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On an algebraicity theorem of Kontsevich
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Abstract. We give in a particular case a combinatorial proof of a recent algebraicity result of Kontsevich; the proof
uses generalized one-sided and two-sided Dyck words, or equivalently, excursions and bridges. We indicate a non-
commutative version of these notions, which could lead to a full proof. We show also a relation with pointed planar
maps.

Résumé. Nous donnons, dans un cas particulier, une preuve combinatoire d’un résultat récent d’algébricité de Kont-
sevich; la preuve utilise des mots de Dyck généralisés d’un coté et deux cotés ou de façon équivalente, excursions et
ponts. Nous indiquons une version non-commutative de ces notions, qui pourrait conduire à une preuve complète.
Nous montrons aussi une relation avec des cartes planaires pointées.
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1 Introduction: theorem of Kontsevich
Giving conditions for the algebraicity of formal power series is a classical problem in Mathematics.
We may quote for example: Fürstenberg’s theorem on the diagonal of a bivariate rational function;
Grothendieck’s p-curvature conjecture; the theorem of Chomsky and Schützenberger on the generating
function of a context-free language. In this spirit, one has also the following result.

Theorem 1 (Kontsevich [7]) Let a ∈ C[F (X)] be an element of the C-algebra of the free group F (X).
Let an be the constant term of an. Then the series

Pa = exp(
∑
n≥1

an
tn

n
) (1)

is algebraic.

Note that Kontsevich actually defines the series Pa as

P ′a = exp(−
∑
n≥1

an
tn

n
) (2)
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That is to say, Pa = 1/P ′a. Motivation of the definition in Eq. (2) comes evidently (as suggested by
Kontsevich’s notation, ”Tr ”(a) = constant term of a ) from the well-known identity giving the reciprocal
of the characteristic polynomial of a square matrix a: det(1− ta) = exp(

∑
n≥1 tr(a

n)tn/n).
The proof of Kontsevich uses a theorem of Chomsky-Schützenberger (to prove that Fa =

∑
n≥1 ant

n

is algebraic, see also [8, 9, 5]), and a result of Chudnovsky-Chudnovsky which is a special case of a yet
unsolved, 40 years old, conjecture of Grothendieck.

For the special case of the free group on one generator, Kontsevich states that the theorem follows
easily from the residue formula. Note that it is also an easy consequence of theorem 1 of [1]. Both of
these methods are analytic.

The first aim of this paper is to give a combinatorial proof of this special case. This is done quickly in
Sections 2 and 3 by using a bijection between pointed bridges (that is, two-sided Dyck words where some
minimum is pointed) and pointed excursions (that is, restricted Dyck words where some step is pointed);
see Figure 1.

In Section 4, we show that one may generalize the construction of bridges and excursions as follows:
one takes some free group with a total group ordering; then one defines bridges as the set of words in the
generators and their inverses whose product in the free group is 1, which is a well-known unambiguous
algebraic (or context-free) language, see [2]; then we define another language, which seems not to have
been considered previously: the set of bridges such that each prefix, when evaluated in the free group,
is positive (that is, > the neutral element); those words are the generalized excursions. The generalized
bijection (see Lemma 2) then shows that if an is the number of bridges of length n, then the generating se-
ries of excursions is the right-hand side of Eq.(1). Unfortunately, we are unable to prove that the language
of generalized excursions is an algebraic language; actually, according to an unpublished manuscript of
Mireille Bousquet-Melou and Gilles Schaeffer (i), this language is not algebraic, since its generating series
is not N-algebraic, at least for the free group on two generators (and likely for more generators): indeed,
as shown in Section 5, the series in this case is the generating series of pointed planar maps (i.e. and edge
is pointed), which is not N algebraic (loc. cit.).

However, the construction shows that the generating series of generalized excursions on the free group
does not depend on the chosen group ordering, a result which seems not immediately evident, and that
it is algebraic; of course, for the latter result, we use Kontsevich’s theorem, which is just the contrary of
our initial motivation. It remains to find an argument to prove directly its algebraicity, which would give
another proof of Kontsevich’s theorem.

Another open question is to find a natural bijection between pointed planar maps with n edges and
generalized excursions of length 2n on the free group with 2 generators. Equivalently, to prove bijectively
that the logarithmic derivative of the generating series (with the variable squared) of pointed planar maps,
multiplied by the variable, is equal to the generating series of the bridges in the free group with two
generators (two-sided Dyck words on two letters and their inverses); see Eq.(4). These bijections surely
exist, since the corresponding generating series are equal, see Section 5 on pointed planar maps.

Acknowledgments The authors gratefully thank Guillaume Chapuy for indicating to them Proposition
1, which is the combinatorial key to proving that the logarithmic derivative (multiplied by the variable) of
the enumerating series of excursions is the enumerating series of bridges.

