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Constructing neighborly polytopes and
oriented matroids

Arnau Padrol †

Universitat Politècnica de Catalunya, Barcelona, Spain.

Abstract. A d-polytope P is neighborly if every subset of b d
2
c vertices is a face of P . In 1982, Shemer introduced

a sewing construction that allows to add a vertex to a neighborly polytope in such a way as to obtain a new neigh-
borly polytope. With this, he constructed superexponentially many different neighborly polytopes. The concept
of neighborliness extends naturally to oriented matroids. Duals of neighborly oriented matroids also have a nice
characterization: balanced oriented matroids. In this paper, we generalize Shemer’s sewing construction to oriented
matroids, providing a simpler proof. Moreover we provide a new technique that allows to construct balanced oriented
matroids. In the dual setting, it constructs a neighborly oriented matroid whose contraction at a particular vertex is
a prescribed neighborly oriented matroid. We compare the families of polytopes that can be constructed with both
methods, and show that the new construction allows to construct many new polytopes.

Résumé. Un d-polytope P est neighborly si tout sous-ensemble de b d
2
c sommets forme une face de P . En 1982, She-

mer a introduit une construction de couture qui permet de rajouter un sommet à un polytope neighborly et d’obtenir
un nouveau polytope neighborly. Cette construction lui permet de construire un nombre super-exponentiel de poly-
topes neighborly distincts. Le concept de neighborliness s’étend naturellement aux matroı̈des orientés. Les duaux de
matroı̈des orientés neighborly ont de plus une belle caractérisation: ce sont les matroı̈des orientés équilibrés. Dans
cet article, nous généralizons la construction de couture de Shemer aux matroı̈des orientés, ce qui en fournit une
démonstration plus simple. Par ailleurs, nous proposons une nouvelle technique qui permet de construire matroı̈des
orientés équilibrés. Dans le cadre dual, on obtient un matroı̈de neighborly dont la contraction à un sommet distingué
est un matroı̈de neighborly prescrit. Nous comparons les familles de polytopes qui peuvent être construites avec ces
deux méthodes, et montrons que la nouvelle construction permet de construire plusieurs nouveaux polytopes.

Keywords: polytope, oriented matroid, neighborly, Gale dual, sewing construction.

1 Introduction
We say that a polytope is k-neighborly if every subset of vertices of size at most k is the set of vertices of
one of its faces. It is easy to see that if a d-polytope is k-neighborly for any k >

⌊
d
2

⌋
, then it must be the

d-dimensional simplex ∆d. This is why we call a d-polytope neighborly if it is
⌊
d
2

⌋
-neighborly.

Neighborly polytopes are one of the most interesting families of polytopes. One of the main reasons
for this is the Upper Bound Theorem by McMullen (1970): The number of i-dimensional faces of a
d-polytope P with n vertices is maximal for neighborly polytopes, for all i.
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The convex hull of any n points on the moment curve in Rd, {(t, t2, . . . , td) : t ∈ R}, determines
a neighborly polytope: the cyclic polytope c(n, d). The first non-cyclic neighborly polytope was found
by Grünbaum (2003). And the first infinite family of neighborly polytopes was found by Barnette (1981),
using the facet splitting technique.

Strongly related to this technique, there is the sewing construction introduced by Shemer (1982). Given
a neighborly d-polytope with n vertices and a suitable flag of faces, one can “sew” a new vertex onto it
to get a new neighborly d-polytope with n + 1 vertices. With this construction, Shemer proved that the
number of (combinatorial types of) neighborly d-polytopes with n vertices is greater than ∼ 2cdn logn,
where cd → 1

2 when d→∞.

This is a quite surprising result when it is combined with the upper bound of (n/d)
d2n(1+o(1)) for the

number of (combinatorial types of) vertex-labeled d-polytopes with n vertices, when n
d →∞. This bound

was found by Alon (1986) slightly improving a previous one by Goodman and Pollack (1986).
Recently, Bisztriczky (2000/01) extended Shemer’s technique to odd dimension, while Lee and Menzel

(2010) provided a generalization of the sewing construction to non-simplicial polytopes. Trelford and
Vigh (2011) studied how to compute the face lattice of a sewn polytope.

