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Abstract. We introduce a certain class of algebras associated to matroids. We prove the Lefschetz property of the
algebras for some special cases. Our result implies the Sperner property for the Boolean lattice and the vector space
lattice.

Résumé. Nous présentons une classe d’algebres associées aux matroides. Nous démontrons que dans quelques cas
spécifiques, ces algebres verifient la propriété de Lefschetz. Notre résultat implique la propriété de Sperner pour
I’algebre de Boole et pour le poset d’espace vectoriel.
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1 Introduction

The strong Lefschetz property for Artinian Gorenstein algebras is a ring-theoretic interpretation of the
Hard Lefschetz Theorem for compact Kihler manifolds. Stanley developed the ideas of applications of
the Lefschetz property to combinatorial problems. For example, he proved the Sperner property of the
Bruhat ordering on the Weyl groups by the Hard Lefschetz Theorem for the flag varieties in his paper
[15]. One of the main topics of this article is an application of the Lefschetz property for a certain kind
of Gorenstein algebras to the Sperner property of the ranked posets associated to some matroids. Our
result contains the Boolean lattice 2[”], i.e., the set of the subsets of { 1, ..., n } ordered by the inclusion,
and the vector space lattice V (g, n), the set of the linear subspaces of the vector space [y, ordered by the
inclusion.

In [14]], Sperner determined maximum-sized antichains of the Boolean lattice 2l His work is the
origin of the theory of the Sperner property. It is known that the Sperner property of the Boolean lattice is
proved also from the strong Lefschetz property of the algebra k[x1, ..., z,]/(22,...,22). For example,
we can obtain the strong Lefschetz property of the algebra by applying the Hard Lefschetz Theorem to the
product (P)* of projective lines. In [7]], Hara and Watanabe gave a purely algebraic proof of the strong
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Lefschetz property the algebra k[z1, ..., x,]/(2%,...,22) based on recursive formulas for determinants
of some matrices. We will give another proof.

The Sperner property of the vector space lattice V' (¢, n) consisting of the linear subspaces of the vector
space IF:; can be deduced from the result on the rank of its incidence matrices due to Kantor [9]. We
will give another proof of the Sperner property of V' (g, n) based on the strong Lefschetz property of a
Gorenstein algebra.

Our construction can be done for general matroids. For a matroid M and its bases B, we introduce a
polynomial ®,; := 3 xp. The Gorenstein algebra Aj; will be defined to be the quotient algebra of
the ring of the differential polynomials by the annihilator of ®,,. We show that the Gorenstein algebra
Ay associated to a modular geometric lattice has the strong Lefschetz property.

The organization of this article is the following: In[2.I] we will recall the definition of the Sperner
property of the ranked posets. In[2.2] we will summarize some basic facts of matroids. We also will
summarize basic facts of Gorenstein algebras in Then we will introduce ideals associated to the
matroids in[3.2] and state some results for genera matroids in[3.3] In[d.1} f.2land[4.3] we will consider the
cases related to the Boolean lattice, the vector space lattice, and the incidence lattice of a finite projective
planes, and show some results for these special case.

This article is a research announcement of the recent results by the authors. Please see [[11], the full
version of this article, for more details.

2 Posets associated to matroids
2.1 Ranked poset and Sperner property

Here we recall the definition of the Sperner property.
We consider a finite poset P with rank decomposition ]_[?lo P;, namely, for each element v € P;, the
length of any saturated chain from a minimal element to v is .

Definition 2.1 A finite ranked poset P = [],., P; is said to have the Sperner property if the maximal

cardinality of antichains of P is equal to max;(#F;).
For a given ranked poset P = [ [, P;, let V; be the vector space over some field spanned by the elements
of P;. The Sperner property for P can be shown by constructing a sequence (fo, f1, fo, - . .) of linear maps

fi + Vi = Vi1 satisfying a certain condition. Let AW = (aSﬁ})ue P, weP;,, be the matrix representing f;,
i.e., the matrix such that

filu) = Z v, ueP,.

vEP; {1

If every matrix A gatisfies the condition a§}3 # 0 = wu < v, and is of full rank, then P has the
Sperner property. (See e.g. [8]] for details.)

Remark 2.2 Let [n] := {1,2,...,n} be an n-element set. The set P = 2" of the subsets of [n] has
a natural lattice structure induced by the operations U and M. The obtained lattice is called the Boolean
lattice. In [[14], Sperner showed that

{ P2} if n is even

{ antichains of the maximum size } = .
{ P(nfl)/27 P(n+1)/2 } if n is odd.
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Hence the Boolean lattice has the Sperner property.

