= {λ = (λ1, λ2) | `− 2 ≥ λ1 ≥ 0, λ2 = 0} .
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Then Λ = Λ
′ ∪ Λ

′′
. Put λ(0) := (0, 0). We define operators θDλ as follows:

θDλ :=
∑
|α|=2

sDλ (xα)
1

α!
∂α if λ ∈ Λ

′
,

θDλ := (x1 · · ·x`)
∑
|α|=2

sDλ (xα)
1

α!
∂α if λ ∈ Λ

′′
\ {λ(0)},

θDλ := (x1 · · ·x`)2
∑
|α|=2

sDλ (xα)
1

α!
∂α if λ = λ(0).

If λ ∈ Λ
′
, then we have

sDλ =
det(t

2(λj−1+2−j)+1
i )1≤i,j≤2

det(t
2(2−j)
i )1≤i,j≤2

= sBλ−1,

where λ− 1 = (λ1 − 1, λ2 − 1).
If λ ∈ Λ

′′ \ {λ(0)}, then

sDλ =
t2λ1+1
1 · t−1

2 − t
2λ1+1
2 · t−1

1

t21 − t22
=

1

t1t2

λ1∑
j=0

t2j1 t
2(λ1−j)
2 .

Thus (x1 · · ·x`)sDλ (xα) is a polynomial for any multi-index α with |α| = 2.
We have

θDλ(0) = (x1 · · ·x`)2

∑̀
i=1

1

2x2
i

∂2
i +

∑
1≤i<j≤`

1

xixj
∂i∂j

 .

Hence θDλ for any λ ∈ Λ. The degrees of these operators are as follows:

deg θDλ = 2|λ| − 2 = 2λ1 + 2λ2 − 2 if λ ∈ Λ
′
,

deg θDλ = 2λ1 − 2 + ` if λ ∈ Λ
′′
\ {λ(0)},

deg θDλ = 2`− 2 if λ = λ(0).

Proposition 4.1 For λ ∈ Λ, we have θDλ ∈ D(2)(D`).

We introduce other operators hDk of D(2)(D`). For k = 1, . . . , ` put hDk := (x2
k − x2

1) · · · (x2
k −

x2
k−1)(x2

k − x2
k+1) · · · (x2

k − x2
`), and define

ηDk :=
hDk
2xk

∂2
k − (−1)`−1 1

xk
θDλ(0) .

The coefficient of ∂2
k in ηDk is

hDk
2xk
− (−1)`−1 (x1 · · ·x`)2

2xk · x2
k

=
hDk − (−1)`−1(x1 · · ·xk−1xk+1 · · ·x`)2

2xk
∈ S.

Hence we obtain ηDk ∈ D(2)(S), and deg ηDk = 2`− 2.
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Proposition 4.2 For k = 1, . . . , `, we have that ηDk ∈ D(2)(D`).

Theorem 4.3 Assume m = 2. The set

CD :=
{
ηDi | i = 1, . . . `

}
∪
{
θDλ | λ ∈ Λ

}
forms an S-basis for D(2)(D`). Hence

expD(2)(D`) ={2`− 2, . . . , 2`− 2} ∪ {2λ1 + 2λ2 − 2 | `− 2 ≥ λ1 ≥ λ2 ≥ 1}
∪ {2λ1 − 2 + ` | `− 2 ≥ λ1 ≥ 1} ∪ {2`− 2}.

We give a example of D3.

Example 4.4 Let ` = 3,m = 2. We have

sD(1,1) = t1t2, sD(1,0) =
t21 + t22
t1t2

, sD(0,0) =
1

t1t2
.