Oriented matroids are an abstract model for combinatorial geometry. In this sense, oriented matroids
can be considered as a generalization of point configurations such as the vertex set of a convex polytope.
The concept of neighborly polytope extends naturally to neighborly oriented matroids, see Cordovil and
Duchet (2000) or Sturmfels (1988).

The structure of this paper is the following. The first part is devoted to some basic definitions and results
on oriented matroids. It is just a reformulation of known results, most of them from Björner et al. (1993),
in terms that make subsequent proofs easier to follow. In Section 3 we generalize Shemer’s construction
to oriented matroids. This allows for a simpler proof for the Sewing Theorem

Moreover, we propose an alternative construction for neighborly matroids in Section 4. Given a neigh-
borly matroid of rank d with n elements, we obtain a new neighborly matroid of rank d + 1 with n + 1
vertices. In a sense that we precise in Section 5, this construction is a generalization of Shemer’s.

In a full version of this paper, Padrol (2012), this new construction is used to prove that, nbl(n, d), the
number of vertex-labeled neighborly polytopes with n = r+d+ 1 vertices in even dimension d is greater
than

nbl(r + d+ 1, d) ≥ (r + d)(
r
2+

d
2 )

2

r(
r
2 )

2

d(
d
2 )

2

e3
r
2

d
2

.

When n > 2d, this bound is greater than
(
(n− 1)/e3/2

)d(n−1)/2
. This means the bound does not only im-

prove Shemer’s bound on the number of neighborly polytopes, but it is even greater than ((n− d)/d)
nd/4,

the current best lower bound on the number of all polytopes (valid only if n ≥ 2d), found by Alon (1986).

2 Balanced and Neighborly Oriented Matroids
2.1 Preliminaries
We assume that the reader has some familiarity with the basics of oriented matroid theory; we refer
to Finschi (2001) for a nice introduction and to Björner et al. (1993) for a comprehensive reference. We
only present some results that we will directly use in our proofs.
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As for notation, M will be an oriented matroid of rank d on a ground set E, with circuits C(M),
cocircuits C∗(M), vectors V(M) and covectors V∗(M). Its dualM∗ has rank r = n− d.M is uniform
if the underlying matroidM is uniform, that is, every subset of size d is a basis.

We view every vector (resp. covector) X indistinctly as a signed subset of E, X = (X+, X−, X0), or
as a function from E to {+,−, 0}n. Hence, we will say X(e) = + (or even X(e) > 0) meaning e ∈ X+.
X denotes the support X+ ∪X− of X .

We say that two oriented matroidsM1 andM2 on respective ground sets E1 and E2 are isomorphic,
M1 ' M2, when there is a bijection between E1 and E2 that sends circuits ofM1 to circuits ofM2

(equivalently vectors, cocircuits or covectors).
A matroidM is acyclic if it contains (+,+, . . . ,+) as a covector. Its facets are the complements of the

supports of its positive cocircuits, and its faces the complements of its positive covectors. Faces of rank 1
are called vertices ofM. In particular, every d-polytope is an acyclic matroid of rank (d+ 1).

Similarly, a matroid is totally cyclic if it contains (+,+, . . . ,+) as a vector. We use the notationDr for
the only totally cyclic oriented matroid of rank r with r + 1 elements.

Two elements p, q ∈ E are covariant inM if they have the same sign in all circuits containing them;
equivalently, if they have opposite signs in the cocircuits containing them. They are contravariant if they
are covariant in the dual. We will say that p and q are (+1)-inseparable when they are covariant and that
they are (−1)-inseparable when they are contravariant.

We will need some constructions to deal with an oriented matroidM, in particular the deletionM\ e
and the contractionM/e of an element e. They are defined by their covectors: if e is the last entry of E
then

V∗(M\ e) =
{
V ∈ {+,−, 0}n−1

∣∣ (V, σ) ∈ V∗(M) for some σ ∈ {+,−, 0}
}
,

V∗(M/e) =
{
V ∈ {+,−, 0}n−1

∣∣ (V, 0) ∈ V∗(M)
}
.

