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Projective invariants of vector configurations
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Abstract. We investigate the Zariski closure of the projective equivalence class of a matrix. New results are presented
regarding the matrices in this variety and their matroids, and we give equations for the variety. We also discuss the
K-polynomial of the closure of a projective equivalence class, and two other geometric invariants that can be obtained
from this.

Résumé. Nous enquêtons sur l’adhérence Zariski de la classe d’équivalence projective d’une matrice. Des résultats
nouveaux sont présentés sur les matrices dans cette variété et leur matroı̈des, et nous donnons équations pour la
variété. Nous discutons également le K-polynôme de l’adhérence de la classe d’équivalence projective, et deux
autres invariants géométriques qui peuvent être obtenus à partir de cela.
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1 Introduction
Let v ∈ Ar×n be a matrix with entries in a field k of characteristic zero. The columns of v are thought
of as a vector configuration (v1, . . . , vn). The group GLr = GLr(k) acts on the left of Ar×n and the
algebraic torus T = (k×)n ⊂ GLn(kn) acts on the right, by (g, t) · v = gvt−1. The configurations that
are projectively equivalent to v are those in the orbit

GLrvT = {gvt : g ∈ GLr, t ∈ T}.

The Zariski closure of this orbit is an irreducible subvariety of Ar×n, which we denote by GLrvT and
refer to as a matrix orbit closure. The ideal of GLrvT , denoted Iv , is contained in the coordinate ring of
Ar×n, denoted R = k[xi,j : 1 ≤ i ≤ r, 1 ≤ j ≤ n].

Broadly, the goal of our work is to thoroughly understand matrix orbit closures and their relations to
the matroid of v. Recall that the matroid of a matrix v ∈ Ar×n, denoted M(v), is the simplicial complex
on [n] whose faces index independent subsets of columns of v.

Our work is motivated by attempting to explain similarities observed in two related objects, both of
which are orbit closures. Let (Ar×n)nz denote the matrices in Ar×n with no zero columns, and (Ar×n)fr
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the matrices of f ull rank. These are principal T and GLr bundles over, respectively, (Pr−1)n and the
Grassmannian Gr(n) of r dimensional subspaces of kn. These spaces fit into the following diagram:

Ar×n

(Ar×n)nz
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����

, �
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(Ar×n)fr
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dd
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����

(Pr−1)n Gr(n)

(1)

The GLr-orbit closures in (Pr−1)n and T -orbit closures in Gr(n) are closely related to our matrix orbit
closures.

One way to study orbits in these variaties is to form geometric invariant theory quotients of these
spaces, as was done for (Pr−1)n by Mumford. Another way is to form the Chow quotient by these
actions, which is the Zariski closure of the sufficiently general GLr-orbits (respectively, T -orbits) in
the Chow variety of (Pr−1)n (resp., Gr(n)). This was done by [Kapranov(1993)], and later studied
by [Keel and Tevelev(2006)], and [Hacking et al.(2006)]. Kapranov refines the Gel′fand–MacPherson
correspondance to show that the there is an isomorphism of Chow quotients

GLr\\(Pr−1)n ≈ GLr × T\\Ar×n ≈ Gr(n)//T.

Hence, the Chow quotient is a natural way to complete the diagram above into a hexagon.
Certain particular questions we would like to answer about these orbit closures follow.

1. What is the class of GLrvT in GLr × T -equivariant K-theory of Ar×n? This class can be thought
of as a polynomial, called the K-polynomial of GLrvT , of the form∑

λ∈Λ,b∈Nn

dλ,b(v)sλ(u−1)tb ∈ Z[u−1
1 , . . . , u−1

r , t1, . . . , tn]Sr ,

where dλ,b(v) are integers depending on v, sλ is the Schur polynomial in its arguments and Λ is
the set of partitions. Ideally we would like an explicit formula for dλ,b(v).

2. What is the GLr-module decomposition of the space of (1, 1, . . . , 1)-weight functions on a GLr-
orbit closure in (Pr−1)n? This is related to the problem of when symmetrizations of decomposable
tensors are zero, a problem studied by Dias da Silva’s school. The K-polynomial of GLrvT can be
used to answer this question.