Then

ηD1 = (x3
1 − x1x

2
2 − x1x

2
3)

1

2
∂2

1 − x1x
2
3

1

2
∂2

2 − x1x
2
2

1

2
∂2

3 − x2x
2
3∂1∂2 − x2

2x3∂1∂3 − x1x2x3∂2∂3,

ηD2 = −x2x
2
3

1

2
∂2

1 + (−x2
1x2 + x3

2 − x2x
2
3)

1

2
∂2

2 − x2
1x2

1

2
∂2

3 − x1x
2
3∂1∂2 − x1x2x3∂1∂3 − x2

1x3∂2∂3,

ηD3 = −x2
2x3

1

2
∂2

1 − x2
1x3

1

2
∂2

2 + (−x2
1x3 − x2x

2
3 + x3

3)
1

2
∂2

3 − x1x2x3∂1∂2 − x1x
2
2∂1∂3 − x2

1x2∂2∂3,

θD(1,1) = x2
1

1

2
∂2

1 + x2
2

1

2
∂2

2 + x2
3

1

2
∂2

3 + x1x2∂1∂2 + x1x3∂1∂3 + x2x3∂2∂3,

θD(1,0) = 2(x1x2x3)
1

2
∂2

1 + 2(x1x2x3)
1

2
∂2

2 + 2(x1x2x3)
1

2
∂2

3 ,

+ x3(x2
1 + x2

2)∂1∂2 + x2(x2
1 + x2

3)∂1∂3 + x1(x2
2 + x2

3)∂2∂3,

θD(0,0) = x2
2x

2
3

1

2
∂2

1 + x2
1x

2
3

1

2
∂2

2 + x2
1x

2
2

1

2
∂2

3 + x1x2x
2
3∂1∂2 + x1x

2
2x3∂1∂3 + x2

1x2x3∂2∂3.
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We have the following determinant identity:

detM2

(
ηD1 , η

D
2 , η

D
3 , θ

D
(1,1), θ

D
(1,0), θ

D
(0,0)

)

.
=

∣∣∣∣∣∣∣∣∣∣

1
2
(x1x2

2 + x1x2
3 − x3

1)
1
2
x2x2

3
1
2
x2
2x3

1
2
x2
1 x1x2x3

1
2
x2
2x

2
3

1
2
x1x2

3
1
2
(x2

1x2 − x3
2 + x2x2

3)
1
2
x2
1x3

1
2
x2
2 x1x2x3

1
2
x2
1x

2
3

1
2
x1x2

2
1
2
x2
1x2

1
2
(x2

1x3 + x2x2
3 − x3

3)
1
2
x2
3 x1x2x3

1
2
x2
1x

2
2

x2x2
3 x1x2

3 x1x2x3 x1x2 x3(x2
1 + x2

2) x1x2x2
3

x2
2x3 x1x2x3 x1x2

2 x1x3 x2(x2
1 + x2

3) x1x2
2x3

x1x2x3 x2
1x3 x2

1x2 x2x3 x1(x2
2 + x2

3) x2
1x2x3

∣∣∣∣∣∣∣∣∣∣
.
=

∣∣∣∣∣∣∣∣∣∣∣∣

(x2
1−x2

2)(x
2
1−x2

3)

x1
0 0 1

2
x2
1 x1x2x3

1
2
x2
2x

2
3

0
(x2

2−x2
1)(x

2
2−x2

3)

x2
0 1

2
x2
2 x1x2x3

1
2
x2
1x

2
3

0 0
(x2

3−x2
1)(x

2
3−x2

2)

x3

1
2
x2
3 x1x2x3

1
2
x2
1x

2
2

0 0 0 x1x2 x3(x2
1 + x2

2) x1x2x2
3

0 0 0 x1x3 x2(x2
1 + x2

3) x1x2
2x3

0 0 0 x2x3 x1(x2
2 + x2

3) x2
1x2x3

∣∣∣∣∣∣∣∣∣∣∣∣
.
=

(x2
1 − x2

2)2(x2
1 − x2

3)2(x2
2 − x2

3)2

(x1x2x3)
(x1x2x3)3

∣∣∣∣∣∣∣∣
x1x2

x2
1+x2

2

x1x2

1
x1x2

x1x3
x2
1+x2

3

x1x3

1
x1x3

x2x3
x2
2+x2

3

x2x3

1
x2x3

∣∣∣∣∣∣∣∣
.
=Q(D2)3

by Proposition 2.3. Hence the operators ηD1 , η
D
2 , η

D
3 , θ

D
(1,1), θ

D
(1,0), θ

D
(0,0) form an S-basis for D(2)(D3) by

Proposition 2.1.
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