Remark 2.3 The Sperner property of the vector space lattice V' (g,n) can be deduced from the non-
degeneracy of its incidence matrices due to Kantor [9].

Remark 2.4 In [1], it was proved the Sperner property of the finite lattice such that the number of ele-
ments covered by each element v depend only on the rank of v, and the number of elements covering each
element v depend only on the rank of v. Many lattices satisfy the assumption, e.g., the Boolean lattice
2["], the vector space lattice V' (¢, n), and the incidence lattice of a finite projective planes.

2.2 Posets associated to matroids

Definition 2.5 A pair (£, F) of a finite set £ and F C 2F is called a matroid if it satisfies the following
axioms:

e DcF.

e [fXecFandY C X,thenY € F.

e If X,Y € Fand #X > #Y, then there exists an element z € X \ Y such thatY U {z} € F.
Here, F is called the system of independent sets.
Definition 2.6 Let M/ = (E, F) be a matroid.

e A maximal element B € F is called a basis of M. The set of bases of M is denoted by B =
B(M) C F.

e Forasubset S C F, define 7(S) := max{ #F | F € F,F C S }. The map r : 2F — Z is called
the rank function of M.

e For a subset S C F, define the closure o(S) of Sby o(S) :={y € E|r(SU{y}) =r(5) }. We
define an equivalence relation ~ on 2E by S ~ T <= o(S) = o(T).

Example 2.7 Let E = [n] and F = 2E. Then (E, F) is a matroid. We denote the matroid by M ([n]). In
this case, every subset S C E is a independent set. Hence r(S) = #S and o(S) = S.

Example 2.8 The projective space P := P"~1(F,) over a finite field F,, has the structure of a matroid by
the usual linear independence. More precisely, if we define the system of independence set F by

F :={ F €2"| Fislinearly independent over F, } ,

then (P, ) is a matroid. We denote it by M (¢, n). In this case, the closure o(S) of a subset S € P
coincides with the linear subspace (S) of P spanned by S.

Lemma 2.9 Let S, T € F. Then we have

S~T < {(UeF|UNS=0UUSEeF}={UecF|UNT=0,UuT e F}.
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Let M = (E,F) be a matroid, and F; C F fori = 0,1,...,r(E), the set of independent sets of
cardinality 4, i.e.,

Fi={FeF|#F=i}.

Let Q := 2/ ~, and F; := F;/ ~. We can identify ) with the set of flats S C E, i.e., subsets S of £
such that S = ¢(.S). Under this identification, we define the subset (1), 1 = 1,...,7(E), of Q by

Q) :={Se2”|5=0(S),r(S)=1}.
The set © = [, (1) ordered by the inclusion C is a ranked poset.

Example 2.10 For the matroid M ([n]) = ([n], 2["!) defined in Example Q) is the Boolean lattice 2[™.
Example 2.11 For the matroid M (¢, n) defined in Example ) is the vector space lattice V' (¢, n).

3 Ideals associated to matroids
3.1 Basic facts of Gorenstein algebras

Definition 3.1 Let A = 695:0 Aq, where Ap # 0, be a graded Artinian algebra. We call an element
L € A; a strong Lefschetz element of A if the multiplication map

XLD_m : Ai — ADfi

is bijective for i = 0, ..., [D/2]. We say that A has the strong Lefschetz property (in the narrow sense) if
there exists a strong Lefschetz element of A.

In the rest of this paper, we consider the Gorenstein algebras that is finite-dimensional over a field & of
characteristic zero.

Definition 3.2 [[13] Chapter 5, 6.5]] Let A = G}dDZO A, be a graded k-algebra that is finite-dimensional
over k. We call A the Poincaré duality algebra if dimy Ap = 1 and the bilinear pairing

AdXAD,d%Apgk

is non-degenerate ford = 0, ...,[D/2].
The following is a well-known fact (see e.g. [4]], [8], [LO]).

Proposition 3.3 A graded Artinian k-algebra A is a Poincaré duality algebra if and only if A is Goren-
stein.

Let P = k[z1,...,z,) and @ = k[X1,..., X,] be polynomial rings over k. We may regard P as
a (Q-module via the identification X; = 9/0x;, i = 1,...,n. For a polynomial F'(x) € P, denote by
Ann F the ideal of ) generated by the differential polynomials annihilating F, i.e.,

AmF :={p(X)eQ|pX)F(z)=0}.