3. What is the class of a T -orbit closure π(v)T in the T -equivariant or ordinary cohomology of the
Grassmannian Gr(n)? This question was studied by Kapranov, Klyachko, Speyer. The answer,
once again, is determined by the K-polynomial of GLrvT .

In this extended abstract we announce several new results on these orbit closures. Specifically, we char-
acterize the matrices in GLrvT and their matroids. We also describe a set of equations whose vanishing
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locus is precisely GLrvT . We then offer our main conjecture on the coefficients dλ,b(v). Following this,
we present several results pertaining to the second and third questions above. Namely, we characterize
the support of the space of (1, 1, . . . , 1)-weight functions on a GLr-orbit closure in (Pr−1)n in terms of
the matroid of v. Lastly, a new formula is given for the cohomology class of a generic T -orbit class in the
Grassmannian.

2 Geometry of orbit closures
In this section we discuss the geometry of the closures GLrvT with respect to the GLr × T orbits they
comprise.

Proposition 2.1 The closure of a GLr × T -orbit in Ar×n is an irreducible affine variety. If v has a
connected matroid of full rank then dim(GLrvT ) = r2 + n− 1; otherwise the dimension is less.

A matroid is said to be connected if it cannot be written as the direct sum (simplicial complex join) of two
matroids. The hypothesis above is quite tame, as even the highly degenerate matrix[

1 0 1 1 1
0 1 1 1 1

]
has a connected matroid.

Recall that π is the projection of the GLr-bundle (Ar×n)fr → Gr(n). Consider the case that v ∈
(Ar×n)fr. It is well known that π(v)T is the toric variety associated to the matroid polytope of M(v).
The matroid (base) polytope P (M(v)) of M(v) is the convex hull in Rn of the indicator vectors of
bases of M(v). The T -orbits in π(v)T are in bijection with the faces of this polytope. We can give
a combinatorial description of the faces of the matroid polytope as follows [Ardila and Klivans(2006),
Proposition 2]. Let S• be a flag of subsets

∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sk ⊂ Sk+1 = [n].

Every face of P (M(v)) is of the form P (M(v)S•) where

M(v)S• =

k+1⊕
i=1

(M(v)|Si)/Si−1.

A realization of this result in terms of torus orbit closures is obtained as follows: Rescale column
i ∈ Sj \ Sj−1 of v by sj−1. Projecting this matrix into Gr(n) we obtain a subspace π(v)λ(s), where
λ(s) is a one-parameter subgroup of T (k((s))). Taking the limit lims→0 π(v)λ(s) yields a point of
π(v)T with matroid M(v)S• . Since every T -orbit in π(v)T is of this form, we get a geometric proof
of [Ardila and Klivans(2006), Proposition 2].

The pullback π−1(lims→0 π(v)λ(s)) is the GLr × T -orbit of a full rank matrix in GLrvT whose
matroid is M(v)S• . We call any such matrix a projection of v along the flag S•.

Example 2.2 Consider the matrix

v =

1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

 ∈ A3×6.
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The matrices below are projections of v along the flags ∅ ⊂ {1} ⊂ {1, 2, 3, 4} ⊂ {1, 2, 3, 4, 5, 6} and
∅ ⊂ {1, 2, 4} ⊂ {1, 2, 3, 4, 5, 6}, respectively.1 0 0 0 0 0

0 1 0 1 0 0
0 0 1 0 0 0

 1 0 0 1 0 0
0 1 0 1 0 0
0 0 1 0 1 1


The next result shows that all elements of GLrvT are obtained by projecting v along some flag and

applying some element g ∈ End(kr) on the left.

Proposition 2.3 Suppose that v has rank r and w ∈ GLrvT is a matrix of rank less than r. Then there is
a matrix w′ ∈ GLrvT whose rank is that of v, and w = gw′ for some singular g ∈ End(kr).

Corollary 2.4 If w ∈ GLrvT then there is a flag of sets S• such that the matroid of w is a quotient of

k+1⊕
i=1

(M(v)|Si)/Si−1.

Conversely, every quotient of such a matroid occurs as the matroid of some w ∈ GLrvT .

