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Abstract. We introduce a certain class of algebras associated to matroids. We prove the Lefschetz property of the
algebras for some special cases. Our result implies the Sperner property for the Boolean lattice and the vector space
lattice.

Résumé. Nous présentons une classe d’algèbres associées aux matroı̈des. Nous démontrons que dans quelques cas
spécifiques, ces algèbres verifient la propriété de Lefschetz. Notre résultat implique la propriété de Sperner pour
l’algèbre de Boole et pour le poset d’espace vectoriel.
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1 Introduction
The strong Lefschetz property for Artinian Gorenstein algebras is a ring-theoretic interpretation of the
Hard Lefschetz Theorem for compact Kähler manifolds. Stanley developed the ideas of applications of
the Lefschetz property to combinatorial problems. For example, he proved the Sperner property of the
Bruhat ordering on the Weyl groups by the Hard Lefschetz Theorem for the flag varieties in his paper
[15]. One of the main topics of this article is an application of the Lefschetz property for a certain kind
of Gorenstein algebras to the Sperner property of the ranked posets associated to some matroids. Our
result contains the Boolean lattice 2[n], i.e., the set of the subsets of { 1, . . . , n } ordered by the inclusion,
and the vector space lattice V (q, n), the set of the linear subspaces of the vector space Fnq ordered by the
inclusion.

In [14], Sperner determined maximum-sized antichains of the Boolean lattice 2[n]. His work is the
origin of the theory of the Sperner property. It is known that the Sperner property of the Boolean lattice is
proved also from the strong Lefschetz property of the algebra k[x1, . . . , xn]/(x2

1, . . . , x
2
n). For example,

we can obtain the strong Lefschetz property of the algebra by applying the Hard Lefschetz Theorem to the
product (P1)k of projective lines. In [7], Hara and Watanabe gave a purely algebraic proof of the strong
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Lefschetz property the algebra k[x1, . . . , xn]/(x2
1, . . . , x

2
n) based on recursive formulas for determinants

of some matrices. We will give another proof.
The Sperner property of the vector space lattice V (q, n) consisting of the linear subspaces of the vector

space Fnq can be deduced from the result on the rank of its incidence matrices due to Kantor [9]. We
will give another proof of the Sperner property of V (q, n) based on the strong Lefschetz property of a
Gorenstein algebra.

Our construction can be done for general matroids. For a matroid M and its bases B, we introduce a
polynomial ΦM :=

∑
B∈B xB . The Gorenstein algebra AM will be defined to be the quotient algebra of

the ring of the differential polynomials by the annihilator of ΦM . We show that the Gorenstein algebra
AM associated to a modular geometric lattice has the strong Lefschetz property.

The organization of this article is the following: In 2.1, we will recall the definition of the Sperner
property of the ranked posets. In 2.2, we will summarize some basic facts of matroids. We also will
summarize basic facts of Gorenstein algebras in 3.1. Then we will introduce ideals associated to the
matroids in 3.2, and state some results for genera matroids in 3.3. In 4.1, 4.2 and 4.3, we will consider the
cases related to the Boolean lattice, the vector space lattice, and the incidence lattice of a finite projective
planes, and show some results for these special case.

This article is a research announcement of the recent results by the authors. Please see [11], the full
version of this article, for more details.

2 Posets associated to matroids
2.1 Ranked poset and Sperner property
Here we recall the definition of the Sperner property.

We consider a finite poset P with rank decomposition
∐m
i=0 Pi, namely, for each element v ∈ Pi, the

length of any saturated chain from a minimal element to v is i.

Definition 2.1 A finite ranked poset P =
∐
i≥0 Pi is said to have the Sperner property if the maximal

cardinality of antichains of P is equal to maxi(#Pi).

For a given ranked poset P =
∐
i Pi, let Vi be the vector space over some field spanned by the elements

of Pi. The Sperner property for P can be shown by constructing a sequence (f0, f1, f2, . . .) of linear maps
fi : Vi → Vi+1 satisfying a certain condition. Let A(i) = (a

(i)
uv)u∈Pi,v∈Pi+1

be the matrix representing fi,
i.e., the matrix such that

fi(u) =
∑

v∈Pi+1

a(i)
uvv, u ∈ Pi.