Deletion and contraction are dual operations — (M\ e)? = (M?/e) — that commute — (M\ p) /q =
(M/q) \ p — and naturally extend to subsets S ⊆ E by iteratively deleting (resp. contracting) every
element in S. An important observation is thatM\ e andM/e determineM up to the reorientation of e:

Theorem 2.1 (Richter-Gebert and Ziegler (1994, Theorem 4.1)) LetM′ andM′′ be two oriented ma-
troids with n−1 elements, of respective ranks d and d−1, such that V∗(M′′) ⊆ V∗(M′). Then there is an
oriented matroidM with n elements with an special element p that fulfillsM\p =M′ andM/p =M′′.
The oriented matroidM has rank d and is unique up to reorientation of p.

2.2 Single Element Extensions
LetM be an oriented matroid on a set E. A single element extension ofM is an oriented matroid M̃ on
a ground set Ẽ = E ∪ p for some p /∈ E, such that every circuit ofM is a circuit in M̃. Equivalently,
M̃ is a single element extension ofM ifM is a restriction of M̃ by deleting one element. We will only
consider extensions that do not increase the rank, i.e., rank (M̃) = rank (M).

Let M̃ be a single element extension ofM, on respective ground sets Ẽ = E ∪ p and E. Then, for
every cocircuit C = (C+, C−) ofM, there is a unique way to extend C to a cocircuit of M̃: exactly one
of (C+ ∪ p, C−), (C+, C− ∪ p) or (C+, C−) is a cocircuit of M̃. Hence, there is a unique function σ
that assigns to each cocircuit C ofM the value of C(p) ∈ {0,+,−} in M̃. We call such a function the
signature of the extension.
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Not every map from C∗(M) to {0,+,−} corresponds to the signature of an extension. However, every
valid signature uniquely determines the oriented matroid M ∪ p. In (Björner et al., 1993, Chapter 7)
(originally from Las Vergnas (1978)) one can consult how to decide which signatures are valid, and how
to determine all the cocircuits of M̃ given the signature of the extension.

We will focus on one particular family of single element extensions called lexicographic extensions.

Definition 2.2 LetM be a rank r oriented matroid on a ground set E. Let k ≤ r, let (a1, a2, . . . , ak) be
an ordered subset of E and let (s1, s2, . . . , sk) ∈ {+,−}k be a sign vector. The lexicographic extension
M[p] of M by p = [as11 , a

s2
2 , . . . , a

sk
k ] is the oriented matroid on the ground set E ∪ {p} which is the

single element extension with cocircuit signature

σ(C) =

{
siC(ai) if i is minimal with C(ai) 6= 0,
0 if C(ai) = 0 for i = 1, . . . , k.

We will also useM[as11 , . . . , a
sk
k ] to denote the lexicographic extensionM[p] ofM by p = [as11 , . . . , a

sk
k ].

Proposition 2.3 IfM is realizable, andM[p] is a lexicographic extension ofM, thenM[p] is realizable.

Proof: Let the vector configuration V ⊂ Rr be a realization ofM. If the signature of the lexicographic
extension is p = [vs11 , v

s2
2 , . . . , v

sk
k ], let v = s1v1 + εs2v2 + ε2s3v3 + · · · + εk−1skvk, for ε > 0 small

enough. Then V ∪ v realizesM[p]. 2

IfM[p] is a lexicographic extension by p = [as11 , . . . ], then p and a1 are (−s1)-inseparable.
Lexicographic extensions on uniform matroids behave well with respect to contractions. Proposition 2.4

can be seen as the restriction of (Björner et al., 1993, Proposition 7.1.2) to lexicographic extensions, and
will be a very useful tool. We omit the proof, which proceeds via an easy reduction to matroids of rank 2

Proposition 2.4 LetM be a uniform oriented matroid of rank d on a ground set E, and M̃ = M[p] a
lexicographic extension by p = [as11 , a

s2
2 , . . . , a

sd
d ]. Then

M̃/p ' (M/a1)[a−s1s22 , . . . , a−s1sdd ], (1)

M̃/ai = (M/ai)[a
s1
1 , . . . , a

si−1

i−1 , a
si+1

i+1 , . . . , a
sd
d ], (2)

M̃/e = (M/e)[as11 , a
s2
2 , . . . , a

sd−1

d−1 ], (3)

where e ∈ E is any element different from p and any ai, and the isomorphism ϕ in eq. (1) is ϕ(a) = a for
all a ∈ E \ {p, a1} and ϕ(a1) = [a−s1s22 , . . . , a−s1sdd ] is the extending element.