3 The ideal of an orbit closure
Let Iv ⊆ R be the ideal of GLrvT . Being the ideal of the image of a rational map, Iv can be computed as
the kernel of the associated ring map, as follows. Let k[z, t] denote the polynomial ring in variable zi,j ,
1 ≤ i, j ≤ r and t1, . . . , tn, where we think of z as the r-by-r matrix of variables zi,j and t as the list of
variables (t1, . . . , tn). Notice that k[z, t] is the affine coordinate ring of End(kr)× kn, and that GLrvT
is the closure of the subspace End(kr)vkn ⊂ Ar×n. Define the ring homomorphism ϕv : R → k[z, t]
that maps xi,j to the (i, j) entry of zvt.

Proposition 3.1 The kernel of the ring homomorphism ϕv : R→ k[z, t] is the ideal of GLrvT in R.

We now give generators for Iv , up to radical; that is, we give the polynomial conditions for a matrix to
lie in GLrvT . We need the notion of Gale duality. For v ∈ Ar×n, its Gale dual is any v⊥ ∈ A(n−rk(v))×n

whose rows form a basis for the (right) kernel of v. Thus, the Gale dual is determined up to the action of
GLn−rk(v) on A(n−rk(v)). If v has full rank then Gale duality really is a duality: GLr(v

⊥)⊥ = GLrv.

Example 3.2 Here is a configuration v, its Gale dual v⊥, and its double dual (v⊥)⊥.

v =

1 0 1 1
0 1 1 1
1 1 2 2

 , v⊥ =

[
1 1 −1 0
1 1 0 −1

]
, (v⊥)⊥ =

[
1 0 1 1
0 1 1 1

]
.

For any w = (w1, . . . , wn) ∈ GLrvT , the vectors

w1 ⊗ v⊥1 , w2 ⊗ v⊥2 , . . . , wn ⊗ v⊥n

are linearly dependent. This can be seen by expanding a linear combination in the standard basis of
kr ⊗ kn−r. By continuity this holds for any u ∈ GLrvT . More is true:
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Proposition 3.3 ([Kapranov(1993)]) Suppose that w ∈ Ar×n has a connected matroid and full rank. If
the collection of tensors

w1 ⊗ v⊥1 , w2 ⊗ v⊥2 , . . . , wn ⊗ v⊥n
forms a circuit in kr ⊗ kn−r then w ∈ GLrvT .

For a subset J of [n], let vJ be the submatrix of v on the columns indexed by J , so that the rank
rk(J) in the matroid of v is the dimension of the span of these columns in kr. The Gale dual of vJ is
not (v⊥)J , but it is a projection of this configuration. This fact is matroidally manifested by the equality
(M |J)∗ = M∗/Jc where Jc is the complement of J in the ground set of M .

Theorem 3.4 For any v ∈ Ar×n, a matrix w is in GLrvT if and only if, for every J = {j1, . . . , j`} ⊂ [n]
the tensors

{wji ⊗ (v⊥J )i : i = 1, . . . , `}, (2)

are linearly dependent.

Theorem 3.4 immediately gives equations for the ideal Iv . Let x denote the matrix of variables xi,j ,
and let xj denote the j-th column (x1,j , . . . , xr,j)

t of x. For each subset J = {j1, . . . , j`} ⊂ [n] we form
the matrix xJ ⊗ v⊥J , whose columns are the tensors xji ⊗ (v⊥J )i ∈ Rr ⊗ kn−rk(vJ ).

Theorem 3.5 The size |J | minors of the matrices xJ ⊗ v⊥J , J ⊂ [n], generates the ideal Iv , up to radical.

Example 3.6 Consider the matrix with rational entries

v =

1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 0

 ∈ A3×6.

The generators of Theorem 3.5 form a radical ideal (we checked this with Macaulay2), and hence they
generate Iv exactly. There are 121 generators in Iv , whose degrees range from 3 to 6. Under the term
order that reads the matrix x from right-to-left, bottom-to-top, our generators form a Gröbner basis for Iv .

It is worth pointing out that these generators are not all binomials in the minors of x = (xi,j), unlike
what one might expect from experience with the case of torus orbit closures in Grassmannians.

4 K-polynomials
In this section we consider the class of GLrvT in the GLr×T -equivariantK-theory of Ar×n. In notation
we make an effort to follow the book [Miller and Sturmfels(2005)].