If every matrix A(i) satisfies the condition a(i)
uv 6= 0 =⇒ u < v, and is of full rank, then P has the

Sperner property. (See e.g. [8] for details.)

Remark 2.2 Let [n] := {1, 2, . . . , n} be an n-element set. The set P = 2[n] of the subsets of [n] has
a natural lattice structure induced by the operations ∪ and ∩. The obtained lattice is called the Boolean
lattice. In [14], Sperner showed that

{ antichains of the maximum size } =

{{
Pn/2

}
if n is even{

P(n−1)/2, P(n+1)/2

}
if n is odd.
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Hence the Boolean lattice has the Sperner property.

Remark 2.3 The Sperner property of the vector space lattice V (q, n) can be deduced from the non-
degeneracy of its incidence matrices due to Kantor [9].

Remark 2.4 In [1], it was proved the Sperner property of the finite lattice such that the number of ele-
ments covered by each element v depend only on the rank of v, and the number of elements covering each
element v depend only on the rank of v. Many lattices satisfy the assumption, e.g., the Boolean lattice
2[n], the vector space lattice V (q, n), and the incidence lattice of a finite projective planes.

2.2 Posets associated to matroids
Definition 2.5 A pair (E,F) of a finite set E and F ⊂ 2E is called a matroid if it satisfies the following
axioms:

• ∅ ∈ F .

• If X ∈ F and Y ⊂ X , then Y ∈ F .

• If X,Y ∈ F and #X > #Y , then there exists an element x ∈ X \ Y such that Y ∪ {x} ∈ F .

Here, F is called the system of independent sets.

Definition 2.6 Let M = (E,F) be a matroid.

• A maximal element B ∈ F is called a basis of M . The set of bases of M is denoted by B =
B(M) ⊂ F .

• For a subset S ⊂ E, define r(S) := max {#F | F ∈ F , F ⊂ S }. The map r : 2E → Z is called
the rank function of M .

• For a subset S ⊂ E, define the closure σ(S) of S by σ(S) := { y ∈ E | r(S ∪ {y}) = r(S) }. We
define an equivalence relation ∼ on 2E by S ∼ T ⇐⇒ σ(S) = σ(T ).

Example 2.7 Let E = [n] and F = 2E . Then (E,F) is a matroid. We denote the matroid by M([n]). In
this case, every subset S ⊂ E is a independent set. Hence r(S) = #S and σ(S) = S.

Example 2.8 The projective space P := Pn−1(Fq) over a finite field Fq has the structure of a matroid by
the usual linear independence. More precisely, if we define the system of independence set F by

F :=
{
F ∈ 2P

∣∣ F is linearly independent over Fq
}
,

then (P,F) is a matroid. We denote it by M(q, n). In this case, the closure σ(S) of a subset S ∈ P
coincides with the linear subspace 〈S〉 of P spanned by S.

Lemma 2.9 Let S, T ∈ F . Then we have

S ∼ T ⇐⇒ { U ∈ F | U ∩ S = ∅, U ∪ S ∈ F } = { U ∈ F | U ∩ T = ∅, U ∪ T ∈ F } .
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Let M = (E,F) be a matroid, and Fi ⊂ F for i = 0, 1, . . . , r(E), the set of independent sets of
cardinality i, i.e.,

Fi := { F ∈ F | #F = i } .

Let Ω := 2E/ ∼, and F̄l := Fl/ ∼. We can identify Ω with the set of flats S ⊂ E, i.e., subsets S of E
such that S = σ(S). Under this identification, we define the subset Ω(l), l = 1, . . . , r(E), of Ω by

Ω(l) :=
{
S ∈ 2E

∣∣ S = σ(S), r(S) = l
}
.

The set Ω =
∐
l Ω(l) ordered by the inclusion ⊂ is a ranked poset.

Example 2.10 For the matroidM([n]) = ([n], 2[n]) defined in Example 2.7, Ω is the Boolean lattice 2[n].

Example 2.11 For the matroid M(q, n) defined in Example 2.8, Ω is the vector space lattice V (q, n).

3 Ideals associated to matroids
3.1 Basic facts of Gorenstein algebras

Definition 3.1 Let A =
⊕D

d=0Ad, where AD 6= 0, be a graded Artinian algebra. We call an element
L ∈ A1 a strong Lefschetz element of A if the multiplication map

×LD−2i : Ai → AD−i

is bijective for i = 0, . . . , [D/2]. We say that A has the strong Lefschetz property (in the narrow sense) if
there exists a strong Lefschetz element of A.

