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The sandpile model on a bipartite graph,
parallelogram polyominoes, and a
q, t-Narayana polynomial
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Abstract. We give a polyomino characterisation of recurrent configurations of the sandpile model on the complete
bipartite graph Km,n in which one designated vertex is the sink. We present a bijection from these recurrent con-
figurations to decorated parallelogram polyominoes whose bounding box is a m× n rectangle. Other combinatorial
structures appear in special cases of this correspondence: for example bicomposition matrices (a matrix analogue of
set partitions), and (2+2)-free posets.

A canonical toppling process for recurrent configurations gives rise to a path within the associated parallelogram
polyominoes. We define a collection of polynomials that we call q, t-Narayana polynomials, the generating functions
of the bistatistic (area, parabounce) on the set of parallelogram polyominoes, akin to Haglund’s (area, hagbounce)
bistatistic on Dyck paths. In doing so, we have extended a bistatistic of Egge et al. to the set of parallelogram
polyominoes. This is one answer to their question concerning extensions to other combinatorial objects.

We conjecture the q, t-Narayana polynomials to be symmetric and discuss the proofs for numerous special cases. We
also show a relationship between the q, t-Catalan polynomials and our bistatistic (area, parabounce) on a subset of
parallelogram polyominoes.

Résumé. Pour le modèle du tas de sable sur un graphe Km,n biparti complet, on donne une description des config-
urations récurrentes à l’aide d’une bijection avec des polyominos parallélogrammes décorés de rectangle englobant
m × n. D’autres classes combinatoires apparaissent comme des cas particuliers de cette construction: par exemple
les matrices de bicomposition et les ordres partiels évitant le motif (2+2).

Un processus d’éboulement canonique des configurations récurrentes se traduit par un chemin bondissant dans le
polyomino parallélogramme associé. Nous définissons une famille de polynômes, baptisée de q, t-Narayana, à travers
la distribution d’une paire de statistique (aire, poidscheminbondissant) sur les polyominos parallélogrammes simi-
laire à celle de Haglund définissant les polynômes de q, t-Catalan sur les chemins de Dyck. Ainsi nous étendons une
paire de statistique de Egge et d’autres à l’ensemble des polynominos parallélogrammes. Cela réponds à l’une de leur
question sur des généralistations à d’autres objets combinatoires.

Nous conjecturons que les polynômes de q, t-Narayana sont symétriques et discutons des preuves de plusieurs cas
particuliers. Nous montrons également une relation avec les polynômes de q, t-Catalan en restreignant notre paire de
statistique à un sous-ensemble des polyominos parallélogrammes.
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1 Introduction
The abelian sandpile model [6] is a discrete diffusion model whose states are distributions of grains on the
vertices of a non-oriented graph. A vertex of a graph is stable if the number of grains at the vertex is strictly
smaller than its degree, otherwise it is called unstable. In addition to a randomised addition of grains, the
dynamics of this model requires that an unstable vertex donate a grain via each of its incident edges to
its neighbours. This is the so-called toppling or avalanche process of the model, whose terminaison is
guaranteed by a distinguished vertex, called the sink, that never topples collecting grains going out of
the system. This process defines a Markov chain on stable states. In the particular case of graphs, there
exist many bijections from recurrent states to spanning trees of the same graph [6, 3]. Another rich result
concerning the model shows that the recurrent states, together with a certain binary operation, form an
abelian group called the sandpile group.

In this extended abstract we outline some results from our paper [8] in which we classified recurrent
configurations of the sandpile model on the complete bipartite graph Km,n in which a single designated
vertex is the sink. Cori & Poulalhon [4] classified recurrent configurations of the complete (k+ 1)-partite
graph Kp1,...,pk,1 where the sink is the single vertex that is connected to all other vertices. Our work
complements [4] by breaking the symmetry ofKp,q,1 and showing how recurrent configurations ofKm,n

that have one sink can be interpreted as parallelogram (or staircase) polyominoes.
Minimal recurrent configurations (those whose number of grains is minimal) correspond to ribbon

parallelogram polyominoes (those having minimal area). In the original paper [8] we showed links be-
tween some special minimal configurations and other combinatorial structures. We will outline some
of these rich connections at the end of Section 2 which are linked to a matrix analogue of set parti-
tions. Such matrices where the subject of several recent papers that presented surprising connections
between five seemingly disparate combinatorial objects: (2+2)-free posets, Stoimenow matchings, ascent
sequences, permutations avoiding a length-3 bivincular pattern, and a class of upper triangular matrices
(see [7, 1, 9, 2]). It was through these structures that we first noticed a connection to the sandpile model
and the initial motivation behind this work.