4.1 Definitions
Recall that R = k[xi,j : 1 ≤ i ≤ r, 1 ≤ j ≤ n] and we may regard Ar×n as SpecR. R is graded by
Zr×Zn, the degree of xi,j being (bj ,−ai), where a1, . . . , ar, b1, . . . , bn are the standard basis vectors of
Zr × Zn. The grading group should be thought of as the weight lattice of the maximal torus in GLr × T
given by (the diagonal torus of GLr)× T .

A finitely generated graded R-module M =
⊕

(a,b)∈Zr×Zn M(a,b) has Hilbert series

Hilb(M) =
∑

(a,b)∈Zr×Zn

dimk(M(a,b))u
atb ∈ Z[[u±1

1 , . . . , u±1
r , t±1

1 , . . . , t±1
n ]]
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By [Miller and Sturmfels(2005), Theorem 8.20], this can be written in the form

K(M ;u, t)∏r
i=1

∏n
j=1(1− tj/ui)

,

the numerator being a Laurent polynomial that we refer to as the K-polynomial of M . In the case that
M is the coordinate ring of an affine variety, then we call the K-polynomial of the coordinate ring the
K-polynomial of the variety.

The ring R has the action of GLr × T given by ((g, t) · f)(v) = f(g−1vt). The decomposition of R
into its various graded pieces R(a,b) is a refinement of the irreducible decomposition of R as a GLr × T -
module; it is precisely the refinement into weight spaces. If an ideal I ⊂ R is GLr × T invariant, then
the K-polynomial of R/I is a symmetric Laurent polynomial in the u’s. This follows by decomposing I
into irreducible GLr × T -modules and seeing that Hilb(R/I) is literally the character of this GLr × T -
module. Multiplying by the symmetric polynomial

∏n
j=1(1 − tj/ui) yields the K-polynomial, which is

thus symmetric. We may thus uniquely write the K-polynomial of a matrix orbit closure as

K(R/Iv;u, t) =
∑

λ∈Λ,b∈Nn

dλ,b(v)sλ(u−1)tb,

for some integers dλ,b(v). Here, Λ denotes the set of all partitions and sλ denotes the Schur polynomial
in its arguments.

The GLr × T -equivariant K-theory ring of Ar×n is the ring of possible K-polynomials of graded
R-modules, namely

K0
GLr×Tn(Ar×n) = Z[[u1, . . . , ur, t1, . . . , tn]][u−1

1 , . . . , u−1
r , t−1

1 , . . . , t−1
n ]Sr

= Z[[e1(u), . . . , er(u), t1, . . . , tn]][er(u)−1, t−1
1 , . . . , t−1

n ],

where Sr acts on the u variables. The class in this ring of a sheaf E on Ar×n is the K-polynomial of its
module of global sections. In particular, the class of the structure sheaf of a GLr × T -invariant algebraic
subset of Ar×n with defining ideal I is the K-polynomial of R/I . Note that K0

GLr×Tn(Ar×n) equals the
equivariant K-theory ring of a point, since Ar×n is a vector bundle over a point.

4.2 K-polynomials of orbit closures
The K-polynomial of GLrvT varies with v. In this section we offer a very strong conjecture stating that
it does not vary too wildly.

Conjecture 4.1 Suppose that v ∈ Ar×n has a full dimensional orbit. Then, the K-polynomial of GLrvT
is determined by the labelled matroid of v.

We offer a few comments on why one might find this conjecure surprising, and then say a few words on
how one might go about proving it.

Every matrix in Ar×n has an associated matroid. The set of matrices with a fixed matroid is called a
matroid stratum of Ar×n. A matroid stratum can contain arbitrarily complicated singularities, a result due
in various forms to various authors (most commonly cited is Mnëv; also Bokowski–Sturmfels, Lafforgue,
Richter-Geber). These results are collectively and uncarefully referred to as the “universality theorem”
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for matroid realization spaces. The K-polynomials of full matroid strata in Ar×n are considered by
[Fehér et al.(2010)].

In light of the universality theorem it is entirely plausible that when one considers a very singular point
v of a matroid stratum, K(R/Iv;u, t) might deviate from an expected generic answer. The conjecture
above posits that K(R/Iv;u, t) is constant as v ranges over even the most complicated matroid stratum.