(i) Singularities of R+-algebraic series, 2006
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2 Bridges and excursions
A finite sequence of integers, m = (m1, . . . ,mn), is viewed as a path in the discrete plane Z × Z
considering the sequence of points

((0, 0), (1,m1), (2,m1 +m2), . . . , (n,

n∑
i=1

mi)).

The values mi are then called the steps of the path m and n is its length. The height of a path is the sum
of its steps and the height of the empty path is defined to be 0. Also, given two paths, m,m′ define their
concatenation in the obvious way, by concatenating them as words.

A path is said to be a bridge if its height is 0. A minimum of a bridge is one of its proper prefixes of
minimal height. A bridge of length n has then at most n minima as the bridge itself is never considered a
minimum. The set of all bridges of length n with k minimum is denoted by Bn,k and the set of all bridges
of length n simply Bn. A pointed bridge is a bridge with one distinguished minima. Note that there are
k|Bn,k| pointed bridges of length n with k minimum.

A bridge is called an excursion if the heigth of any of its minima is non-negative. The set of excursions
of length n with k minima is written En,k. A pointed excursion is an excursion with a distinguised proper
prefix. Notice that there are n|En,k| pointed excursions of length n and k minima.

The following result seems to be well-known.

Proposition 1 Let n, k ∈ N be two integers. There is a bijection between pointed bridges and pointed
excursions of length n with k minima.

Proof: See Figure 1 for an example of the bijection. 2

Fig. 1: Bijection between a pointed excursion (on top) and a pointed bridge.
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3 Power series
Let {xi | i ∈ Z} be a set of commuting variables. The weight of a path m = (m1, . . . ,mn) is the
monomial w(m) = xm1

· · ·xmn
. For integers n, k ∈ N, define the following elements in C[xi | i ∈ Z]:

bn,k =
∑

b∈Bn,k

w(b), bn =
∑
k

bn,k

en,k =
∑

e∈En,k

w(e), en =
∑
k

en,k.

The following identity follows easily by noticing that the bijection of Proposition 1 preserves weights.

Corollary 1 Let n, k ∈ N be two integers. Then,

nen,k = kbn,k.

2

An excursion is said to be simple if it has exactly one minimum. The set of simple excursions of length
n noted Sn is then equal to En,1. Notice that the set of excursions forms a monoid (for concatenation)
which is free over the set of simple excursions. The length of an excursion in this monoid is then its
number of minima.

Define the formal power series

S(t) =
∑
n≥0

snt
n, E(t) =

∑
n≥0

ent
n ∈ C[xi | i ∈ Z][[t]]

where sn =
∑

s∈Sn w(s). For a fixed number of minima, k ∈ N, we have the following identity:∑
n≥0

en,kt
n = S(t)k, (3)

it follows that ∑
n

∑
k

en,kt
n =

∑
k≥0

S(t)k =
1

1− S(t)
.

The following identity is pivotal to proving the main theorem:

Lemma 1
t(E(t))′

E(t)
=
∑
n≥1

bnt
n

Proof: From corollary 1, it follows that∑
k≥1

1

k

∑
n≥1

en,kt
n =

∑
n≥1

bn
tn

n
.

Using (3), we get ∑
k≥1

S(t)k

k
=
∑
n≥1

bn
tn

n
.
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And then,

t
d

dt
(
∑
k≥1

S(t)k

k
) = t

d

dt
(
∑
n≥1

bn
tn

n
) =

∑
n≥1

bnt
n.

Moreover, the equality

t
d

dt
(
∑
k≥1

S(t)k

k
) =

t(E(t))′

E(t)

is easily checked. 2

Proof: (Kontsevich’s theorem n = 1)
Let a ∈ C[x, x−1] be a Laurent polynomial and let an be the constant term of an. Consider the series

Pa = exp(
∑
n≥1

an
tn

n
) =

∑
n≥0

pnt
n, Qa =

∑
n≥1

ant
n.

It is well known that the series Pa is uniquely determined by the the equation

t
P ′a
Pa

= Qa.

In particular, if Qa =
∑

n≥1 bnt
n, then Pa = E(t). Moreover, the set of all excursions forms a language

wich is algebraic (context-free) and deterministic; indeed, it is recognised by a deterministic 1-counter
stack automaton. Hence it is unambiguous and therefore, by a theorem of Chomsky and Schützen-
berger [3], the series E(t) is algebraic (see also [8] and [9]).

Now, it can be seen that the constant term of an is the polynomial bn with the coefficient of xi in a
substituted for xi. We then have that Pa = E(t), hence it is algebraic. 2

4 The case a = x1 + · · ·+ xk + x−11 + · · ·+ x−1k
Let X = {x1, . . . , xn} be an alphabet and let X = {x1, . . . , xn} be disjoint from X . Define a morphism
of monoids from the free monoid (X∪X)∗ to the free group F (X), π : (X∪X)∗ → F (X), by π(xi) = xi
and π(xi) = x−1i . A word w ∈ (X∪X)∗ is called a (generalized) bridge if π(w) = 1. The set of bridges,
noted B, is then equal to π−1(1).

