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A Topological Representation Theorem for
Tropical Oriented Matroids

Silke Horn (nèe Möser)1

1Discrete Optimization, TU Darmstadt, Germany

Abstract. Tropical oriented matroids were defined by Ardila and Develin in 2007. They are a tropical analogue of
classical oriented matroids in the sense that they encode the properties of the types of points in an arrangement of
tropical hyperplanes – in much the same way as the covectors of (classical) oriented matroids describe the types in
arrangements of linear hyperplanes.

Not every oriented matroid can be realised by an arrangement of linear hyperplanes though. The famous Topological
Representation Theorem by Folkman and Lawrence, however, states that every oriented matroid can be represented
as an arrangement of pseudohyperplanes.

Ardila and Develin proved that tropical oriented matroids can be represented as mixed subdivisions of dilated sim-
plices. In this paper I prove that this correspondence is a bijection. Moreover, I present a tropical analogue for the
Topological Representation Theorem.

Résumé. La notion de matroı̈de orienté tropical a été introduite par Ardila et Develin en 2007. Ils sont un analogue
des matroı̈des orientés classiques dans le sens où ils codent les propriétés des types de points dans un arrangement
d’hyperplans tropicaux – d’une manière très similaire à celle dont les covecteurs des matroı̈des orientés (classiques)
décrivent les types de points dans les arrangements d’hyperplans linéaires.

Tous les matroı̈des orientés ne peuvent pas être représentés par un arrangement d’hyperplans linéaires. Cependant le
célèbre théorème de représentation topologique de Folkman et Lawrence affirme que tout matroı̈de orienté peut être
représenté par un arrangement de pseudo-hyperplans.

Ardila et Develin ont prouvé que les matroı̈des orientés tropicaux peuvent être représentés par des sous-divisions
mixtes de simplexes dilatés. Je prouve dans cet article que cette correspondance est une bijection. Je présente en
outre, un analogue tropical du théorème de représentation topologique.

Keywords: combinatorics, oriented matroids, discrete topology, tropical geometry

1 Introduction
Tropical geometry is the study of algebraic geometry over the tropical semiring (R,⊕,⊗). A tropical
hyperplane is the vanishing locus of a linear tropical polynomial.

From the combinatorial point of view though, a tropical hyperplane in Td−1 is just the (codimension-
1-skeleton of the) polar fan of the (d − 1)-dimensional simplex 4d−1. An arrangement of n tropical
hyperplanes in Td−1 induces a cell decomposition of Td−1 and each cell can be assigned a type that

1365–8050 c© 2012 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/
http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/dmARind.html


136 Silke Horn

describes its position relative to each of the tropical hyperplanes. To be precise, the point p is assigned
the type A = (A1, . . . , An) where Ai denotes the set of closed sectors of the i-th tropical hyperplane in
which p is contained. See Figure 1(c) for an illustration.

Definition 1.1 (Cf. (Ardila and Develin, 2009, Definition 3.1)) For n, d ≥ 1 an (n, d)-type is an n-
tuple (A1, . . . , An) of non-empty subsets of [d].

An (n, d)-type A can be represented as a subgraph KA of the complete bipartite graph Kn,d: Denote
the vertices of Kn,d by N1, . . . , Nn, D1, . . . , Dd. Then the edges of KA are {{Ni, Dj} | j ∈ Ai}.

Besides tropical hyperplane arrangements there are other objects that share the notion of an (n, d)-type:

• If we label the vertices of4n−1 by 1, . . . , n, the vertices of the polytope4n−1×4d−1 are in canon-
ical bijection with the edges of the complete bipartite graph Kn,d. Then a cell C in a subdivision
of 4n−1 ×4d−1 is assigned the type corresponding to the subgraph of Kn,d containing all edges
that mark vertices of C. See e.g. De Loera et al. (2010) for a thorough treatment of triangulations.

• Given a mixed subdivision of n4d−1, every cell is a Minkowski sum of n faces of 4d−1. By
identifying the faces of 4d−1 with the subsets of [d], this again yields an (n, d)-type. See Figure
1(a) for an example. We discuss mixed subdivisions in more detail in Section 3.

• Tropical oriented matroids as defined in Ardila and Develin (2009) via a set of covector axioms
generalise tropical hyperplane arrangements. We discuss them in Section 2.