The strategy of the proof is allows: One starts by relating the K-polynomial of GLrvT to the K-
polynomial of the torus orbit closure π(v)T ⊂ Gr(n). The latter can be computed explicitly using the
polyhedral combinatorics of the matroid polytope of v. The class of π(v)T in the T -equivariant K-theory
of Gr(n) is considered by [Fink and Speyer(2010)], where the connection to polyhedral combinatorics is
made precise.

The technically difficult step of the proof arises from the singular locus of the orbit closure. Indeed, in
joint work with Dave Anderson, we can show that if GLrvT has rational singularities then Conjecture 4.1
is true. Following a strategy of [Weyman(2003)], this amounts to proving that a certain vector bundle on
π(v)T has vanishing higher cohomology. This last portion of the proof of the conjecture is work in
progress.

Applying [Fink and Speyer(2010), Proposition 3.3] we conclude Corollary 4.2(a), below.
Recall that a matroid base polytope subdivision is a polyhedral subdivision of P (M(v)), the matroid

base polytope of M(v), where each facet in the subdivision is a matroid base polytope. Recall that a
function f from the set of labelled matroids to an abelian group is said to behave valuatively if whenever
P (M) =

⋃
i P (Mi) is a matroid base polytope subdivision,

f(M) =
∑
i

f(Mi)−
∑
(i,j)

Mi,j +
∑

(i,j,k)

Mi,j,k − . . .

HereMi1,...,ik is the matroid whose polytope is the intersectionP (Mi1)∩· · ·∩P (Mik). See [Ardila et al.(2010)]
for more on such subdivisions. From [Fink and Speyer(2010), Proposition 4.3] we conclude part (b) of
the following.

Corollary 4.2 Suppose that Conjecture 4.1 is true.
Then, given any rank r matroid M on n elements, realizable over k or not, one may construct in a

uniform way an element z(M) ∈ Z[u±1
1 , . . . , u±1

r , t±1
1 , . . . , t±1

n ]Sr that has the following properties:

(a) When M is realizable over k by a matrix v ∈ Ar×n, the polynomial z(M) is the K-polynomial of
GLrvT .

(b) For v with a full dimensional orbit, and M of rank r, the function z(M) behaves valuatively on
matroid base polytope subdivisions.

5 The tensor module
In this section we investigate the second of our desiderata from the introduction. Given v ∈ (Ar×n)nz we
form the k-vector space G(v) ⊂ (kr)⊗n that is spanned by the tensors

{gv1 ⊗ · · · ⊗ gvn : g ∈ GLr}.

We dub this the tensor module of v. We begin by relating G(v) to the line bundle O(1, . . . , 1) on
(Pr−1)n, which is the external tensor product of the O(1)’s on each factor.



292 Andrew Berget and Alex Fink

Recall that j is the inclusion of the matrices with non-zero columns into Ar×n. The inverse image
j−1GLrvT is the intersection of GLrvT with (Ar×n)nz and the projection of this to (Pr−1)n is the
GLr-orbit closure of ρ(v).

Proposition 5.1 For v ∈ (Ar×n)nz,G(v) is the k-vector space dual to the global sections ofO(1, . . . , 1)|
GLrρ(v)

.
This isomorphism is GLr-equivariant and hence the character of G(v), as a GLr-module, is the coef-

ficient of t1 · · · tn in
K(R/Iv;u

−1, t)∏
i≤r,j≤n(1− uitj)

.

Thus, if Conjecture 4.1 is true, then the irreducible decomposition of G(v) is determined by the matroid
of v.

Our primary interest in the tensor invariant stems from its connection to the rank partition of the matroid
of v. Let M = M(v) denote the matroid of v. The rank partition of M is the sequence ρ(M) =
(ρ1, ρ2, ρ3, . . . ) determined by the condition that

ρ1 + ρ2 + · · ·+ ρk

is the size of the largest union of k independent sets in M .

Theorem 5.2 (Dias da Silva) The rank partition of M is a partition. If M has no loops (which is true
if v ∈ (Ar×n)nz), then there is a set partition of the ground set of M into independent sets of sizes
λ = (λ1 ≥ λ2 ≥ . . . λ`) ` n if and only if λ ≤ ρ(M) (dominance order).

A result of Gamas on the vanishing of symmetrized tensors yields the following description of the
support of G(v).

Theorem 5.3 The tensor module G(v) has an irreducible submodule of highest weight λ if and only if
λ ≥ ρ(M)′.