The following is immediate from the theory of the inverse systems (see [2], [3], [S])-
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Proposition 3.4 Let I be an ideal of Q = k[X1,...,X,] and A = Q/I the quotient algebra. Denote by
m the maximal ideal (X1, ..., X,) of Q. Then V1 = m and the k-algebra A is Gorenstein if and only if
there exists a polynomial F € R = k[x1, ..., x,] such that I = Anng F.

Example 3.5 The coinvariant algebra Ryy of the finite Coxeter group W is an example of the Gorenstein
algebra with the strong Lefschetz property. The coinvariant algebra Ry is defined to be a quotient of
the ring of polynomial functions on the reflection representation V' of W by the ideal generated by the
fundamental W-invariants. When W is crystallographic (i.e., Weyl group), the Lefschetz property of
Ry is a consequence of the Hard Lefschetz Theorem for the corresponding flag variety G/B. Stanley
[[LS]] has shown the Sperner property of the strong Bruhat ordering on W from the Lefschetz property of
Ry (except for type Hy). The Lefschetz property of Ryy of type H4 has been confirmed in [12]. Since
Ry is Gorenstein, it has a presentation as in Proposition [3.4] In fact, Ry is isomorphic to the algebra
Sym V*/ Ann F, where F is the product of the positive roots.

Definition 3.6 Let G be a polynomial in [z, ..., 2,]. When a family B, = {al(-d)}i of homogeneous
polynomials of degree d > 0 is given, we call the polynomial

det ((agd)(X) (X)) B ) € klzy,. .., 0]

ij=1

the d-th Hessian of G with respect to B, and denote it by Hessgij G. We denote the d-th Hessian simply
by Hess? G if the choice of B, is clear.

When d =1 and ag.l)(X) = X;,j=1,...,n, the first Hessian Hess'") (i is the usual Hessian:

2
Hess') G = Hess G := det ﬁ .
81‘,'633]‘ ij

Let a graded Gorenstein k-algebra A = @, A, be finite-dimensional over k. Take a polynomial ' € Q
such that A = )/ Anng F. The following gives a criterion for an element L € A; to be a Lefschetz
element.

Proposition 3.7 ([17, Theorem 4]) Fix an arbitrary k-linear basis By of Aq ford = 1,...,[D/2]. An
element L = a1 X1 + - - - + anX,, € Ay is a strong Lefschetz element of A = QQ/ Anng F if and only if

F(ay,...,an) 75Oand(HessgiF)(al,...,an) #0ford=1,...,[D/2]

Corollary 3.8 If one of the Hessians Hessgi F,d=1,...,[D/2), is identically zero, then Q/ Anng F
does not have the strong Lefschetz property.

3.2 Ideals associated to matroids

We introduce ideals of @ associated to matroids. Fix a matroid M = (F,F) and a polynomial ring
Q = k[z.|e € E] in #E variables. We define the subsets Q](S), QJ(\}) and Qj(\i) of k[z.|e € E] by

GO ={a?|ecE}, GV ={as|S¢F}, G ={awa—aa|AAcFA~AY.
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Let Ay = Q](\g) U g}é’ U (]1(\3). We define Jj; to be the ideal of k[z.|e € E] generated by A,s. For an
equivalence class 7 € €2, consider a polynomial f, given by

fT = Z zr,

FeFnr

where zp := [[_ . z.. We also define a polynomial @, € k[z.|e € E] by

q)M = Z rB.

BeB

ecF

For a equivalent class 7 € 2 of B € B, it follows by definition that ®;; = f.

3.3 Some results

We consider the ideals Jys, Anng @y and ()
proof.

-cq Ann f-. We omit their proof. Please see [11] for the

Theorem 3.9 For a matroid M, we have the following:
e The ideal Ann ® s contains Jyy.

o Theideal (..o Ann f; equals Jy.

TEQ
o The subset Ay of Q is a universal Grobner basis of J .
Corollary 3.10 The Hilbert polynomial of Q/Jys is given by

r(E)

Hilb(Q/Jar,t) = Y (#Fi)t".

=0

Example 3.11 Let M be a matroid defined by the following vectors.