Corollary 2.5 IfM is uniform and p = [as11 , . . . ], then

M/a1 = (M[p] \ p)/a1 = (M[p] \ a1)/p.

2.3 Balanced and neighborly oriented matroids
The definition of neighborliness can be generalized to oriented matroids, so that neighborly polytopes
correspond to realizable neighborly oriented matroids. In particular, every neighborly matroid is acyclic
and all of its elements are vertices.
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Definition 2.6 LetM be an oriented matroid of rank d on a ground set E. We say thatM is neighborly
if every subset R ⊂ E of size at most

⌊
d−1
2

⌋
is a face ofM. That is, there must exist a covector C ofM

with C+ = E \R and C− = ∅.

Another important concept for this paper is that of balanced matroid.

Definition 2.7 An oriented matroid of rank dM is balanced if every cocircuit C ofM is halving, i.e.,⌊
n− d+ 1

2

⌋
≤ |C+| ≤

⌈
n− d+ 1

2

⌉
.

A key result is that neighborliness and balancedness are dual concepts:

Proposition 2.8 (Sturmfels (1988, Proposition 3.2)) An oriented matroidM is neighborly if and only if
its dual matroidM∗ is balanced.

3 The sewing construction
We next explain the sewing construction, introduced by Shemer (1982), that allows to construct an infinite
class of neighborly polytopes. Even if Shemer described the sewing construction in terms of Grünbaum’s
beneath-beyond technique, it is indeed a lexicographic extension, and we will explain it in these terms.
Matroids in this section will be denoted by P , to recall that all the following results translate directly to
polytopes.

The sewing construction starts with a neighborly matroid P of rank d and n elements and gives a
neighborly matroid P̃ of rank d and n+ 1 elements, provided that P has a universal flag.

Definition 3.1 Let P be a uniform acyclic oriented matroid on E of rank d, and let m =
⌊
d−1
2

⌋
.

(i) F ⊆ E is a face of P if there is a covector C of P with C+ = E \ F and C− = ∅.

(ii) A face F of P is a universal face if the contraction P/F is a neighborly oriented matroid.

(iii) A flag of P is a strictly increasing sequence of faces T1 ⊂ T2 ⊂ · · · ⊂ Tk.

(iv) A flag T of P is a universal flag if T = {Tj}mj=1 where each Tj is a universal face with 2j vertices.

The first example of neighborly polytopes with universal flags are cyclic polytopes (see (Shemer, 1982,
Theorem 3.4)).

Example 3.2 Let c(n, 2m) be a cyclic polytope of even dimension 2m, with vertices s1, . . . , sn labeled
in cyclic order. Then {si, si+1}, 1 ≤ i < n and {s1, sn} are universal edges of c(n, 2m). Moreover,
c(n, 2m)/{si, si+1} ' c(n− 2, 2m− 2) with the same cyclic order. In particular this gives a large
family of universal flags of c(n, 2m) formed by faces that are the union of a universal edge of c(n, 2m)
with a (possibly empty) universal face of c(n− 2, 2m− 2).

Definition 3.3 (Sewing onto a flag) Let T = {Tj}kj=1 be a flag of an acyclic matroid P . We extend it
with Tk+1 = P and define Ui = Ti \ Ti−1. We say that p is sewn onto P through T , if P[p] is the
lexicographic extension

P[T ] = P[T+
1 , U

−
2 , U

+
3 , . . . , U

(−1)k
k+1 ],
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where these sets represent their elements in any order.
That is, P[p] is the lexicographic extension of P by p = [as11 , a

s2
2 , . . . , a

sn
n ] where a1, . . . , an are the

points in Tk+1, sorted such that if ai belongs to a Ts and aj does not then i < j, and where sj = + if the
smallest i such that xj ∈ Ti is odd, and sj = − otherwise.

We use the notation P[T ] to designate the extension P[p] when p is sewn onto P through T .

Lemma 3.4 Let P be a uniform neighborly matroid of rank d with a universal flag T = {Tj}mj=1, where
m =

⌊
d−1
2

⌋
and Tj = {xi, yi}ji=1. Let p be sewn onto P through T . Then

P[T ]/{Ti−1, xi, p} ' P[T ]/{Ti−1, yi, p} ' (P/Ti)[T /Ti].