In the rest of this paper, we consider the Gorenstein algebras that is finite-dimensional over a field k of
characteristic zero.

Definition 3.2 [[13, Chapter 5, 6.5]] Let A =
⊕D

d=0Ad be a graded k-algebra that is finite-dimensional
over k. We call A the Poincaré duality algebra if dimk AD = 1 and the bilinear pairing

Ad ×AD−d → AD ∼= k

is non-degenerate for d = 0, . . . , [D/2].

The following is a well-known fact (see e.g. [4], [8], [10]).

Proposition 3.3 A graded Artinian k-algebra A is a Poincaré duality algebra if and only if A is Goren-
stein.

Let P = k[x1, . . . , xn] and Q = k[X1, . . . , Xn] be polynomial rings over k. We may regard P as
a Q-module via the identification Xi = ∂/∂xi, i = 1, . . . , n. For a polynomial F (x) ∈ P , denote by
AnnF the ideal of Q generated by the differential polynomials annihilating F , i.e.,

AnnF := { ϕ(X) ∈ Q | ϕ(X)F (x) = 0 } .

The following is immediate from the theory of the inverse systems (see [2], [3], [5]).
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Proposition 3.4 Let I be an ideal of Q = k[X1, . . . , Xn] and A = Q/I the quotient algebra. Denote by
m the maximal ideal (X1, . . . , Xn) of Q. Then

√
I = m and the k-algebra A is Gorenstein if and only if

there exists a polynomial F ∈ R = k[x1, . . . , xn] such that I = AnnQ F .

Example 3.5 The coinvariant algebra RW of the finite Coxeter group W is an example of the Gorenstein
algebra with the strong Lefschetz property. The coinvariant algebra RW is defined to be a quotient of
the ring of polynomial functions on the reflection representation V of W by the ideal generated by the
fundamental W -invariants. When W is crystallographic (i.e., Weyl group), the Lefschetz property of
RW is a consequence of the Hard Lefschetz Theorem for the corresponding flag variety G/B. Stanley
[15] has shown the Sperner property of the strong Bruhat ordering on W from the Lefschetz property of
RW (except for type H4). The Lefschetz property of RW of type H4 has been confirmed in [12]. Since
RW is Gorenstein, it has a presentation as in Proposition 3.4. In fact, RW is isomorphic to the algebra
SymV ∗/AnnF , where F is the product of the positive roots.

Definition 3.6 Let G be a polynomial in k[x1, . . . , xn]. When a family Bd = {α(d)
i }i of homogeneous

polynomials of degree d > 0 is given, we call the polynomial

det
(

(α
(d)
i (X)α

(d)
j (X)G(x))#Bd

i,j=1

)
∈ k[x1, . . . , xn]

the d-th Hessian of G with respect to Bd, and denote it by Hess
(d)
Bd
G. We denote the d-th Hessian simply

by Hess(d)G if the choice of Bd is clear.

When d = 1 and α(1)
j (X) = Xj , j = 1, . . . , n, the first Hessian Hess(1)G is the usual Hessian:

Hess(1)G = HessG := det

(
∂2G

∂xi∂xj

)
ij

.

Let a graded Gorenstein k-algebraA =
⊕

dAd be finite-dimensional over k. Take a polynomial F ∈ Q
such that A = Q/AnnQ F . The following gives a criterion for an element L ∈ A1 to be a Lefschetz
element.

Proposition 3.7 ([17, Theorem 4]) Fix an arbitrary k-linear basis Bd of Ad for d = 1, . . . , [D/2]. An
element L = a1X1 + · · · + anXn ∈ A1 is a strong Lefschetz element of A = Q/AnnQ F if and only if
F (a1, . . . , an) 6= 0 and (Hess

(d)
Bd
F )(a1, . . . , an) 6= 0 for d = 1, . . . , [D/2].

Corollary 3.8 If one of the Hessians Hess
(d)
Bd
F , d = 1, . . . , [D/2], is identically zero, then Q/AnnQ F

does not have the strong Lefschetz property.