During the last two decades, a series of papers have examined a power series Cn(q, t) that has become
known as the q, t-Catalan function (or polynomial/number). This power series was introduced by Garsia
and Haiman [13] and has important links to algebraic geometry and representation theory. In the original
paper they showed that two special cases of this polynomial had combinatorial significance. The first was
that Cn(q, 1) was the generating function of the area statistic over Dyck paths having semi-length n. The
second was that q(

n
2)Cn(q, 1/q) is the nth q-Catalan number.

Haglund introduced a new statistic ‘bounce’ and conjectured that Cn(q, t) was the generating function
of the bistatistic (area, hagbounce) on the set of all Dyck path of semi-length n. Garsia and Haglund [11,
12] proved this conjecture using methods from the theory of symmetric functions. (See Haglund [14]
for a concise overview of these results.) Egge, Haglund, Kremer & Killpatrick [10] asked if the lattice
path statistics for Cn(q, t) can be extended, in a way which preserves the rich combinatorial structure, to
related combinatorial objects.

We present a pair of statistics (area, parabounce) on parallelogram polyominoes which is one answer
to their question. We call the resulting polynomials q, t-Narayana polynomials since they specialise to
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the Narayana numbers for the case q = 1 = t. The bivariate generating function for this pair of statistics
Nm,n(q, t) appears to be symmetric in both q, t andm,n. We conjecture and discuss the symmetry of this
bistatistic and prove it for numerous special cases.

A parallelogram polyomino whose bounding rectangle is [0,m] × [0, n] is a polyomino uniquely de-
scribed by a pair (upper(P), lower(P)) of paths which begin at (0, 0), end at (m,n), take steps in the
set {n = (0, 1), e = (1, 0)}, and only touch at their endpoints. Let us write Param,n for this collection
of parallelogram polyominoes. Let Ribbonm,n be the set of polyominoes P in Param,n whose area is
m+ n− 1, the minimal value, which we will call ribbon polyominoes. (See Example 1 for two examples
of these polyominoes.)

Given P ∈ Param,n, let Bounce(P) be the unique path from (m − 1, n) to (0, 0) which is defined as
follows: Starting from (m − 1, n), the path goes south until it encounters a vertex on the lower path of
P . The path then turns to the west and continues straight until it encounters a vertex on the upper path of
P . The path turns again to the south until it encounters a vertex on the lower path of P , and so on, until
it reaches (0, 0). Let bounce(P) = (c1, c2, . . .) be the sequence of numbers where c1 is the number of
initial south s steps in Bounce(P), c2 is the number of contiguous west steps that follow the initial run of
south steps in Bounce(P), and so forth.

Example 1 The bounce path is indicated by a thick directed line in the following diagrams:

P1 = ∈ Para5,5;

s

s

s

s

s

www

w P2 = ∈ Para7,3.
s

s

sw w w

w w w

For P1 we have Bounce(P1) = (s, s,w,w,w, s,w, s, s) and bounce(P1) = (2, 3, 1, 1, 2). For P2 we have
Bounce(P2) = (s,w,w,w, s, s,w,w,w) and bounce(P2) = (1, 3, 2, 3).

2 The sandpile model on Dm,n and recurrent configurations
In this section we show how recurrent configurations of the sandpile model [6] on Km,n which has a
designated vertex that acts as a sink can be classified in terms of parallelogram polyominoes. In what
follows we will refer to the the directed bipartite graph Km,n that has a designated vertex, which we will
call the sink, as Dm,n. The purpose in doing so is to avoid confusion about two non-equivalent choices
for the sink in Km,n (in general if we have many sinks then we merge them into a single one).

For a general (stable) configuration u on Dm,n we define a collection of cells fm,n(u) ⊆ [0,m] ×
[0, n] ⊆ R2. A canonical toppling process for checking recurrent configurations is defined (using Dhar’s
criterion) for the graph Dm,n, and it is then shown that a configuration being recurrent is equivalent
to fm,n(u) being a parallelogram polyomino in Param,n. During this, we show the canonical toppling
process of a recurrent configuration to be intimately linked with the bounce path of the corresponding
polyomino fm,n(u).