The first isomorphism sends yi to xi, the second sends xi to the sewn vertex and the remaining are the
natural mappings.

Proof: The proof relies on using Proposition 2.4 twice on the lexicographic extension P[T ], and follows
inductively from P[T ]/{p, x1} ' P[T ]/{p, y1} ' P/T1[T /T1]. 2

The following technical lemma about inseparable elements will be needed.

Lemma 3.5 LetM be a uniform oriented matroid with two α-inseparable elements x and y. Then for
every circuit X ∈ C(M) with X(x) = 0 and X(y) 6= 0, there is a circuit X ′ ∈ C(M) with X ′(x) =
−αX(y), X ′(y) = 0 and X ′(e) = X(e) for all e /∈ {x, y}.

With these tools, we can prove our version of the sewing theorem (Shemer, 1982, Theorem 4.6), ex-
tended to neighborly matroids of any rank.

Theorem 3.6 (The Sewing Theorem) Let P be a uniform neighborly oriented matroid of rank d with a
universal flag T = {Tj}mj=1, where Tj = {xi, yi}ji=1 and m =

⌊
d−1
2

⌋
. Let P̃ = P[T ], with p sewn onto

P through T . Then,

1. P̃ is a uniform neighborly matroid of rank d.

2. Let T̃j = [Tj−1, zj , p], where zj ∈ {xj , yj} and 1 ≤ j ≤ m. Then T̃j is a universal face of P̃ .

Proof: The extension P̃ = P ∪ p is the lexicographic extension P̃ = P
[
x+1 , y

+
1 , x

−
2 , y

−
2 , . . .

]
. We check

that P̃ is neighborly by checking that P̃∗ is balanced, i.e., we check that every circuit X of P̃ is halving:

1. If X(p) = 0, then X is halving, since it is a circuit of P , and P is neighborly.

2. If X(p) 6= 0 and X(x1) = 0, we use that p and x1 are contravariant. By Lemma 3.5, if X ′ ∈ C(P̃)
is the circuit with X ′(x1) = X(p) and support X ′ = X \ p ∪ x1, then |X+| = |X ′+| and
|X−| = |X ′−|. Since X ′(p) = 0, X ′ is halving by the previous point. Hence so is X .

3. If X(p) 6= 0 and X(x1) 6= 0, since p and x1 are contravariant, X(p) = −X(x1). Observe that the
rest of the values of X correspond to a circuit of P̃/{p, x1}. If P̃/{p, x1} is balanced, we are done.

By Lemma 3.4, P̃/{p, x1} ' P/T1[T ′/T1]. Since {x1, y1} was a universal edge, P/T1 is a
neighborly matroid and T ′/T1 is a flag that contains the universal flag T /T1. Then the result
follows by induction on d. Observe for the base case that all acyclic universal matroids of rank 1 or
2 are neighborly.
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Finally, observe that the second claim of the theorem is also a direct consequence of Lemma 3.4. 2

Combining Example 3.2 and Theorem 3.6, we can obtain a large family of neighborly polytopes: We
start with an even-dimensional cyclic polytope and one of its universal flags, sew a new vertex onto it
and obtain a new neighborly polytope (point 1 of Theorem 3.6) with new universal flags (from point 2 of
Theorem 3.6). Now we can keep sewing again. This method generates a family of neighborly polytopes
S, that we call totally sewn polytopes(i).

Moreover, since every subpolytope of a neighborly polytope is a neighborly polytope, any polytope ob-
tained from a polytope in S and then omitting some vertices is also a neighborly polytope. The polytopes
that can be obtained this way via sewing and omitting form a family that we denote O.

4 The Gale sewing construction
We present here a different construction, also based on lexicographic extensions, that allows us to con-
struct neighborly matroids. This construction works in the dual, that is, it extends balanced matroids to
new balanced matroids.

Theorem 4.1 Let M be a balanced oriented matroid of rank r, let M[p] be the lexicographic exten-
sion of M by p = [as11 , a

s2
2 , . . . , a

sr
r ], and let M[p][q] be the lexicographic extension of M[p] by

q = [p−, a−1 , . . . , a
−
r−1]. Then M̃ =M[p][q] is balanced.

