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Connections Between a Family of Recursive
Polynomials and Parking Function Theory
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Abstract. In a 2010 paper Haglund, Morse, and Zabrocki studied the family of polynomials ∇Cp1 . . . Cpk1 , where
p = (p1, . . . , pk) is a composition, ∇ is the Bergeron-Garsia Macdonald operator and the Ca are certain slightly
modified Hall-Littlewood vertex operators. They conjecture that these polynomials enumerate a composition indexed
family of parking functions by area, dinv and an appropriate quasi-symmetric function. This refinement of the nearly
decade old “Shuffle Conjecture,” when combined with properties of the Hall-Littlewood operators can be shown to
imply the existence of certain bijections between these families of parking functions. In previous work to appear
in her PhD thesis, the author has shown that the existence of these bijections follows from some relatively simple
properties of a certain family of polynomials in one variable x with coefficients in N[q]. In this paper we introduce
those polynomials, explain their connection to the conjecture of Haglund, Morse, and Zabrocki, and explore some of
their surprising properties, both proven and conjectured.

Résumé. Dans un article de 2010, Haglund, Morse et Zabrocki étudient la famille de polynômes ∇Cp1 · · ·Cpk1 où
(p1, . . . , pk) est une composition, ∇ est l’opérateur de Bergeron-Garsia et les Ca sont des opérateurs “vertex” de
Hall-Littlewood légèrement altérés. Il posent la conjecture que ces polynômes donnent l’énumération d’une famille
de fonctions “parking”, indexées par des compositions, par aire, le “dinv” et une fonction quasi-symmétrique associée.
Cette conjecture raffine la conjecture “Shuffle”, qui est agée de presque dix ans. On peut montrer, a partir de cette
conjecture, que les propriétés des operateurs de Hall-Littlewood, impliquent l’existence de certaines bijéctions entre
ces familles de fonctions “parking”. Dans un précédent travail , qui fait partie de sa thèse de doctorat, l’auteur montre
que l’éxistence de ces bijéctions découle de certaines propriétés relativement simples d’une famille de polynômes à
une vaiable x, avec coefficients dans N[q]. Dans cet article, on introduit ces polynômes, on explique leur connexion
avec la conjecture de Haglund, Morse et Zabrocki, et on explore certaines de leur proprieétés surprenantes, qu’elles
soient prouvées ou seulement conjecturées.
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1 Introduction
We begin with a simple family of polynomials on n variables, call them {PW (Xn; q)}, constructed re-
cursively and indexed by a sequence W = (w1, . . . , wn). We place several minor restrictions on this
sequence, which we refer to hereafter as a schedule:
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• w1 = 1 and w2 = 2;

• w3 ∈ {1, 2}; and

• (slow growth.) wi ≤ wi−1 + 1.

Then we begin by defining
P(1,2)(X2; q) = qx1 + x2.

To recursively construct the remaining members of the family, we define an operator

Bn,wP (Xn−1; q) =
1

1− q
((xn − qw)P (x1, x2, . . . , xn−1; q) (1)

+ (1− xn)P (x1, x2, . . . , xn−w−1, qxn−w, . . . , qxn−1; q)) (2)

Finally we simply define

P(w1,...,wn)(Xn; q) = Bn,wn
P(w1,...,wn−1)(Xn−1; q).

Example 1.

P(1,2,2,3)(X4; q) = B4,3(B3,2(qx1 + x2)) (3)

= B4,3(
1

1− q
(
(x3 − q2)(qx1 + x2) + (1− x3)(q(qx1) + qx2)

)
(4)

= B4,3((qx1 + x2)(q + x3)) (5)

= (qx1 + x2)(q
2 + q3 + q2x3 + qx4 + x3x4 + qx3x4) (6)

In fact, our primary interest lies with a specialization of these polynomials

QW (x; q) = PW (Xn, q)|x1=···=xn=x

which experimentally satisfies some surprising properties. In particular, we conjecture that

Conjecture 1. For any schedule W = (w1, . . . , wn),

(1− q/x)QW (x; q) + xn−1(1− qx)QW (1/x; q) = (1 + xn−1)(1− q)
n∏
i=1

[wi]q. (7)

We will refer hereafter to (7) as the “functional equation,” and if the conjecture holds for a given
schedule W , we will say the schedule satisfies the functional equation.