Let S ⊂ [n] be a subset and M |S the restriction of the matroid of v to S. In the Hilbert series of R/Iv ,
the coefficient of sλ(u−1)

∏
i∈S ti is a positive integer if and only if λ ≥ ρ(M |S)′.

Using Schur–Weyl duality one can relate G(v) to the smallest Sn-representation in (kr)⊗n containing
v1 ⊗ · · · ⊗ vn. Recall that Schur-Weyl duality asserts that GLr and Sn generate EndSr

((kr)⊗n) and
EndGLr

((kr)⊗n), respectively.

Proposition 5.4 The tensor module G(v) is Schur-Weyl dual to S(v). This is to say,

HomGLr
(G(v), (kr)⊗n) ≈ S(v) HomSn

(S(v), (kr)⊗n) ≈ G(v),

as Sn and GLr modules, respectively.

This is useful in the proof of the next result which characterizes the coefficient of a hook shaped Schur
polynomial sλ(u−1)tb in the multigraded Hilbert series of R/Iv . For an element b ∈ Nn let b ∈ {0, 1}n
denote its support, which we conflate with the subset of [n] it indexes, and let |b| be the sum

∑
i bi. We

let λm,k denote the hook shape that is a partition of m and has k parts.
Recall that a broken circuit of a matroid M with ground set [n] is a circuit with its smallest element

deleted. An independent set of M is said to be a no broken circuit set (NBC) if it contains no broken
circuits.
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Proposition 5.5 The coefficient of sλ|b|,k(u−1)tb in the Hilbert series of R/Iv is equal to the number of
NBC bases of the truncation of M(v)|b to rank k, if this matroid has rank at most k. The coefficient is
zero otherwise.

Taking b to be the all ones vector yields the multiplicty of a hook shaped irreducible in G(v).

Example 5.6 Consider the matrix

v =

1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 0

 ∈ A3×6.

The coefficient of s(4,1,1)(u) in the character of G(v) is the number of no broken circuit bases of M(v),
which is 7. The NBC bases of M(v) are

123, 125, 126, 134, 145, 146, 156,

where we write ijk for {i, j, k}.

6 Cohomology classes of T -orbit closures in Grassmannians
We now turn to equivariant cohomology, the third of our objects of interest from the introduction. In fact,
instead of working in topological G-equivariant cohomology of a variety X with the action of a linear
algebraic group G, we will work in the Chow cohomology ring of G-invariant algebraic cocycles of X
modulo rational equivalence. This is of no consequence since all the varieties in question have sufficiently
nice stratifications that the two notions coincide [Fulton(1998), Example 19.1.11].

We pause briefly to say how this is related to our matrix orbit closures and their K-polynomials. By
Grothendieck-Riemann-Roch, the GLr×T -equivariant cohomology class of an invariant algebraic subset
Z ⊂ Ar×n is obtained from its K-polynomial as the lowest degree term of

K(R/I; exp(u), exp(t)) ∈ Z[[u1, . . . , ur, t1, . . . , tn]]Sr .

where I is the radical ideal that defines Z. That is, replace each ui and tj in the K-polynomial by
its formal exponential and take the lowest degree term of the resulting power series. We denote this
polynomial [Z]GLr×T and call it the equivariant cohomology class of Z. This is an element of the
GLr × T -equivariant cohomology ring of Ar×n, namely

H∗GLr×T (Ar×n) = Z[u1, . . . , ur, t1, . . . , tn]Sr

(see [Brion(1997)]). This defines a map K0
T×GLr

(Ar×n) → H∗T×GLr
(Ar×n). The remaining spaces

in (1) also have maps from equivariant K-theory to equivariant cohomology, and these maps form a
natural transformation between the K-theory and cohomology of diagram (1). The maps ρ and π induce
isomorphisms at the level of equivariant K-theory and cohomology, and the inclusions j and i give rise to
surjections. The kernel of the restriction map

H∗GLr×T (Ar×n)→ H∗T (Gr(n))
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induced by i, is the ideal

Ifr =
( ∑
a+b=k

ea(−t)hb(u) : k > n− r
)
⊂ H∗GLr×T (Ar×n).