Proof: We prove that M̃ is balanced by checking that all its cocircuits C̃ are halving.
If C̃(p) 6= 0 and C̃(q) 6= 0 then, by the definition of lexicographic extension, there is a halving cocircuit

C ofM such that C̃ M = C and C̃(p) = −C̃(q). Hence |C̃+| = |C+|+ 1 and |C̃−| = |C−|+ 1.
The cocircuits C̃ with C̃(p) = 0 correspond to cocircuits of M̃/p, and those with C̃(q) = 0 correspond

to cocircuits of M̃/q. Proposition 2.4 tells us that

M̃/p ' M̃/q 'M/a1[a−s1s22 , . . . , a−s1s2r ][p−, a−2 , . . . , a
−
r−1],

and the result follows by induction on r (it is trivial for r = 1). 2

This provides the following construction to construct balanced matroids (and hence, by duality, to
construct neighborly matroids). Let M0 = Dr be the oriented matroid associated to the totally cyclic
vector configuration of rank r of minimal cardinality, which is balanced. And let

xk = [esk1

k1 , . . . , e
skr

kr ], yk = [x−k , e
−
k1, . . . , e

−
k(r−1)], Mk =Mk−1[xk][yk],

where each eij is a different element ofMi−1. ThenMk is balanced, andM∗k neighborly. SinceM0 is
realizable,M∗k is too, and henceM∗k represents a neighborly polytope.

We call the double extension of Theorem 4.1 Gale sewing, and we denote by G the family of polytopes
whose dual is constructed by repeatedly Gale sewing from some Dr. We will call these polytopes Gale
sewn.

Remark 4.2 Gale sewing can be applied onto any balanced matroid. In particular, it can be used to
construct infinitely many non-realizable neighborly oriented matroids, just by starting from the dual of a
non-realizable neighborly oriented matroid. For example the sphere “M10

425” from Altshuler (1977) is a
non-realizable neighborly oriented matroid (see Bokowski and Garms (1987)).
(i) Shemer’s concept of totally sewn polytopes is slightly different, because we only admit those flags that come from Theorem 3.6.
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Cyclic polytopes are a first example of polytopes in G.

Proposition 4.3 LetM be an oriented matroid dual to a cyclic polytope c(d, n), with elements s1, s2, . . . , sn
labeled according to the cyclic order. ThenM[x] =M[s−n , s

−
n−1, . . . , s

−
d ] is an oriented matroid dual to

c(d+ 1, n+ 1), with x = sn+1.

When Gale sewing, one can interchange the role of a1, p and q as follows.

Lemma 4.4 Let M be a uniform oriented matroid on a ground set E, and consider the lexicographic
extensionsM[p][q],M[p′][q′] andM[p′′][q′′] defined by

p = [as11 , . . . , a
sr
r ], q = [p−, a−1 , . . . , a

−
r−1];

p′ = [a−s11 , . . . , a−srr ], q′ = [p′−, a−1 , . . . , a
−
r−1];

p′′ = [a+1 , a
−s1s2
2 , . . . , a−s1srr ], q′′ = [p′′−, a−1 , . . . , a

−
r−1].

Then,

M[p][q]
ϕ
'M[p′][q′], and M[p][q]

ψ
'M[p′′][q′′],

where ϕ(p) = q′, ϕ(q) = p′ and ϕ(e) = e for e ∈ E. If s1 = +, then ψ(p) = a1, ψ(q) = q′′, ψ(a1) = p′′

and ψ(e) = e for e ∈ E \ {a1}, and if s1 = −, then ψ(p) = q′′, ψ(q) = a1, ψ(a1) = p′′ and ψ(e) = e
for e ∈ E \ {a1}.

The following result follows from Proposition 2.4 and explains the contractions of Gale sewing exten-
sions. From it, it is easy to derive that subpolytopes of Gale sewn polytopes are also Gale sewn:

Lemma 4.5 LetM be a uniform oriented matroid of rank r, and consider the lexicographic extensions

p = [as11 , a
s2
2 , . . . , a

sr
r ], q = [p−, a−1 , . . . , a

−
r−1];

p′ = [a−s1s22 , . . . , a−s1srr ], q′ = [p′−, . . . , a−r−1].

Then (M[p][q]) /q ' (M/a1) [p′][q′].