U1 | V2 | V3 | V4| Us
1{0]0]1]0
0101 1
0|01 ]0]|1

Then the set B of bases is {{1,2,3},{1,2,5},{1,3,4},{1,3,5},{1,4,5},{2,3,4},{2,4,5},{3,4,5} }.
The ideal Ann @), contains an additional generator other than A ;. In fact, we have

Ann @y = Jay + (213 + 245 — T15 — X34)-
The Hilbert series of @)/ Ann @, is (1,5,5,1) and that of Q/Jys is (1,5,6,1). In particular, Q/Jy; is

not Gorenstein. By direct computation, we obtain Hess @5y = 8(z1 + x4) (x5 + x5)P . This implies
that @/ Ann @, has the Lefschetz property.
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4 Modular geometric lattices

In this section, we consider three examples of lattices, the Boolean lattice, the vector space lattice and the
incidence lattice of a projective plane. As in Example [3.T1] the equality Ann ®,; = Jjs does not hold
for a general matroid. The equation, however, holds in the three examples we discuss here. In[d.1] we
consider the Boolean lattice. It is known that the algebra associated to the Boolean lattice has the strong
Lefschetz property. We give another proof of the strong Lefschetz property for the algebra associated to
the Boolean lattice. In a similar manner to our proof, we can prove the strong Lefschetz property for the
algebras associated to the vector space lattice and the incidence lattice of a projective plane.
4.1 The Boolean lattice
For a matroid M we define polynomials &' M =Y ger, Ta and the matroid M) := (E, Up—o F) for
1t =1,...,n. Note that @5\/[) = &), and that (I>( - ® /). The polynomials <I>§W) and the matroids M (*)
play an 1mportant role. For B € Fyand 0 <4 S l define
Fi(B,i) :={Ae Fi|r(c(A)No(B)) =i}.
Then we have F;(B,l) ={ A€ F,| A~ B}and F, = ]_[lizo}'l(B,i). For A, B € Fy, define
FA(B,i):={A € Fi(B,i) | AUA € Fy }.

For B € F;, consider a polynomial ®(B, i) := . x4 and a differential polynomial P(B,i) :=
poly A€F(B,i) poly
Yo Aer (B.i) 04, Then it follows from straightforward calculation that

P(B,i)d) = Z S #F(Bi)aa

J=0A’€F(B,j)

Now we consider the matroid M ([n]) and B € F;. In this case

ﬂ={Ae2" #AﬂB—z}
#A'NB =1,

FA(B,i)={ A e2M| #AnA =0,
HA =]

For A € Fi(B,j),ie., A € 2[" such that #A = [ and #A N B = j, we can obtain

wres = (MLET) () - () (V)

Hence #F;*(B,i) does not depend on the choice of A € F;(B,j). Let agé) = ("2H) ("), and

K2

consider the matrix (agll)f J)i j—o- Then

P(B,0)d ®(B,1)
. ( ) )l .
zl —5/4,5=0

P(B, 1)) ®(B,0)
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It is easy to show that the matrix is upper-triangular, and that az(.fl)f ;= (”lil;z) Hence if n > 2[, then the
determinant det(agfl)fj)ﬁyjzo =TI\_, (";177) is positive. Since the matrix is invertible, ® 5/ (B, 1) is writ-

ten as a linear combination of P(B, 0)@551[), P(B, 1)<I>§5[l), ..., P(B, l)@g@l). In other words, there exists
a differential polynomial Pp such that ®,,(B,l) = PBd)S\il). Since Fi(B,l) = {Ae€ Fi|A~ DB},
Fi(B,1) and F;(B’,1) are disjoint if B « B’. Hence { ®5;(B,1) } spans #F;-dimensional k-vector
space. Since Ann ®;,¢2y contains J; 21y, we have the following lemma:

Lemma 4.1 Let M = M([n]) and 21 < n. Then { 5F<I>§V2[l) ’ FeF } spans #J,-dimensional k-vector
space.

Take representatives F1, ..., F,,, € F; of Fi. For F, F' € F, define

1, ifo(F)Nno(F') =0,
Op Fr 1= s
0, otherwise.

It follows from direct calculation that

det (97 0P0()) " = det (or,.5,) "

ig= hi=t’

The algebra B := Q/ Ann @g\il) is Gorenstein, and the natural pairings
(,):BP x BGY. = BSY =k,

are non-degenerate for i = 0, ..., l. In the case of M ([n]), it follows from Lemma that the dimension

of the homogeneous space of of Bl(2l) of degree I is #F;. Hence we have the following:

Lemma 4.2 Ifn > 21, then we have det (6Fi,pj):73f=1 £ 0.