Let Dm,n be the graph Dm,n(V,E) with vertex set V = {v0, . . . , vm+n−1} and edge set

E = {(vi, vj) : i ∈ {0, . . . ,m− 1} and j ∈ {m, . . . ,m+ n− 1}}.
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v0 v1 v2 vm−1

vm vm+1 vm+n−1

· · · · · ·

· · · · · ·

Fig. 1: The graph Dm,n.

This is illustrated in Figure 1. We call {v0, . . . , vm−1} and {vm, . . . , vm+n−1} the top vertices and bottom
vertices of Dm,n, respectively.

A configuration, or state, x on Dm,n is an assignment x : {1, . . . ,m + n − 1} → N0 = N ∪ {0}, the
collection of non-negative integers. The value xi = x(i) represents the number of grains of sand on vertex
vi. Vertex v0 is treated as the sink and the number of grains of sand on this vertex is generally ignored.
There is, however, one benefit to considering the number of grains at the sink and this will be mentioned
in the Dhar criterion.

A vertex is said to be stable if the number of grains at that vertex is strictly less than the number of
edges exiting that vertex. Otherwise it is called unstable. If all vertices {v1, . . . , vm+n−1} are stable then
the configuration is said to be stable. Suppose x = (x1, . . . , xm+n−1) is a state on Dm,n. If vertex vi is
unstable then it topples: it donates one grain to each of its neighbours. Let Stable(Dm,n) be the set of
stable states on Dm,n.

Let us call a configuration u ∈ Stable(Dm,n) increasing if u1 ≤ · · · ≤ um−1 and um ≤ · · · ≤
um+n−1. Every configuration u ∈ Stable(Dm,n) may be written uniquely as a pair decompm,n(u) =
(incm,n(u), spermm,n(u)), where incm,n(u) = u′ is an increasing configuration, spermm,n(u) = π
is the lexicographically smallest permutation such that π : {1, . . . ,m − 1} → {1, . . . ,m − 1}, π :
{m, . . . ,m+ n− 1} → {m, . . . ,m+ n− 1}, and ui = u′π(i) for all i ∈ {1, . . . ,m+ n− 1}.

Example 2 Consider u = (5, 2, 1, 2, 4, 2, 1, 3, 2, 2, 1) ∈ Stable(D5,7). We have
inc5,7(u) = (1, 2, 2, 5, 1, 1, 2, 2, 2, 3, 4) and sperm5,7(u) = (4, 2, 1, 3, 11, 7, 5, 10, 8, 9, 6).

Let σ(x) be the stable state the results from initial state x. A stable state is recurrent if it results as the
stable outcome of an state where all vertices were unstable. Let Rec(Dm,n) be the set of recurrent states
on Dm,n and let Rec?(Dm,n) be the set of increasing recurrent states. Recurrent states may be classified
for general graphs as follows:

Dhar’s Criterion: a stable state u on a graph G is recurrent if and only if the stable state that
results from an initial toppling of the sink results once again in u (see [4, 6]).
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Applying this to the graph Dm,n gives us that a stable configuration u ∈ Stable(Dm,n) is recurrent iff

σ(u1, . . . , um−1, 1 + um, . . . , 1 + um+n−1) = (u1, . . . , um−1, um, . . . , um+n−1). (1)

The order of topplings is unimportant when checking that the Dhar criterion (1) holds. However, for
our purposes it will prove useful to fix a canonical toppling process as follows: Let Q1 be the set of all
unstable vertices in the bottom row of Dm,n (as a result of adding 1 to the height of each vertex in this
bottom row). Topple all vertices in Q1 and then let P1 be the set of all unstable vertices in the top row of
Dm,n. Topple all vertices in P1 and then let Q2 be the set of all unstable vertices in the bottom row of
Dm,n. Continue this process until all vertices of Dm,n are stable. Let

CanonTop(u) = (Q1, P1, Q2, P2, . . .) and canontop(u) = (|Q1|, |P1|, |Q2|, |P2|, . . .).

We note of course that it is possible for CanonTop(u) = canontop(u) = (), the empty sequence.