Proposition 4.6 If P is a neighborly polytope in G, and e an element of P , then P \ e is also in G.

5 Comparing the constructions
In this section we compare the two constructions, which are strongly related. Our goal is to prove that all
neighborly polytopes in O belong to G. From Proposition 4.6 one deduces that to prove that O ⊆ G it
is enough to see that S ⊆ G. As a first step we will prove that if we sew on a neighborly polytope in G
(through a specific universal flag), we obtain a new polytope in G.

Let P be a neighborly matroid in G. That means that its dual matroidM = P∗ is constructed using
Gale sewing as in Section 4. Specifically, M = Mm where M0 = Dr is a minimal totally cyclic
configuration {a0, . . . , ar} of rank r and

Mk =Mk−1[xk][yk],
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with xk and yk being the lexicographic extensions

xk = [esk1

k1 , . . . , e
skr

kr ], yk = [x−k , e
−
k1, . . . , e

−
k(r−1)].

Let Tj =
⋃j−1
i=0{xm−i, ym−i}, that is Tm−k = {xm, ym, . . . , xk+1, yk+1}. And let T = {Ti}mi=1.

Define Pk =M∗k, and observe that Pk = P/Tm−k for k = 0, . . . ,m. By construction, T is a universal
flag of P .

We can apply the Sewing Theorem 3.6 to P and T . Let P̃ be P ∪ p, with p sewn onto P through T .
We define T̃j+1 = Tj ∪ ym−j ∪ p, that is T̃m−k = {xm, ym, . . . , xk+2, yk+2} ∪ {yk+1} ∪ {p}. Then
T̃ = {T̃i}mi=1 is a universal flag of P̃ . We denote P̃k = P̃/T̃m−k and observe that P̃k ' Pk[T /Tm−k]
where the sewn vertex is xk+1, and thus P̃k \ xk+1 ' Pk. To provide shorter proofs, we will sometimes
refer to p as xm+1.

Finally, let M̃ = M̃m be the oriented matroid constructed as follows:

M̃0 = Dr+1 on a ground set {ã1, . . . , ãr+1, x̃1},
ỹk = [x̃+k , (ẽk1)

−sk1 , . . . , (ẽkr)
−skr ]

x̃k+1 = [ỹ−k , (ẽk1)
−
, . . . , (ẽk(r−1))

−
],

M̃k = M̃k−1[ỹk][x̃k+1],

where if eij = x then ẽij means the element labeled as x̃.
Then we claim that M̃ is the dual configuration of P̃ , and hence P̃ is in G.

Fig. 1: Example: M is constructed from {A,B} after Gale sewing C = [B+] and D = [C−]. In its dual P = M∗,
{C,D} is a universal edge. P̃ = P[E] is obtained by sewing E on P through {C,D}. Its dual matroid, M̃ = P̃∗
can be constructed from {A,B,C} and Gale sewing D = [C+, B−] and E = [D−, C−].

Proposition 5.1 With the notations as above, M̃ ' P̃∗ via the isomorphism x 7→ x̃.

Proof: We will prove that M̃k ' P̃∗k , for all k. The proof will use induction on k and assume that
M̃k−1 ' P̃∗k−1. It is straightforward that M̃0 ' P̃∗0 since P0 is 0-dimensional.

We will use Theorem 2.1 twice. Specifically, we will use that ifM\p ' N \p andM/p ' N/p, then
M and N are the same oriented matroid up to the reorientation of p. If additionally there is an element q
such that p and q are covariant (or contravariant) in N andM, thenM' N .

In particular, we will prove that M̃k/x̃k+1 ' P̃∗k/xk+1 and that M̃k \ x̃k+1 ' P̃∗k \ xk+1. Then the
claim M̃ ' P̃∗ will follow directly from the fact that x̃k+1 and ỹk are covariant in M̃k and that xk+1 and
yk are covariant in P̃∗k .
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M̃k/x̃k+1 ' P̃∗k/xk+1

Since P̃∗k/xk+1 ' P∗k =Mk because P̃k \ xk+1 ' Pk, we just need to prove that

M̃k/x̃k+1 'Mk. (4)

By Lemma 4.5, (M̃k/x̃k+1) ' (M̃k−1/x̃k)[x′k][y′k],where x′k = [ẽsk1

k1 , . . . , ẽ
skr

kr ] and y′k = [x′k
−
, ẽ−k1, . . . , ẽ

−
k(r−1)].