By Develin and Sturmfels (2004) regular subdivisions of4n−1 ×4d−1 are dual to arrangements of n
tropical hyperplanes in Td−1. See Figure 1 for an illustration.

By the Cayley Trick (cf. Huber et al. (2000)) subdivisions of4n−1×4d−1 are in bijection with mixed
subdivisions of n4d−1.

By (Ardila and Develin, 2009, Thm. 6.3), the types of a tropical oriented matroid with parameters (n, d)
yield a subdivision of 4n−1 × 4d−1. They also conjecture this to be a bijection, i.e., that the types of
the cells in any mixed subdivision of n4d−1 are the types of a tropical oriented matroid with parameters
(n, d). By (Ardila and Develin, 2009, Prop. 6.4), these types satisfy the boundary, comparability and
surrounding axioms. Thus, the only piece missing is the elimination axiom.

In Oh and Yoo (2010) it is proven that fine mixed subdivisions satisfy the elimination axiom.
In this paper we prove that the conjecture holds true in general:

123,1
23,12

3,123

2,2

3,3

3,2

2,11,1

3,1

(a) A (regular) mixed subdivi-
sion of 242.

(b) The Poincaré dual of (a).
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Fig. 1: The correspondence between mixed subdivisions and tropical pseudohyperplane arrangements.
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Theorem 1.2 (Cf. (Ardila and Develin, 2009, Conj. 5.1)) Tropical oriented matroids with parameters
(n, d) are in bijection with subdivisions of4n−1 ×4d−1 and mixed subdivisions of n4d−1.

Moreover, we introduce arrangements of tropical pseudohyperplanes and prove a Topological Repre-
sentation Theorem for tropical oriented matroids:

Theorem 1.3 (Topological Representation Theorem) Every tropical oriented matroid (in general posi-
tion) can be realised by an arrangement of tropical pseudohyperplanes.

The paper is organised as follows: In Section 2 we briefly review the definition of tropical oriented
matroids. Section 3 is dedicated to mixed subdivisions of dilated simplices. In Section 4 we introduce
tropical pseudohyperplane arrangements and prove the Topological Representation Theorem. Finally, in
Section 5 we apply our results to prove Theorem 1.2.

2 Tropical Oriented Matroids
The following definitions are analogous to those in Ardila and Develin (2009).

A refinement of an (n, d)-type A with respect to an ordered partition P = (P1, . . . , Pk) of [d] is the
(n, d)-type B = A|P where Bi = Ai ∩ Pm(i) and m(i) is the smallest index where Ai ∩ Pm(i) is
non-empty for each i ∈ [n]. A refinement is total if all Bi are singletons.

Given (n, d)-types A and B, the comparability graph CGA,B is a multigraph with node set [d]. For
1 ≤ i ≤ n there is an edge for every j ∈ Ai, k ∈ Bi. This edge is undirected if j, k ∈ Ai ∩ Bi and
directed j → k otherwise. (We consider the comparability graph as a graph without loops.) Note that
there may be several edges (with different directions) between two nodes.

A directed path in the comparability graph is a sequence e1, e2, . . . , ek of incident edges at least one of
which is directed and all directed edges of which are directed in the “right” direction. A directed cycle is a
directed path whose starting and ending point agree. The graph is acyclic if it contains no directed cycle.

Definition 2.1 (Cf. (Ardila and Develin, 2009, Definition 3.5)) A tropical oriented matroid M (with pa-
rameters (n, d)) is a collection of (n, d)-types which satisfies the following four axioms:

• Boundary: For each j ∈ [d], the type (j, j, . . . , j) is in M .

• Comparability: The comparability graph CGA,B of any two types A,B ∈M is acyclic.

• Elimination: If we fix two types A,B ∈ M and a position j ∈ [n], then there exists a type C in M
with Cj = Aj ∪Bj and Ck ∈ {Ak, Bk, Ak ∪Bk} for k ∈ [n].

• Surrounding: If A is a type in M , then any refinement of A is also in M .

We call d =: rankM the rank and n the size of M .

Example 2.2 By (Ardila and Develin, 2009, Theorem 3.6) the set of types of an arrangement of n tropical
hyperplanes in Td−1 is a tropical oriented matroid with parameters (n, d).

We call tropical oriented matroids coming from an arrangement of tropical hyperplanes realisable.