3.2 Ideals associated to matroids
We introduce ideals of Q associated to matroids. Fix a matroid M = (E,F) and a polynomial ring
Q = k[xe|e ∈ E] in #E variables. We define the subsets G(0)

M , G(1)
M and G(2)

M of k[xe|e ∈ E] by

G(0)
M =

{
x2
e

∣∣ e ∈ E } , G(1)
M = { xS | S 6∈ F } , G(2)

M = { xA − xA′ | A,A′ ∈ F , A ∼ A′ } .
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Let ΛM = G(0)
M ∪ G(1)

M ∪ G(2)
M . We define JM to be the ideal of k[xe|e ∈ E] generated by ΛM . For an

equivalence class τ ∈ Ω, consider a polynomial fτ given by

fτ :=
∑

F∈F∩τ
xF ,

where xF :=
∏
e∈F xe. We also define a polynomial ΦM ∈ k[xe|e ∈ E] by

ΦM :=
∑
B∈B

xB .

For a equivalent class τ ∈ Ω of B ∈ B, it follows by definition that ΦM = fτ .

3.3 Some results
We consider the ideals JM , AnnQ ΦM and

⋂
τ∈Ω Ann fτ . We omit their proof. Please see [11] for the

proof.

Theorem 3.9 For a matroid M , we have the following:

• The ideal Ann ΦM contains JM .

• The ideal
⋂
τ∈Ω Ann fτ equals JM .

• The subset ΛM of Q is a universal Gröbner basis of JM .

Corollary 3.10 The Hilbert polynomial of Q/JM is given by

Hilb(Q/JM , t) =

r(E)∑
i=0

(#F̄i)ti.

Example 3.11 Let M be a matroid defined by the following vectors.

v1 v2 v3 v4 v5

1 0 0 1 0
0 1 0 1 1
0 0 1 0 1

Then the set B of bases is {{1, 2, 3}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 4, 5}, {3, 4, 5}}.
The ideal Ann ΦM contains an additional generator other than ΛM . In fact, we have

Ann ΦM = JM + (x13 + x45 − x15 − x34).

The Hilbert series of Q/Ann ΦM is (1, 5, 5, 1) and that of Q/JM is (1, 5, 6, 1). In particular, Q/JM is
not Gorenstein. By direct computation, we obtain Hess ΦM = 8(x1 + x4)(x3 + x5)ΦM . This implies
that Q/Ann ΦM has the Lefschetz property.
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4 Modular geometric lattices
In this section, we consider three examples of lattices, the Boolean lattice, the vector space lattice and the
incidence lattice of a projective plane. As in Example 3.11, the equality Ann ΦM = JM does not hold
for a general matroid. The equation, however, holds in the three examples we discuss here. In 4.1, we
consider the Boolean lattice. It is known that the algebra associated to the Boolean lattice has the strong
Lefschetz property. We give another proof of the strong Lefschetz property for the algebra associated to
the Boolean lattice. In a similar manner to our proof, we can prove the strong Lefschetz property for the
algebras associated to the vector space lattice and the incidence lattice of a projective plane.

4.1 The Boolean lattice
For a matroid M we define polynomials Φ

(i)
M :=

∑
G∈Fi

xG and the matroid M (i) := (E,
⋃i
k=0 Fk) for

i = 1, . . . , n. Note that Φ
(n)
M = ΦM and that Φ

(i)
M = ΦM(i) . The polynomials Φ

(i)
M and the matroids M (i)

play an important role. For B ∈ Fl and 0 ≤ i ≤ l, define

Fl(B, i) := {A ∈ Fl | r(σ(A) ∩ σ(B)) = i } .

Then we have Fl(B, l) = {A ∈ Fl | A ∼ B } and Fl =
∐l
i=0 Fl(B, i). For A,B ∈ Fl, define

FAl (B, i) := {A′ ∈ Fl(B, i) | A ∪A′ ∈ F2l } .

For B ∈ Fl, consider a polynomial Φ(B, i) :=
∑
A∈Fl(B,i)

xA and a differential polynomial P (B, i) :=∑
A∈Fl(B,i)

∂A. Then it follows from straightforward calculation that

P (B, i)Φ
(2l)
M =

l∑
j=0

∑
A′∈Fl(B,j)

#FA
′

l (B, i)xA′ .