Example 3 Consider u = (0, 2, 1, 2, 1, 2) ∈ Stable(D3,4). Adding one grain to every vertex in the
bottom row gives w = (0, 2, 2, 3, 2, 3), which topples as follows: (0, 2, 2, 3, 2, 3) → (2, 4, 2, 0, 2, 0) →
(2, 0, 3, 1, 3, 1)→ (4, 2, 0, 1, 0, 1)→ (0, 2, 1, 2, 1, 2). Since σ(w) = u we have that u ∈ Rec(D3,4). The
toppling process is CanonTop(u) = ({4, 6}, {2}, {3, 5}, {1}).

Given u = (u1, . . . , um+n−1) ∈ Stable(Dm,n) with CanonTop(u) = (Q1, P1, Q2, P2, . . .) and
incm,n(u) = (a1, . . . , am−1, b1, . . . , bn) we define two collections of cells in the plane:

Bottom(u) =

n⋃
i=1

[0, 1 + bi]× [i− 1, i]

and

Top(u) = [m− 1,m]× [0, n] ∪
m−1⋃
i=1

[i− 1, i]× [0, 1 + ai]

Let fm,n(u) = Top(u) ∩ Bottom(u).

Example 4 Given u = (2, 1, 2, 0, 0, 2, 6, 1, 5, 1) ∈ Stable(D7,4), we have

inc7,4(u) = (a1, . . . , a6, b1, . . . , b4) = (0, 0, 1, 2, 2, 2, 1, 1, 5, 6).

The collection of cells f7,4(u) is ∩ =

The next theorem is the main classification theorem of [8]. Part (a) of its proof relies on a careful
analysis of the topplings in Dhar’s criterion, and the canonical toppling or a recurrent configuration leads
one to consider the bounce path within the corresponding polyomino.

Theorem 5 Let u = (u1, . . . , um+n−1) ∈ Stable(Dm,n).

(a) u ∈ Rec(Dm,n) iff fm,n(u) ∈ Param,n.

(b) If u ∈ Rec(Dm,n) then bounce(fm,n(u)) = canontop(u).
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One may give a bijection from Rec(Dm,n) to the set of all parallelogram polyominoes whose bounce
paths have been decorated with an ordered set partition X . There are two restrictions on the set partitions
(i) the size of the ith set in this partition must correspond to the length of the ith segment of the bounce
path, and (ii) the sets associated with the horizontal steps must partition {1, . . . ,m − 1} and the sets
associated with vertical steps must partition {m, . . . ,m + n − 1}. Let SetParam,n be the set of all pairs
(P, X) where P ∈ Param,n and X satisfies conditions (i) and (ii).

Example 6 Let P be P2 in Example 1. Let X = ({8}, {1, 4, 5}, {7, 9}, {2, 3, 6}). Then (P, X) ∈
SetPara7,3 and may be represented in the following way:

(P, X) =
{8}

{7, 9}

{1, 4, 5}{2, 3, 6}

Given u ∈ Stable(Dm,n) let Ω(u) = (fm,n(u),CanonTop(u)). This construction, combined with parts
(a) and (b) of Theorem 5, gives:

Corollary 7 Ω : Rec(Dm,n)→ SetParam,n is a bijection.

It is well-known from the literature on the sandpile model that recurrent configurations on a graph G
are in one-to-one correspondence with spanning trees of G. Thus the number of recurrent configurations
on Dm,n is the number of spanning trees of Km,n, which is mn−1nm−1. Furthermore, Narayana [15]
enumerated the class of parallelogram polyominoes according to width and height. Thus

Corollary 8 For all m,n ≥ 1, |Rec(Dm,n)| = mn−1nm−1 and |Rec?(Dm,n)| = Nara(m+ n− 1,m),
where Nara(a, b) = 1

a

(
a
b

)(
a
b−1
)

are the Narayana numbers.

The correspondence between recurrent configurations and parallelogram polyominoes is shown to have
several special cases of interest. The details can be found in the main paper [8] but we summarise some
of the points here.

• Minimal recurrent configurations correspond to ribbon polyominoes. Configurations which are
non-zero everywhere are a natural class to ask questions about. However there are no recurrent
configurations that are both minimal and non-zero. The next natural class to look at are those
configurations that are almost non-zero: call a configuration u ∈ Rec(Dm,n) almost non-zero if

u1, . . . , um−1, um+1, . . . , um+n−1 > 0.