The axiom system was built to capture the features of the set of types in tropical hyperplane arrange-
ments and thus the axioms have geometric interpretations:
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The boundary axiom ensures that all tropical hyperplanes in the arrangement are embedded correctly
into TPd−1 ∼= 4d−1. The surrounding axiom describes what the neighbourhood of a point of type A
(or equivalently, the star of the cell A in the cell complex) looks like. The elimination axiom describes
the intersection of a tropical line segment from A to B with the j-th tropical hyperplane. Finally, the
comparability axiom ensures that we can declare a “direction from A to B”. Each position puts certain
constraints on the direction vector, which may not contradict one another.

Definition 2.3 The dimension of an (n, d)-type A is the number of connected components of KA minus
1. A vertex is a type of dimension 0, an edge a type of dimension 1 and a tope a type of full dimension
d− 1, i.e., each tope is an n-tuple of singletons.

A tropical oriented matroid M is in general position if for every type A ∈M the graph KA is acyclic.
For two types A,B we write A ⊇ B if Ai ⊇ Bi for each i ∈ [n]. Moreover, we define the intersection

A ∩B := (A1 ∩B1, . . . , An ∩Bn) and union A ∪B := (A1 ∪B1, . . . , An ∪Bn) of types.

Definition 2.4 (Cf. (Ardila and Develin, 2009, Propositions 4.7 and 4.8)) Let M be a tropical oriented
matroid with parameters (n, d).

1. For i ∈ [n] the deletion M\i consisting of all (n − 1, d)-types which arise from types of M by
deleting coordinate i is a tropical oriented matroid with parameters (n− 1, d).

2. For j ∈ [d] the contraction M/j consisting of all types of M that do not contain j in any coordinate
is a tropical oriented matroid with parameters (n, d− 1).

3 Mixed Subdivisions
Given two sets X,Y their Minkowski sum X + Y is given by X + Y := {x + y | x ∈ X, y ∈ Y }.

Definition 3.1 Let P1, . . . , Pk ⊂ Rn be (full-dimensional) convex polytopes. Then a polytopal subdivi-
sion {Q1, . . . , Qs} of P :=

∑
Pi is a mixed subdivision if it satisfies the following conditions:

1. Each Qi is a Minkowski sum Qi =
k∑

j=1

Fi,j , where Fi,j is a face of Pj .

2. For i, j ∈ [s] we have that Qi ∩Qj = (Fi,1 ∩ Fj,1) + . . . + (Fi,k ∩ Fj,k).

Note that this definition can easily be generalised for polytopes which are not full-dimensional.
Let S, S′ be mixed subdivisions of n4d−1. Then we say that S′ is a refinement of S if for every cell

C ′ ∈ S′ there is a cell C ∈ S such that C ′ ⊆ C. This defines a partial order on the set of mixed
subdivisions of n4d−1. A mixed subdivision is fine if there is no mixed subdivision refining it.

3.1 Mixed Subdivisions of n4d−1

We are interested in the case of mixed subdivisions where Pi = 4d−1 for each i. Then
∑

Pi = n4d−1

is a dilated simplex. By (Ardila and Develin, 2009, Theorem 6.3) the types of a tropical oriented matroid
with parameters (n, d) yield a mixed subdivision of n4d−1. A tropical oriented matroid is in general
position if and only if its mixed subdivision is fine.

If Q =
∑n

i=1 Fi, where Fi ⊂ [d] is a cell in such a mixed subdivision then we call (F1, F2, . . . , Fn) its
type and denote it by TQ. Note that this is an (n, d)-type as defined in Definition 1.1. Conversely, if we
are given an (n, d)-type A then this corresponds to a unique cell inside n4d−1, which we denote by CA.
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In general, we call a cell corresponding to an (n, d)-type, i.e., a Minkowski sum of n faces of4d−1, a
Minkowski cell.

To avoid confusion with the vertices of tropical oriented matroids, we speak of the 0-dimensional cells
of a mixed subdivision as topes.

There is a canonical embedding of a mixed subdivision of n4d−1 into Rd (by mapping a tope v to
(x1, . . . , xd) where xi is the number of occurences of i in v). We thus regard a mixed subdivision – or
any subset of its (open) cells – as a metric space with the Euclidean metric inherited from Rd.