Now we consider the matroid M([n]) and B ∈ Fl. In this case

Fl =
{
A ∈ 2[n]

∣∣∣ #A ∩B = i
}

FAl (B, i) =

A′ ∈ 2[n]

∣∣∣∣∣∣
#A′ ∩B = i,
#A ∩A′ = 0,

#A′ = l

 .

For A ∈ Fl(B, j), i.e., A ∈ 2[n] such that #A = l and #A ∩B = j, we can obtain

#FAl (B, i) =

(
#[n] \ (A ∪B)

l − i

)(
#B \A

i

)
=

(
n− 2l + j

l − i

)(
l − j
i

)
.

Hence #FAl (B, i) does not depend on the choice of A ∈ Fl(B, j). Let a(l)
ij =

(
n−2l+j
l−i

)(
l−j
i

)
, and

consider the matrix (a
(l)
i,l−j)

l
i,j=0. Then
P (B, 0)Φ

(2l)
M

...
P (B, l)Φ

(2l)
M

 = (a
(l)
i,l−j)

l
i,j=0

Φ(B, l)
...

Φ(B, 0)

 .
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It is easy to show that the matrix is upper-triangular, and that a(l)
i,l−i =

(
n−l−i
l−i

)
. Hence if n ≥ 2l, then the

determinant det(a
(l)
i,l−j)

l
i,j=0 =

∏l
i=0

(
n−l−i
l−i

)
is positive. Since the matrix is invertible, ΦM (B, l) is writ-

ten as a linear combination of P (B, 0)Φ
(2l)
M , P (B, 1)Φ

(2l)
M , . . . , P (B, l)Φ

(2l)
M . In other words, there exists

a differential polynomial PB such that ΦM (B, l) = PBΦ
(2l)
M . Since Fl(B, l) = {A ∈ Fl | A ∼ B },

Fl(B, l) and Fl(B′, l) are disjoint if B 6∼ B′. Hence { ΦM (B, l) } spans #F̄l-dimensional k-vector
space. Since Ann ΦM(2l) contains JM(2l) , we have the following lemma:

Lemma 4.1 LetM = M([n]) and 2l ≤ n. Then
{
∂FΦ

(2l)
M

∣∣∣ F ∈ F̄l } spans #F̄l-dimensional k-vector
space.

Take representatives F1, . . . , Fml
∈ Fl of F̄l. For F, F ′ ∈ Fl, define

δF,F ′ :=

{
1, if σ(F ) ∩ σ(F ′) = ∅,
0, otherwise.

It follows from direct calculation that

det
(
∂Fi∂FjΦ

(2l)
M

)ml

i,j=1
= det

(
δFi,Fj

)ml

i,j=1
.

The algebra B(2l) := Q/Ann Φ
(2l)
M is Gorenstein, and the natural pairings

〈 , 〉 : B
(2l)
i ×B(2l)

2l−i → B
(2l)
2l
∼= k

are non-degenerate for i = 0, . . . , l. In the case of M([n]), it follows from Lemma 4.1 that the dimension
of the homogeneous space of of B(2l)

l of degree l is #F̄l. Hence we have the following:

Lemma 4.2 If n ≥ 2l, then we have det
(
δFi,Fj

)ml

i,j=1
6= 0.

Let M = M([n]). Then, for F ∈ Fj , # { F ′ ∈ Fi | F ∪ F ′ ∈ Fi+j } =
(
n−j
i

)
, which does not

depend on the choice of F ∈ Fj . Hence, for k ≥ 2l, the determinant of the matrix(
∂Fi∂FjΦ

(k)
M

)ml

i,j=1

∣∣∣∣
x=1

equals γ det
(
δFi,Fj

)ml

i,j
for some γ 6= 0. Therefore the matrix

(
∂Fi∂FjΦ

(k)
M

)ml

i,j=1
is not identically zero.

Hence we have the following:

Theorem 4.3 Let M = M([n]) and k ≤ n. Then we have the following:

• The polynomial ΦM(k) equals the elementary symmetric function ek(x1, . . . , xn).

• The ideal Ann ΦM equals JM .

• The Gorenstein algebra Q/Ann ΦM(k) = Q/Ann ek(x1, . . . , xn) has the strong Lefschetz prop-
erty.
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• The Hilbert series of the algebra Q/Ann ΦM(k) satisfies

Hilb(Q/Ann ΦM(k) , t) =
∑
i≤k/2

(
n

i

)
ti +

∑
i>k/2

(
n

k − i

)
ti.