Using that M̃0/x̃1 'M0 we get the desired result by induction on k.

M̃k \ x̃k+1 ' P̃∗k \ xk+1

The first step is to prove that (M̃k \ x̃k+1) \ ỹk ' (P̃∗k \ xk+1) \ yk. Indeed, using the induction
hypothesis,

(M̃k \ x̃k+1) \ ỹk = M̃k−1 ' P̃∗k−1 = (P̃k/{yk, xk+1})∗ = (P̃∗k \ xk+1) \ yk.

Now we prove that (M̃k \ x̃k+1)/ỹk ' (P̃∗k \ xk+1)/yk. First, using Corollary 2.5 and (4), we see that

(M̃k \ x̃k+1)/ỹk ' (M̃k/x̃k+1) \ ỹk 'Mk \ yk.

Now, using again Corollary 2.5 and that P̃k \ xk+1 ' Pk, we see that

(P̃∗k \ xk+1)/yk = (P̃k/xk+1 \ yk)∗ ' (P̃k \ xk+1/yk)∗ = (Pk/yk)∗ = Pk∗ \ yk.

Our claim follows sinceMk = P∗k by definition.

Because of Theorem 2.1, so far we have seen that M̃k \ x̃k+1 ' P̃∗k \ xk+1 up to reorientation of
yk. We will conclude the proof by seeing that yk and ỹk have the same orientation in Mk and in M̃k

respectively.
Observe that ỹk is contravariant with x̃k in M̃k by construction. Moreover, yk is contravariant with xk

in (P̃k/xk+1)∗ since they are covariant in the primal: by Proposition 2.4

P̃k/xk+1 '
(
Pk [T ′/Tm−k]︸ ︷︷ ︸

xk+1

)
/xk+1 '

(
Pk/xk

)
[y−k , . . . ]︸ ︷︷ ︸

xk

,

where the last isomorphism sends xk to the sewn vertex, which is (+1)-inseparable from yk. 2

There are two missing details to conclude that S ⊆ G from Proposition 5.1:

i) We have to check that cyclic polytopes are in G and that the universal flags of Example 3.2 are of
the form Tj = ∪j−1i=0 (xm−i, ym−i) for some Gale sewn configuration. Indeed, Proposition 4.3 shows
that cyclic polytopes are in G. And using that the automorphism group of c(2m,n) contains the
dihedral group (see Altshuler and Perles (1980)) together with Lemma 4.4 we can build the flags of
Example 3.2.

ii) We have to check that after sewing, the universal flags arising from Point (2) in Theorem 3.6 are also
of the form Tj = ∪j−1i=0 (xm−i, ym−i) for some Gale sewn configuration. This follows directly from
Lemma 4.4.

Remark 5.2 The fact that S ( G implies that in some sense Gale sewing generalizes ordinary sewing.
However, it is not true that Theorem 3.6 is a consequence of Theorem 4.1, because there are neighborly
matroids that have universal flags but are not in G. Hence one can sew on them but they cannot be treated
with Proposition 5.1.
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6 Concluding remarks
Fix n and d = 2m. We have worked with four families of neighborly d-polytopes with n vertices:

N : All neighborly d-polytopes with n vertices.

G: All Gale sewn d-polytopes with n vertices.

O: All d-polytopes with n vertices obtained by sewing and omitting.

S: All totally sewn d-polytopes with n vertices.

Table 1 contains the exact number of combinatorial types in each of these families for some particular
cases. Exact numbers forN come from Altshuler and Steinberg (1973) and Bokowski and Shemer (1987),
exact numbers for S and O come from Shemer (1982). Numbers for G have been computed with the help
of polymake Gawrilow and Joswig (2000).

Tab. 1: Exact number of combinatorial types

d n S O G N
2 n 1 1 1 1
2d ≤ 2d+ 3 1 1 1 1
4 8 3 3 3 3
4 9 18 18 18 23
6 10 15 28 28 37

In view of Table 1, the relationships that we know between these families are the following:

S ( O ⊆ G ( N

Whether O = G or not is an open question.
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