We now establish some properties of mixed subdivisions of n4d−1 – or more generally about (n, d)-
types. Note that since we can describe the Minkowski cells in a mixed subdivision of n4d−1 in terms of
(n, d)-types, we can transfer properties of tropical oriented matroids (such as the boundary, surrounding,
comparability or elimination property) as defined in Section 2 to mixed subdivisions of n4d−1.

Lemma 3.2 Let A,B be two (n, d)-types with A ⊆ B. Then A is a refinement of B if and only if CGA,B

is acyclic.

Lemma 3.3 Let A,B be two types in a mixed subdivision S of n4d−1. Then their intersection A ∩ B
either has an empty position or is also a type in S.

Lemma 3.4 Given a Minkowski cell Q =
∑n

i=1 Fi in a mixed subdivision of n4d−1 then the faces of Q
are exactly the CR where R is a refinement of TQ.

Lemma 3.5 Let A,B be (n, d)-types such that CGA,B is acyclic. Then CA ∩ CB = CA∩B .

We can define the concepts of deletion and contraction for mixed subdivisions analogous to Definition
2.4. The following observations are immediate:

Lemma 3.6 Let S be a mixed subdivision of n4d−1.

1. For any i ∈ [n] the deletion S\i is a mixed subdivision of (n− 1)4d−1.

2. For any j ∈ [d] the contraction S/j is a mixed subdivision of n4d−2.

3.2 Reconstructing Mixed Subdivisions
In this section we prove the following:

Proposition 3.7 Let S be a mixed subdivision of n4d−1. Then S can be reconstructed from its topes.
More precisely, the cells of S are exactly the unions of topes all of whose total refinements are topes

and which do not contain any other tope.

Note that it is crucial to consider the topes of S as types rather than as mere coordinates; i.e., the order
of the summands matters here. Also note that the equivalent result for tropical oriented matroids, namely
that a tropical oriented matroid is uniquely determined by its topes, is proven in Ardila and Develin (2009).
Their proof, however, uses the elimination property.

Proof: We call the types satisfying the conditions above the nice types of S. It is clear that all cells are
nice. So it remains to prove that every nice type does actually yield a cell of S.

The general strategy is the following: Assume that A is a nice cell in S. We argue that A intersects
every cell B of S either not at all or in a common face of A and B, proving that A is in fact a cell in S.
By Lemma 3.5 it suffices to prove that (the types of) A and B are comparable. 2
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For i ∈ [n] consider the deletion map

· \i : S → S\i : C 7→ C\i = (C1, . . . , Ĉi, . . . , Cn)

mapping each cell C of S to the cell obtained by omitting the i-th entry of C.

Lemma 3.8 Let S be a mixed subdivision of n4d−1, i ∈ [n] and A 6= B types of cells CA, CB ∈ S cells
such that A\i = B\i. Then A ∪B is the type of a cell in S.

Proof: Let C := A∪B, i.e., Ci := Ai∪Bi and Cj = Aj(= Bj) for each j 6= i. The situation is sketched
in Figure 2. The intuition is that CC (unless C already equals A or B) is a prism over CA (or CB) with CA
and CB the top, respectively bottom face of CC .

We need to show that CC is indeed a cell in S. To this end, we verify that C satisfies the conditions
from Proposition 3.7. This means we have to show that the total refinements of C are exactly the total
refinements of A and B. 2

A

B

C

Fig. 2: The two edges A and B are mapped to the same cell under the deletion map that deletes the shaded cells.

3.3 Convexity in tropical oriented matroids
One can exploit the elimination property of tropical oriented matroids to obtain topological properties of
the according mixed subdivisions.

Let M be a tropical oriented matroid and A,B ∈M two types. Then the set

MAB := {C ∈M | Ci ∈ {Ai, Bi, Ai ∪Bi} for all i ∈ [n]}

is the (combinatorial) convex hull of A and B. Analogously we define the (combinatorial) convex hull
SAB of two cells in a mixed subdivision S of n4d−1.

We say that a subset C of a tropical oriented matroid M (or equivalently, a subcomplex of a mixed
subdivision of n4d−1) is convex if for any A,B ∈ C we have that MAB ⊆ C.

Proposition 3.9 The types of the cells in a mixed subdivision S of n4d−1 satisfy the elimination property
if and only if SAB is path-connected (as a subcomplex of S) for every A,B ∈ S.