• The poset Ω has the Sperner property. Or equivalently the Boolean lattice has the Sperner property.

4.2 The vector space lattice
Here we consider the matroid M = M(q, n) defined in Example 2.8. In a similar manner to the case of
M([n]), we can prove the strong Lefschetz property for the Gorenstein algebra associated to the matroid
M(q, n). Since the same argument works, we give only the sketch of the proof. See [11] for more details.

Similarly to the case of M([n]), a(l)
ij = #FAl (B, i) does not depend on the choice of A ∈ Fl(B, j),

and the matrix (a
(l)
i,l−j)

l
i,j=0 is invertible. Hence we have the following lemma:

Lemma 4.4 Let M = M(q, n) and 2l ≤ n. Then
{
∂FΦ

(2l)
M

∣∣∣ F ∈ F̄l } spans #F̄l-dimensional k-
vector space.

Moreover # { F ′ ∈ Fi | F ∪ F ′ ∈ Fi+j } is also independent of the choice of F ∈ Fj . Hence the lemma
implies the following:

Theorem 4.5 Let M = M(q, n) and k ≤ n. Then we have the following:

• The ideal Ann ΦM equals JM .

• The Gorenstein algebra Q/Ann ΦM(k) has the strong Lefschetz property.

• The Hilbert series of the algebra Q/Ann ΦM(k) satisfies

Hilb(Q/Ann ΦM(k) , t) =
∑
i≤k/2

[
n

i

]
q

ti +
∑
i>k/2

[
n

k − i

]
q

ti,

where
[
n
i

]
q

stands for a q-binomial coefficient.

• The poset Ω has the Sperner property. Or equivalently, the vector space lattice V (q, n) consisting
of the linear subspaces of Fnq has the Sperner property.

Remark 4.6 We can obtain a universal Gröbner basis for the ideal Ann ΦM(q,n) by Theorems 3.9 and
4.5. In [11], the Gröbner fan of the ideal is also discussed. The Gröbner fan G(Ann ΦM(q,n)) can
be recovered from the tropical hypersurfaces of certain polynomials defined by the bases of the linear
subspaces of Pn−1(Fq).

4.3 The incidence lattice of a finite projective plane
Here we consider a matroid M = (E,F) such that r(E) = 3, #E = #F̄1 = #F̄2, and #σ(S) = N
for all S ∈ F2. The assumption #E = #F̄1 implies F2 = { S ⊂ E | #S = 2 }. Hence, for v, w ∈ E,
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∂v∂wΦM = 0 if and only if v = w. Moreover ∂v∂wΦM |x=1 = N for v 6= w ∈ E since #σ(S) = N for
all S ∈ F2. It follows that

(∂v∂wΦM )v,w∈E |x=1 = N#E(∂v∂we2(x))v,w∈E = N#E(∂v∂wΦM(2))v,w∈E .

Theorem 4.3 implies that the determinant of the matrix is not identically zero. Hence we have the follow-
ing:

Theorem 4.7 Let M = (E,F) be a matroid such that r(E) = 3, #E = #F̄1 = #F̄2, and #σ(S) = N
for all S ∈ F2. Then we have the following:

• The ideal Ann ΦM equals JM .

• The Gorenstein algebra Q/JM has the strong Lefschetz property.

• The Hilbert series of the algebra Q/Ann ΦM is 1 + (#E)t+ (#E)t2 + t3.

• The poset Ω has the Sperner property.

Remark 4.8 Since the matroid M(Π) associated to a finite projective plane Π satisfies the conditions of
Theorem 4.7, the incidence lattice of Π has the Sperner property. The fundamental theorem of projective
geometry shows that a modular geometric lattice decomposes into a direct product of Boolean lattices,
vector space lattices, incidence lattices of finite projective planes, and lattices of rank 2 (see e.g. [16]). In
[6], Greene has shown that a finite geometric lattice is modular if and only if the number of atoms equals
the number of coatoms. It follows from this characterization a finite geometric lattice that the Gorenstein
algebra Q/JM has the strong Lefschetz property if and only if the poset Ω associated to the matroid is a
modular geometric lattice. See [11] for the detail.
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