Let M = M([n]). Then, for F' € F;, #{F' € F; | FUF' € Fiy; } = (;7), which does not
depend on the choice of F' € F;. Hence, for k > 2, the determinant of the matrix

my

(670" 0ff)

L=l

equals vy det (5 FF; )m]' for some v # 0. Therefore the matrix (8Fi oFi @S\’;)) ! is not identically zero.
7% irj=1
Hence we have the following:

Theorem 4.3 Let M = M ([n]) and k < n. Then we have the following:
e The polynomial ® ;) equals the elementary symmetric function ey (x1, ..., Ty).
o The ideal Ann @y equals Jyy.

e The Gorenstein algebra Q/ Ann @ ;) = Q/ Anney (1, ..., x,) has the strong Lefschetz prop-
erty.
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e The Hilbert series of the algebra QQ/ Ann ® ;) satisfies

Hilb(Q/ Ann ® 00, 8) = > (?>t+ 3 (kil)t

i<k/2 i>k/2

o The poset § has the Sperner property. Or equivalently the Boolean lattice has the Sperner property.

4.2 The vector space lattice

Here we consider the matroid M = M (g, n) defined in Example In a similar manner to the case of
M ([n]), we can prove the strong Lefschetz property for the Gorenstein algebra associated to the matroid
M (g,n). Since the same argument works, we give only the sketch of the proof. See [[11]] for more details.

Similarly to the case of M([n]), az(»f) = #F{(B,1) does not depend on the choice of A € F;(B, ),

J
@)\t

and the matrix (a;; ;); ;— is invertible. Hence we have the following lemma:

Lemma 4.4 Let M = M(q,n) and 21 < n. Then {8F<I>§V21l) ‘ FeF } spans # F,-dimensional k-
vector space.

Moreover # { I’ € F; | F U F' € F;; }1is also independent of the choice of F' € F;. Hence the lemma
implies the following:

Theorem 4.5 Let M = M(q,n) and k < n. Then we have the following:

o The ideal Ann @y equals Jyy.

e The Gorenstein algebra Q/ Ann ® vy has the strong Lefschetz property.

e The Hilbert series of the algebra QQ/ Ann ® ;) satisfies
Hilb(Q/ Ann & = g ol

ilb(Q/ Ann @y, t) = Z ; t —|—}Z ki ',
i<k/2 q i>k/2 q
where m . stands for a q-binomial coefficient.

e The poset Q) has the Sperner property. Or equivalently, the vector space lattice V (q,n) consisting
of the linear subspaces of ¥ has the Sperner property.

Remark 4.6 We can obtain a universal Grobner basis for the ideal Ann ®,;(,,,) by Theorems @] and
In 11, the Grobner fan of the ideal is also discussed. The Grobner fan G(Ann ®s(4,,)) can
be recovered from the tropical hypersurfaces of certain polynomials defined by the bases of the linear
subspaces of P"~1(F,).

4.3 The incidence lattice of a finite projective plane

Here we consider a matroid M = (E, F) such that (E) = 3, #E = #F, = #F,, and #0(S) = N
for all S € Fy. The assumption #FE = #JF; implies Fo = { S C E | #5 = 2 }. Hence, forv,w € E,
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0,0,y ® s = 0 if and only if v = w. Moreover 0,0, P pr|z=1 = N for v # w € E since #0(S5) = N for
all S € F,. It follows that

(0000 ®ar)vwerl,—y = N*P(0u0uea(2))ower = N*F (0,00 Py )vwer-

Theorem [{.3]implies that the determinant of the matrix is not identically zero. Hence we have the follow-
ing:
Theorem 4.7 Let M = (E, F) be a matroid such that v(E) = 3, #E = #F, = #F2, and #0(S) = N
forall S € Fy. Then we have the following:

o The ideal Ann @y equals Jyy;.

e The Gorenstein algebra QQ/ Jyr has the strong Lefschetz property.

o The Hilbert series of the algebra Q/ Ann @y is 1 + (#E)t + (#E)t? + t2.

o The poset () has the Sperner property.

Remark 4.8 Since the matroid M (II) associated to a finite projective plane II satisfies the conditions of
Theorem the incidence lattice of 1I has the Sperner property. The fundamental theorem of projective
geometry shows that a modular geometric lattice decomposes into a direct product of Boolean lattices,
vector space lattices, incidence lattices of finite projective planes, and lattices of rank 2 (see e.g. [[16]). In
[6], Greene has shown that a finite geometric lattice is modular if and only if the number of atoms equals
the number of coatoms. It follows from this characterization a finite geometric lattice that the Gorenstein
algebra @/ Jys has the strong Lefschetz property if and only if the poset €2 associated to the matroid is a
modular geometric lattice. See [11]] for the detail.
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