Let a = x1 + · · · + xk + x−11 + · · · + x−1k ∈ C[F (X)]. As before, write an for the constant term of
an. As in the previous case, it can be seen that an is the number of bridges of length n.

Let ≤ be a total order on the free group F (X) compatible with its product. That is, g1 ≤ g2 implies
hg1 ≤ hg2 and g1h ≤ g2h for every h, g1, g2 ∈ F (X). It is known, although not obvious, that such
orders exist. The most standard one is obtained by embedding the free group into the group of invertible
elements of the ring of noncommutative power series (Magnus embedding x 7→ 1+x), and to give a total
ring order to the latter; see for example [4, p.76].

By analogy with the previous case, we say that the heigth of a word w ∈ (X ∪X)∗ is π(w) ∈ F (X).
We can then compare words by their heights. We say that the height of a word is positive if it is greater
or equal to 1 ∈ F (X). Note that in the case X = {x}, the free group on one generator is isomorphic to
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(Z,+) and we can take the natural ordering of the integers. In this case, the height function is just the one
defined in the previous section.

With this order, we can now say that a proper prefix u of a bridge w ∈ B is a minimum of w if u has
minimal height among the proper prefixes of w. In other words, π(u) ≤ π(v) for every proper prefix v
of w. A bridge w ∈ (X ∪ X)∗ is then called an (generalized) excursion if every one of it prefixes has
positive height. The set of excursions is defined as

E = {w ∈ B | π(u) ≥ 1, w = uv}.

A pointed bridge is a triple (w, u, v), where w = uv is a bridge and u is a minimum of w. Similarly, a
pointed excursion is a triple (w, u, v), where w = uv is an excursion and u is any proper prefix of w. We
write en,k (resp. bn,k) for the number of pointed excursions (resp. bridges) of length n with k minima.
The preceding bijection between pointed bridges and pointed excursion holds in this more general context.

Lemma 2 The function

f : E• → B•

(uv, u, v) 7→ (vu, v, u)

is a bijection between pointed excursions and pointed bridges.

Proof: Let (uv, u, v) ∈ E• be a pointed excursion. We first have to show that (vu, v, u) is a pointed
bridge. It is clear that π(vu) = 1 since π(uv) = 1 and π(vu) = π(u)−1π(uv)π(u) = 1. So vu is a
bridge. Now, let v1 be a prefix of v. So vu = v1v2u. Then, because uv is an excursion,

π(uv1) ≥ 1 = π(uv)

⇐⇒ π(1) ≥ π(v2)
⇐⇒ π(v1) ≥ π(v1v2) = π(v).

Similarly, if u1 is a prefix of u, π(u1) ≥ π(v) so v is of minimal height among prefixes of vu and
(vu, v, u) is a pointed bridge. Now, the map is clearly injective and it is also surjective since for a pointed
bridge (uv, u, v), (vu, v, u) is clearly a pointed excursion. This completes the proof. 2 As previously,

this bijection gives us the equality nen,k = kbn,k. If we let

E(t) =
∑

ent
n, B(t) =

∑
bnt

n,

by the same proof as for lemma 1, we get the relation

t(E(t))′

E(t)
=
∑
n≥1

bnt
n.

Which says that the series Pa for a = x1 + · · · + xk + x−11 + · · · + x−1k is equal to the series E(t) of
generalized excursions.

Unfortunately, we were unable to prove that the language of generalized excursions is an algebraic
language. So the algebraicity of the series Pa does not follow from this argument.
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5 Planar maps
The second example of Kontsevich, for n = 2, gives an interesting connection with planar maps. Indeed,
for a = x1 + x2 + x−11 + x−12 , the series Pa is by [7] equal to

Pa =
2f+1

3(
f+1
2

)2 ,
where f = f(t) =

√
1− 12t2. The first few terms of this series are

1 + 2t2 + 9t4 + 54t6 + 378t8 + 2916t10 +O(t12)

A quick look at Sloane’s Online Encyclopedia of Integer Sequences suggests that the coefficient of t2n is
the number of pointed planar maps with n edges.

This is easily proved by comparing the generating function of pointed planar maps counted by number
of edges and the series Pa. Indeed, the generating function for pointed planar maps is (see [6] chapter 7
section 8.2)

g(z) =
−1
54z2

(1− 18z − (1− 12z)3/2).

And a simple calculation shows that the series g(t2) is equal to Pa.
This raises the question of finding a bijection between pointed planar maps with n edges and generalized

excursions on two letters as defined in the previous section.
Another question is to prove combinatorialy the equation

t
d

dt
g(t2) = Fa(t) (4)

where Fa(t) is the generating function of two-sided Dyck language on two letters (these are the general-
ized bridges in the case n = 2).
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