On Gr(n) we have two equivariant universal vector bundles: S, the tautological bundle or universal
subbundle, whose fiber over x ∈ Gr(n) is the subspace x ⊆ Cn; and Q, the universal quotient bundle,
with fiber Cn/x. Grothendieck-Riemann-Roch allows the Chern classes of these bundles to be extracted
from their K-classes. This comes out nicely for S, which has [S] = e1(u), whence one extracts ck(S) =
(−1)kek(u). The exact sequence of vector bundles

0→ S → Cn → Q→ 0

is transformed to the Whitney sum formula
n∏
i=1

(1− ti) = c(Cn) = c(Q)c(S), (3)

from which one can solve for the ck(Q) in terms of the ck(S). Then the generators of Ifr can be understood
to impose the vanishing of ck(Q) for k > n− r = rankQ.

Our main result on cohomology classes is the following.
Theorem 6.1 Given v ∈ Ar×n whose matroid is uniform, the class of π(v)T in T -equivariant cohomol-
ogy is

[π(v)T ] =
∑

λ :λ fits in (n− r − 1)r−1

sλ(S∨)s(λ∨)′(Q) (4)

where λ∨ is the complement of λ within the (r− 1)× (n− r− 1) rectangle, and by a symmetric function
of a vector bundle we mean the symmetric function of its Chern roots.

This is proved using the equivariant localization theory of Goresky–Kottwitz–MacPherson.
There is an isomorphism of Z-modules

Z⊗H∗T (pt) − : H∗T (Gr(n))→ H∗(Gr(n)).

The image of the cohomology class sλ(S∨) ∈ H∗T (Gr(n)) under this map is the class of the Schubert
variety indexed by λ, denoted σλ (we take this Schubert variety to have codimension |λ|, so that σλ is the
in |λ|-th graded piece of the cohomology).

Passing from equivariant cohomology to ordinary cohomology yields the following description of the
class of π(v)T .
Corollary 6.2 Given v ∈ Ar×n whose matroid is uniform, the class of π(v)T in cohomology is

[π(v)T ] =
∑

λ :λ fits in (n− r − 1)r−1

σλσ(λ∨)′ .

This stands in contrast to a formula of Klyachko for this cohomology class.
Theorem 6.3 (Klyachko) Given v ∈ Ar×n whose matroid is uniform, the class of π(v)T in cohomology
is

[π(v)T ] =
∑

λ`(n−r−1)(r−1)

(
r∑

k=0

(−1)k
(
n

k

)
sλ(1r−k)

)
σλ.
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7 Case study: r = 2

Our results take a particularly simple and explicit form when r = 2. In this section we sumarize our
results in this setting.

As before, we let x denote the r-by-n matrix of variables xi,j .

Theorem 7.1 Suppose that v has a uniform matroid. The prime ideal Iv of GL2vT is generated by the
quartics

pab(v)pcd(v)pac(x)pbd(x)− pac(v)pbd(v)pab(x)pbc(x), 1 ≤ a < b < c < d ≤ n, (5)

where pij(·) denotes the 2-by-2 minor of the submatrix of its argument with columns i and j. The quotient
R/Iv is a Cohen–Macaulay ring.

The following result comes from resolving R/Iv by the Eagon–Northcott complex.

Theorem 7.2 Suppose that v has a uniform matroid. The K-polynomial of R/Iv is

K(R/Iv;u, t) = 1−
∑

λ=(λ1≥λ2)
2≤λ2, λ1+λ2≤n

(−1)|λ|sλ(1, 1)sλ(u−1)e|λ|(t)

Here sλ(u−1) is the Schur polynomial of shape λ in u−1
1 and u−1

2 , and em(t) is the m-th elementary
symmetric polynomial in its arguments.

We next consider the tensor module G(v).

Theorem 7.3 Suppose that v ∈ A2×n has a uniform matroid. The character of G(v) is

s(n,0)(u) +
∑

λ=(λ1≥λ2)
1≤λ2, λ1+λ2=n

sλ(1, 1)sλ(u)

Notice that the coefficient of s(n−1,1)(u) is the n − 1, the number of NBC bases of the uniform matroid
of rank 2 on n elements.

Finally, we consider the cohomology class of π(v)T .

Theorem 7.4 Suppose that v ∈ A2×n has a uniform matroid. The cohomology class of π(v)T is∑
λ`n−3

sλ(1, 1)σλ =
∑

k+`=n−3

σ(k)σ(`).
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