Configurations that are both minimal and almost non-zero are called minanz configurations.

• We call a configuration u ∈ Rec(Dm,n) square if m = n. Square minanz configurations are in
one-to-one correspondence with square matrices which have no rows or columns of empty sets, and
whose entries form a set partition of {1, 2, . . . n− 1}, which are termed bicomposition matrices of
size n− 1.
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• Let u ∈ Rec(Dn,n) be minanz and suppose that CanonTop(u) = (Q1, P1, . . . , Qk+1 = {n}). If
x ∈ Pi∪Qi then we say that vertex vx is in the ith wave of u, and write this as waveu(vx) = i. The
collection of minanz configurations u ∈ Rec(Dn,n) which satisfy the following wave property:

waveu(vn+x) ≤ waveu(vx) for all 1 ≤ x < n

are in one-to-one correspondence with upper-triangular bicomposition matrices of size n−1. Upper-
triangular bicomposition matrices on n − 1 have recently been shown to be in 1-1 correspondence
with (2+2)-free partially ordered sets on {1, . . . , n−1}. We show the composition of these two cor-
respondences, and how to read a recurrent configuration from the corresponding (2+2)-free poset.

3 q, t-Narayana polynomials and their symmetry
In this section we will introduce a polynomial that we call the q, t-Narayana polynomial. The polynomial
is the generating function for the bistatistic (area, parabounce) on the set of parallelogram polyominoes.
In terms of recurrent configurations of the sandpile model, the area statistic is up to a constant the level of
the configuration:

level(u) = u1 + . . .+ um+n−1 − n(m− 1),

and the hagbounce statistic is related to the canonical toppling process. When viewed in the parallelogram
polyomino, the bounce path is almost identical to the bounce path that Haglund defined for Dyck paths.
Our polynomial is a natural extension of the area and bounce path statistics to the class of parallelogram
polyominoes. More will be discussed about this in the subsections that follow.

For any polyomino P ∈ Param,n, define its bounce weight to be

parabounce(P) =

k∑
i=1

di/2eci,

where bounce(P) = (c1, . . . ck).
This weight may also be described by summing weights on each step of the bounce path. The initial

step has a weight of 1, and the weight of subsequent steps is incremented by 1 after each turn on the upper
boundary path of the polyomino. Consider the following two polyominoes:

P1 = ∈ Para9,7;

1

2

3

3

4

5

5

111

2

333

4

P2 = ∈ Para8,2.
1

2

1 1 1 1

2 2 2

The bounce weights are

parabounce(P1) = (1) + (1 + 1 + 1) + (2) + (2) + (3 + 3) + (3 + 3 + 3) + (4) + (4) + (5 + 5)

= 41, and
parabounce(P2) = (1) + (1 + 1 + 1 + 1) + (2) + (2 + 2 + 2) = 13.
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The distribution of the bistatistic (area, parabounce) on polyominoes in Param,n is represented by the
generating function

Nm,n(q, t) =
∑

P∈Param,n

qarea(P)tparabounce(P).

We call these polynomials q, t-Narayana polynomials because {Nm,n(1, 1)}m,n≥1 are the Narayana num-
bers that were mentioned in Corollary 8. The following conjecture has been verified for all pairs (m,n)
withm ≤ 11 and n ∈ N by using generating functions resulting from the classical transfer-matrix method.

Conjecture 9 For all positive integers m and n, the distribution of the bistatistic (area, parabounce) on
polyominoes in Param,n is symmetric: Nm,n(q, t) = Nm,n(t, q).

Further to this we posit another symmetry (which has been checked for all pairs (m,n) with max(m,n) ≤
9).

Conjecture 10 For all positive integers m and n we have Nm,n(q, t) = Nn,m(q, t).

Symmetry along the main diagonal of parallelogram polyominoes provides a bijection from polyomi-
noes of Param,n to Paran,m that preserves the area statistic. This mapping gives the following special
case of Conjecture 10:

Theorem 11 For all positive integers m and n we have Nm,n(q, 1) = Nn,m(q, 1).

Define the generating function for the bistatistic of all these polyominoes, adding a variable z to record
the height n of polyominoes:

Nk,?(q, t; z) =
∑
n≥1

Nk,n(q, t)zn.