Proof: If SAB is path-connected then there is a path from A to B in SAB . For any given j ∈ [n] this path
must contain a cell C with Cj = Aj ∪ Bj . Then C works as elimination for A and B with respect to j.
The converse can be shown by induction on the cardinality of dist(A,B) := {i | Ai 6⊆ Bi, Bi 6⊆ Ai}. 2

Corollary 3.10 A convex set in a tropical oriented matroid is path-connected.
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4 The Topological Representation Theorem
This section comprises the long and winding road towards the Topological Representation Theorem for
tropical oriented matroids.

4.1 Tropical Pseudohyperplanes
Definition 4.1 A tropical pseudohyperplane is the image of a tropical hyperplane under a PL-homeomor-
phism of TPd−1 that fixes the boundary.

The following theorem is a crucial ingredient to the proof of the Topological Representation Theorem:
In an arrangement of tropical hyperplanes, the i-th tropical hyperplane consists exactly of those points A
with #Ai ≥ 2. We show the analogue for the Poincaré dual of a mixed subdivision of n4d−1.

Theorem 4.2 Let S be a mixed subdivision of n4d−1 and i ∈ [n]. Then {C∗ | C ∈ S,#Ci ≥ 2} is a
tropical pseudohyperplane.

Proof: We prove the claim by induction over n. For n = 1 this is true since then S = 4d−1 is the trivial
subdivision, whose dual is the cell complex of one (d− 2)-dimensional tropical hyperplane in Td−1.

Now assume n ≥ 2. Choose i 6= j ∈ [n] and consider the deletion S\j . By Lemma 3.6 this is a mixed
subdivision of (n− 1)4d−1 and by induction the image of Hi in S\j is a tropical pseudohyperplane h.

But Hi is the preimage of h under the deletion map. By Lemma 3.8 this preimage is PL-homeomorphic
to h and hence a tropical pseudohyperplane. 2

4.2 Linear and affine pseudohyperplanes
Locally, (i.e., in the parallelepiped cells of their mixed subdivisions) we want tropical pseudohyperplanes
to intersect as “ordinary” hyperplanes. We thus introduce arrangements of linear pseudohyperplanes on
the basis of arrangements of pseudospheres as defined in (Björner et al., 1999, Def. 5.1.3).

Definition 4.3 A finite collection A = (He)e∈E of pseudohyperplanes is called an arrangement of pseu-
dohyperplanes if the following conditions hold:

1. HA :=
⋂

e∈A He is a pseudohyperplane of smaller dimension for all A ⊆ E.

2. If HA 6⊆ He for A ⊆ E, e ∈ E and H+
e and H−e are the two sides of He, then HA ∩ He is a

pseudohyperplane in HA with sides HA ∩H+
e and HA ∩H−e .

3. The intersection of an arbitrary collection of closed sides is a ball.

We now define arrangements of affine pseudohyperplanes as a generalisation of the above:

Definition 4.4 An arrangement of affine pseudohyperplanes is a collection A of (linear) pseudohyper-
planes such that for any A′ ⊆ A either

⋂
a∈A′ Ha = ∅ or A′ is an arrangement of linear pseudohyper-

planes as defined in Definition 4.3.

Lemma 4.5 The intersection of any number of closed affine pseudohalfspaces in Rd is path-connected.
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4.3 Arrangements of tropical pseudohyperplanes
Let H be a (d − 2)-dimensional tropical pseudohyperplane in Td−1. Then H divides Td−1 \ H into
d connected components S1, . . . , Sd, the open sectors of H . The closure of any union

⋃
i∈I Si with

∅ 6= I ⊂ [d] will be called a pseudohalfspace of H . We denote by

HI := ∂
⋃
i∈I

Si = ∂
⋃
i/∈I

Si

the boundary of the pseudohalfspace and by

H+
I :=

⋃
i∈I

Si \HI , respectively H−I :=
⋃
i/∈I

Si \HI

the two open pseudohalfspaces.
An (n, d)-halfspace system is a tuple I = (I1, . . . , In) with ∅ 6= Ii ⊂ [d] for each 1 ≤ i ≤ n. Given a

halfspace system I and a collection A = (Hi)i∈[n] of n tropical pseudohyperplanes we write

AI := {Hi,Ii | 1 ≤ i ≤ n}.