Representing polyominoes as regular expressions is useful in evaluating Nk,?(q, t; z). For example, one
finds

N2,?(q, t; z) =
t2q2z

(1− qtz)(1− q2tz)(1− qt2z) = N?,2(q, t; z)

N3,?(q, t; z) = q3t3z

(
1 +

q3tz

1− q3tz +
qt3z

1− qt3z

)
= N?,3(q, t; z).

Conjecture 9 also holds for minimal values of one of the two statistics:

Theorem 12 In Param,n, for any i, there are as many polyominoes whose bistatistic (area, parabounce)
is (m+ n− 1, i) as there are polyominoes whose bistatistic (area, parabounce) is (i,m+ n− 1).

This theorem is proved by showing that there exists a bijection

Υ : {P ∈ Param,n : parabounce(P) = m+ n− 1} → {P ∈ Param,n : area(P) = m+ n− 1}.

The definition of this bijection is lengthy and is included in the longer version of this paper. The function
Υ on our polyominoes has the effect of swapping the two statistics.
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Example 13 An example of the bijection from Theorem 12. In this case m = n = 6. The sequence
of diagonal lengths (d1, . . . , dm+n−1) = (1, 2, 3, 3, 3, 4, 3, 3, 3, 2, 1) give (x0, . . . , x4) = (1, 1, 4, 5, 6)
and (y0, . . . , y4) = (0, 1, 4, 5, 6). The ribbon Υ(P) is characterized among ribbons by the fact that its
horizontal bounce steps from left to right are weighted by (d1, . . . dm−1) while its vertical bounce steps
from bottom to top are weighted by (dm, . . . dn+m−1).

1

1

1

1

1

1

1 1 1 1 1

P =

1 2 3 3 3 4

3

3

3

2

1

Υ(P) =

4

3 3 3 3

3

3

2 2

1 1

4 The sandpile model on Kn, special parallelogram polyominoes,
and Haglund’s bounce statistic

In this subsection we will show a connection (Theorem 17) between a class of polyominoes, the sandpile
model on the complete graph Kn having one sink, and Haglund’s bistatistic (area, hagbounce) on the set
of all Dyck paths. We first need to introduce some notation relevant to Haglund’s statistics.

A Dyck path of length n is a path from (n, n) to (0, 0) that does not go above the main diagonal and
takes steps in {s = (0,−1),w = (−1, 0)}. Let Dyckn be the set of all such Dyck paths of semi-length
n. A general D ∈ Dyckn may be represented as a word D = d1d2 . . . dn where di ∈ {s,w}. Given D ∈
Dyckn, let area(D) be the number of complete unit squares contained between D and the diagonal line
x = y. (The shaded triangular regions adjacent to the diagonal are not counted.) If Haglund’s bounce path
on D is sa(1)wa(1)sa(2)wa(2) · · · sa(k)wa(k) then we will write HagBounce(D) = (a(1), a(2), . . . , a(k)).
Haglund’s bounce statistic, in this setup, is hagbounce(D) = a(2) + 2a(3) + . . .+ (k − 1)a(k). Let

Hn(q, t) =
∑

D∈Dyckn

qarea(D)thagbounce(D).

Example 14 LetD = sswswswwsw = s2w1s1w1s1w2s1w1 ∈ Dyck5. Then area(D) = 3, HagBounce(D)
= (2, 2, 1) and hagbounce = 2 + 2(1) = 4.

Recurrent configurations of the sandpile model on the graph Kn were studied in Cori & Rossin [5] and
are classified in terms of parking functions. LetDn be the graph on the vertices V = {v0, . . . , vn−1} with
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edges E = {(vi, vj) : 0 ≤ i, j ≤ n−1 and i 6= j} where v0 is a sink. The set of all stable configurations
is

Stable(Dn) = {(x1, . . . , xn−1) : 0 ≤ xi ≤ n− 2 for all 1 ≤ i ≤ n− 1}.
An integer sequence (t1, . . . , tn) is a parking function if there exists a permutation π of {1, . . . , n} such
that i ≥ tπ(i) for all 1 ≤ i ≤ n. Cori and Rossin [5, Prop. 2.8] proved that a stable configuration
(x1, . . . , xn−1) is recurrent iff (n − 1 − x1, . . . , n − 1 − xn−1) is a parking function. Let Parkn be the
set of all parking functions of length n. The recurrent configurations are

Rec(Dn) = {x ∈ Stable(Dn) : (n− 1− x1, . . . , n− 1− xn−1) ∈ Parkn−1}.