We can now state the definition of tropical pseudohyperplane arrangements:

Definition 4.6 An arrangement of tropical pseudohyperplanes (in weakly general position) is a collection
A of n tropical pseudohyperplanes in Td−1 such that AI forms an arrangement of affine pseudohyper-
planes as defined in Definition 4.4 for every (n, d)-halfspace system I.

For a halfspace I , i.e., ∅ 6= I ⊂ [d], of a tropical pseudohyperplane H we define the map TI that maps
a cell C of H to + if C ⊆ I , to − if C ⊆ I and to 0 if C ∩ I, C ∩ I 6= ∅. Now let A be a tropical
pseudohyperplane arrangement and C(A) the induced cell decomposition of Td−1. ForA′ ⊆ A we define

TI : C(A′)→ {+,−, 0}A
′

:

C 7→ (TIi(Ci))i.

Now let J = (J1, . . . , Jn) be an n-tuple of partitions of [d]. I.e., each Ji = (Ji,1 ·∪ . . . ·∪ Ji,ki) is a
partition of [d] for each i ∈ [n]. For a tropical oriented matroid M denote by

MJ := {A ∈M | Ai ∩ Ji,k 6= ∅, i ∈ [n], k ∈ [ki]}

the set containing all types in M all of whose entries intersect each element in the according partition. As
before, let I = (I1, . . . , In) be an n-tuple of non-empty subsets of [d]. Then we denote

MI := {A ∈M | Ai ⊆ Ii, i ∈ [n]}.

Finally, we define
M(I,J ) := MI ∩MJ .

The following is a consequence of Corollary 3.10.

Lemma 4.7 Let M be a tropical oriented matroid in general position. Then M(I,J ), if non-empty, is
connected and pure of dimension d + n− 1−

∑
#Ji.
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For a cell complex C we denote by C its closure, i.e., C consists of all cells of C and their faces.

Lemma 4.8 Let M, I,J as before. Then M(I,J ) is a PL-manifold with boundary.

Proof: DenoteM := M(I,J ) andM′ := MJ . Choose a cell T ∈ M. We first investigate the link
lkM′ T . The cells in lkM′ T correspond to the cells in the star stM′ T = {C ∈ M′ | C ⊆ T} and hence
to certain refinements of T . First assume that n = 1 = k1, i.e., J = (J1 = (J11)). Then the cells in
stM′ T are in bijection with the proper subsets of J11 ∩T1 ordered by reverse inclusion. Hence lkM′ T is
the boundary of a simplex of dimension #(J11 ∩ T1)−1. Since M is in general position we can consider
the Jik (for i ∈ [n], k ∈ [ki]) independently. I.e., in general, lkM T is the boundary of a product of
simplices (one for each Jik). Denote this sphere by S(T ). See Figures 3(b) and (c) for an example.

If in each position i there is some Jik with Jik ∩ Ti ⊆ Ii then T is contained in the interior ofM and
lkM T = S(T ). Otherwise denote by B(T ) the set of all faces of S(T ) that do not belong to lkM T . Then
define J ′ by replacing each Ji in J by (Ii ·∪ (Ji1 ∩ Ii) ·∪ . . . ·∪ (Jiki

∩ Ii)). Then B(T )∩ lkM T = MJ ′

is a PL-sphere in S(T ) with sides B(T ) and lkM T . This implies that lkM T is a PL-ball.
Moreover,M has a boundary since – unlessM consists of a single point or contains a cell whose link

is a ball – we can always construct a cell inM whose dual is contained in the boundary of n4d−1. 2

4.4 Constructibility
The notion of constructibility of a polytopal complex goes back to Hochster (1972).

Definition 4.9 A polyhedral d-complex C is constructible if C consists of only one cell or C = C1 ∪
C2, where C1, C2 are d-dimensional constructible complexes and C1 ∩ C2 is a (d − 1)-dimensional
constructible complex.

Proposition 4.10 Let M , I,J as before. Then M(I,J ) is constructible.

Proof: We are done if M(I,J ) consists of one (maximal) cell only. Otherwise there are two maximal
cells A and B. By Lemma 4.7 above (and the fact that A,B are maximal) we then have #Ai = #Bi and
#Ai ∩ Ji,j = #Bi ∩ Ji,j = 1 for every i and j.