Let us call a configuration x ∈ Stable(Dn) sorted if it is weakly decreasing, and let Rec†(Dn) =
{x ∈ Rec(Dn) : x is sorted}. For example, Stable(D3) = {(0, 0), (0, 1), (1, 0), (1, 1)}, Rec(D3) =
{(0, 1), (1, 0), (1, 1)}, and Rec†(D3) = {(1, 0), (1, 1)}. Using Cori & Rossin’s [5] classification we have:

Rec†(Dn) = {(x1, . . . , xn−1) : xi ≥ n− 1− i for all i ∈ {1, . . . , n− 1}}.

Section 2 defined a canonical toppling process for every recurrent configuration. This canonical toppling
process was an ordered set partition of the vertices and recorded the order in which vertices toppled in
parallel. We now extend the same definition to recurrent configurations of Kn: given x ∈ Rec(Kn), let
CanonTop(x) = (Q1, Q2, . . . , Qk) be the ordered set partition of {1, . . . , n− 1}, whereby vertices in Qi
topples at time i.

Example 15 Let x = (4, 4, 3, 2, 0) ∈ Rec†(K6). The canonical toppling process of this configuration
happens as follows:

x+ (1, 1, 1, 1, 1) = (5̇, 5̇, 4, 3, 1)→ (1, 1, 6̇, 5̇, 3)→ (3, 3, 2, 1, 5̇)→ (4, 4, 3, 2, 0) = x.

A dot above the number denotes an unstable vertex that will topple. Thus CanonTop(x) = ({1, 2}, {3, 4}, {5}).

Given x ∈ Stable(Kn), define the diagram of x as

diag(x) =

n−1⋃
i=1

[n− 1− i, 2 + xi]× [n− 1− i, n− i] ⊂ R2.

Diagrams of sorted recurrent configurations inKn are precisely those diagrams which are polyominoes
in Paran,n−1. Let

LowerParan,n−1 = {diag(x) : x ∈ Rec†(Kn)}.
Every element P ∈ LowerParan,n−1 is uniquely described by a Dyck path dyck(P ) of semi-length n− 1
which is the path of the boundary of P from (n, n− 1) to (1, 0) since its upper path is a word of (ne)∗e.
See Figure 2 for an example of this simple transformation.

Theorem 16 Let u ∈ Rec†(Kn), P = diag(x) ∈ LowerParan,n−1 and D = dyck(P ) ∈ Dyckn−1. Then
the following are equivalent:

(i) CanonTop(u) = (Q1, . . . , Qk),

(ii) Bounce(P ) = (|Q1|, |Q1|, |Q2|, |Q2|, . . . , |Qk|, |Qk|), and
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diag(x) =

0

1

2

3

4

5

6

Fig. 2: On the left is shown P = diag(x) where x = (5, 5, 3, 2, 2, 1) ∈ Rec†(K7). The Dyck path dyck(P ) =
s2w2sws2wsw2 is shown on the right.

(iii) HagBounce(D) = (|Q1|, |Q2|, . . . , |Qk|).

Furthermore:

(iv) area(P ) = (x1 + . . .+ xn)− (n− 1)(n− 6)/2 = area(D) + 2n, and

(v) parabounce(P ) = 2(hagbounce(D) + n).

Theorem 17
∑

P∈LowerParan,n−1

qarea(P)tparabounce(P) = (qt)2nHn−1(q, t2).

One is led to Conjecture 9 by considering two configuration statistics pertaining to (sorted) recurrent
configurations on Dn. For the sandpile model on Dn, the area of a Dyck path D is related to the number
of grains in the mapped sorted recurrent configuration u since

area(D) +

n−2∑
i=0

i =

n−1∑
i=1

ui.

Also, the Haglund bounce statistic of a Dyck path D may be interpreted as the sum over all vertices
of the number of times a vertex is observed stable before it topples during the parallel toppling process
CanonTop(u). More precisely, all vertices in Qi are observed i times as stable: during the initial toppling
of the sink and the toppling of each set Q1, . . . Qi−1. Conjecture 9 is the result of translating these
configuration statistics to the sandpile model on the graph Dm,n.
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