There is some position k where A and B differ. Moreover, there is some ` with Jk,` ∩Ak 6= Jk,` ∩Bk.
Let a ∈ Jk,` ∩Ak, b ∈ Jk,` ∩Bk. (Note that a and b are unique.)

Now formJ0 by splitting Jk,` so that a and b are in different sets. Moreover, form I1, I2 by removing a,
respectively b from Ik. Then M(I,J ) = M(I1,J )∪M(I2,J ) and M(I1,J )∩M(I2,J ) = M(I,J0).
Moreover, A ∈ M(I1,J ), B ∈ M(I2,J ). By the above lemma, M(I1,J ),M(I2,J ),M(I,J0) are
connected and pure and of the right dimensions. By induction these three sets are constructible and hence
M(I,J ) is constructible. See Figure 3 for an illustration. 2

The above lemmas together with a theorem by Zeeman (Zeeman (1963), “A constructible manifold
with a boundary is a ball.”) yield:

Proposition 4.11 Let M be a tropical oriented matroid in general position. Then M(I,J ) is a PL-ball.

We are now ready to prove the following version of the Topological Representation Theorem for tropical
oriented matroids:

Theorem 4.12 Every tropical oriented matroid in general position can be realised by an arrangement of
tropical pseudohyperplanes as in Definition 4.6.
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(a) A 2-dimensional tropical pseudo-
hyperplane. The 2-faces are labelled
by their types.
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(b) The subcomplex M(I,J ) for
I = [4], J = (14 ·∪ 23) – a 2-
dimensional PL-ball. The link of 1234
is drawn in light grey.
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(c) The subcomplex M(I,J0) for
I = [4], J0 = (1 ·∪ 4 ·∪ 23) – a
1-dimensional PL-ball – and its sides
M(I1,J ) and M(I2,J ).

Fig. 3: Assume in the proof of Proposition 4.10 we have n = 1, d = 4, i.e., we are dealing with a 2-dimensional
tropical pseudohyperplane as depicted in Figure (a). Moreover, assume we have M(I,J ) with I = [4],J =
(14 ·∪ 23). The complex M(I,J ) is depicted in Figure (b).
Now let A = 13, B = 24. As in the proof we see that #A1 = #B1 and #A1 ∩ J1i = #B1 ∩ J1j = 1 for
every i and j. We have k = 1 and we may choose ` = 1. Then we get a = 1, b = 4 as the unique elements in
A1 ∩ J11, B1 ∩ J11. We form J0 = (1 ·∪ 4 ·∪ 23) by splitting Jk` = 14. Moreover, we set I1 = 234 and I2 = 123.
This situation is depicted in Figure (c).

Proof: Let M be a tropical oriented matroid in general position, S the fine mixed subdivision of n4d−1

corresponding to M and A the family of tropical pseudohyperplanes induced by S. We have to show that
A′I is an arrangement of affine pseudohyperplanes for each A′ ⊆ A and halfspace system I.

So assume that
⋂
A′I 6= ∅. We have to show thatA′I satisfies the axioms in Definition 4.3. Each axiom

comes down to verifying that a certain set is a PL-ball. Each of these sets can be represented as M(I,J )
for suitable I and J . 2

5 The elimination property
This section is about the all important elimination property. Recall that by (Oh and Yoo, 2010, Prop.
4.12) the elimination property holds for fine mixed subdivisions of n4d−1. In this section we apply the
Topological Representation Theorem 4.12 to extend this to all mixed subdivisions of n4d−1.

5.1 Blowing up hyperplanes in a mixed subdivision
Let S be a fine mixed subdivision of n4d−1 and fix i ∈ [n]. The following construction is an inverse of
the deletion operation and yields a mixed subdivision of N4d−1 (N > n) by “blowing up” one tropical
pseudohyperplane in the dual arrangement. The construction can be defined for any mixed subdivision of
n4d−1. For the sake of brevity, however, we only present the construction for fine ones.

Let S, S′ be fine mixed subdivisions of n4d−1, respectively n′4d−1. Then the blow-up up S with
respect to S′ at position i is

S ∨i S′ :=
⋃
C∈S
{(C\i, X) | X ∈ S′\Ci

}.
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I.e., we subdivide the i-th summand of each cell C ∈ S as the Ci-face of S′. See Figure 4 for an example.
The following lemma follows easily:

Lemma 5.1 The types in the blow-up S ∨i S′ yield a fine mixed subdivision of (n + n′ − 1)4d−1.

5.2 Elimination in mixed subdivisions
In this section we prove that tropical pseudohyperplane arrangements as defined in Definition 4.6 satisfy
the elimination property and use this to show the same for all mixed subdivisions of n4d−1.

Since it simplifies the presentation we assume all arrangements of tropical pseudohyperplanes in this
section to come from a (fine) mixed subdivision of n4d−1. I.e., we only consider tropical pseudohyper-
plane arrangements which are dual to a fine mixed subdivision of n4d−1.

Let H be a tropical hyperplane with apex 0. Recall that HI denotes the boundary of the tropical
halfspace separating the points with types in I from those with types in the complement I . For p ∈ Td−1

and ∅ 6= I ⊆ [d] denote HI,p := HI − p, i.e., we shift the apex of HI to p. For ∅ 6= I ⊆ [d] denote
by TI the set of all points of type I . For X ⊆ {I | ∅ 6= I ⊂ [d]} we say that A ⊆ Td−1 approximates
TX :=

⋃
I∈X TI if:

• For each I ∈ X , there is εI > 0 such that TI is contained in A except possibly for an εI -
neighbourhood of the (relative) boundary ∂TI .

• For each I 6∈ X there is εI > 0 such that TI ∩A is contained in an εI -neighbourhood of ∂TI .

Intuitively, the set A is supposed to contain “almost everything” of TI if I ∈ X and “almost nothing”
of TI if I 6∈ X . Then TX is homeomorphic to deformation retract of A. We will be interested in
approximating neighbourhoods for X = {a, b, a ∪ b} with a, b ⊂ [d]. See Figure 5 for an illustration.

The proof of the following is rather technical and omitted for the sake of brevity.

Lemma 5.2 Let H be a tropical hyperplane in Td−1 and ∅ 6= I, I ′ ⊂ [d]. Then we can construct an
approximating neighbourhood of TI ∪ TI′ ∪ TI∪I′ as an intersection of shifted pseudohalfspaces H+

J,p.
Moreover, these pseudohalfspaces can be constructed explicitly by suitable blow-ups of H .

See Figure 6 for an example.
We can extend the above construction to arrangements of tropical pseudohyperplanes.

Lemma 5.3 Let A = (Hi)i∈[n] be an arrangement of tropical pseudohyperplanes dual to a mixed sub-
division S of n4d−1. Fix two halfspace systems I, I ′. Then we can construct an approximating neigh-
bourhood A of E :=

⋂
(Hi,Ii ∩ Hi,I′

i
) by repeated blow-ups (for each position) of S. Moreover, A is

homeomorphic to a deformation retract of E.

Fig. 4: The blow-up of a mixed subdivision of 342 with respect to one of 242. The cells in the shaded hyperplane are
subdivided according to the subdivision of the small simplex. The according tropical pseudohyperplane arrangement
is drawn on the left.
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2 3

Fig. 5: Approximating neighbourhoods corre-
sponding to a = 1 and b = 23 (on the left),
respectively a = 1 and b = 123 (on the right).

2

1

3

Fig. 6: An approximating neighbourhood for a = 1, b =
23 as an intersection of affine pseudohalfspaces in a blow-
up of the black tropical pseudohyperplane.

Theorem 5.4 Every mixed subdivision of n4d−1 satisfies the elimination property.
Proof: Let S be a mixed subdivision of n4d−1. By Proposition 3.9 it suffices to show that SAB is
connected for any two cells A,B ∈ S. By Lemmas 5.2 and 5.3 we can approximate the set SAB as an
intersection of pseudohalfspaces in a suitable blow-up B of S. If we delete from B the original tropi-
cal pseudohyperplanes from S we obtain a fine mixed subdivision. By the Topological Representation
Theorem 4.12 the boundaries of these pseudohalfspaces yield an arrangement of affine pseudohyper-
planes. Hence SAB is approximated by an intersection of closed affine pseudohalfspaces and hence is
path-connected by Lemma 4.5. 2

From this we immediately obtain the following corollary (cf. (Ardila and Develin, 2009, Conj 5.1)):
Corollary 5.5 Tropical oriented matroids with parameters (n, d) are in one-to-one correspondence with
mixed subdivisions of n4d−1 and subdivisions of4n−1 ×4d−1.
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