Example 2. Using our above calculation for P(1,2,2,3)(X4; q) and some minor simplifications, we have
that Q(1,2,2,3) = (1 + q)2x(q2 + qx+ x2). Then notice that:

(1− q/x)Q(1,2,2,3)(x; q) + x3(1− qx)Q(1,2,2,3)(1/x; q)

= (1− q/x)(1 + q)2x(q2 + qx+ x2) + x3(1− qx)((1 + q)2(1/x)(q2 + q(1/x) + (1/x2)))

= (1 + q)2((x− q)(q2 + qx+ x2) + (1− qx)(q2x2 + qx+ 1))

= 1 + 2q + q2 − q3 − 2q4 − q5 + (1 + 2q + q2 − q3 − 2q4 − q5)x3

Why should we care about these polynomials or Conjecture 1? The answer to this question lies in an
intriguing conjecture about the parking functions in [Haglund et al.(2011)]; to state it in full requires some
background, which we give in the next section.
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2 Parking Functions
We begin with some necessary definitions.

Definition 1 (Parking Function). A two line array

PF =

[
c1 c2 . . . cn
d1 d2 . . . dn

]
is a parking function exactly when

• The first line is a permutation of {1, 2, . . . , n};

• (Dyck Path Condition.) d1 = 0 and when i > 1, di ≤ di−1 + 1; and

• (Increasing Column Condition.) if di = di−1 + 1, then ci > ci−1.

We say that car ci is in diagonal di, where the 0th diagonal is also called the main diagonal. Two easily
defined statistics on the parking functions of historical interest are the area and dinv.

area(PF ) =

n∑
i=1

di.

Using χ for the truth function,

dinv(PF ) =
∑
i<j

χ(di = dj and ci < cj) + χ(di = dj + 1 and ci > cj).

Definition 2 (Reading Word). The reading word of a parking function (word(PF )) is the list of its cars
(cσ1

, . . . , cσn
), where

• dσi
≥ dσi+1

and

• if dσi = dσi+1 , then σi > σi+1.

Thus the reading word lists the cars from highest to lowest diagonal, with cars in a given diagonal given
from back to front.

Then we may define another common statistic on the parking functions, the i-descent set:

ides(PF ) = des(word(PF )−1).

In [Haglund et al.(2011)] Haglund, Morse, and Zabrocki introduce a further statistic, “comp(PF )”,
the composition of a parking function. Let (z1, . . . , zk) give, in increasing order, the indices such that
dzi = 0. Then

comp(PF ) = (z1, z2 − z1, . . . , zk − zk−1, n− zk + 1)
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Example 3. Let

PF =

[
1 2 5 3 4
0 1 2 1 0

]
.

Then
area(PF ) = 4 and dinv(PF ) = 3.

Moreover, the reading word of PF is (5, 3, 2, 4, 1) and thus

ides(PF ) = des((5, 3, 2, 4, 1)) = {1, 2, 4}.

Finally, notice that
comp(PF ) = (4, 1).

With these definitions in hand, we can consider a number of conjectures about the parking functions
and the special operator called nabla (∇), introduced in [Bergeron and Garsia(1999)].

Definition 3 (nabla). Let H̃µ[X; q, t] represent the Macdonald polynomial basis element indexed by
µ = [µ1, · · · , µk] and use µ′ = [µ′1, · · · , µ′k′ ] for the conjugate of µ . Then nabla is an eigenoperator for
the Macdonalds defined by the following:

∇H̃µ[X; q, t] = t
∑

(i−1)µiq
∑

(i−1)µ′iH̃µ[X; q, t].

A decade old conjecture in [Haglund et al.(2005)] about the parking functions can be expressed in terms
of nabla:

Conjecture 2 (Shuffle Conjecture). Using QS for the Gessel quasisymmetric function indexed by S and
PFn for the parking functions with n cars,

∇en =
∑

PF∈PFn

tarea(PF )qdinv(PF )Qides(PF ).

The conjecture motivating our current work is in fact a specialization of the shuffle conjecture in
[Haglund et al.(2011)]. Using the brackets [ ] to indicate plethystic substitution, as in [Garsia and Procesi(1992)],
set for any symmetric function F [X]

CaF [X] =

(
−1
q

)a−1∑
k≥0

F

[
X +

1− q
q

z

] ∣∣∣∣
zk
ha+k[X].

The C operator has several useful properties. Among them:

1. Using p |= n for p is a composition of n, the identity, as shown in [Haglund et al.(2011)]:

en =
∑

(p1,··· ,ps)|=n

Cp1Cp2 . . . Cps1.

2. Using µ ` n to indicate that µ is a partition of n, the collection
{
Cµ1
· · ·Cµn

1
}
µ`n is a basis for

the symmetric functions of degree n.
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3. The C operators obey the following commutativity law: For a+ 1 ≤ b,

q(CaCb + Cb−1Ca+1) = CbCa + Ca+1Cb−1. (8)

Note that to simplify notation, for a composition p = (p1, · · · , pk), we use the convention

CpF [X] = Cp1 . . . CpkF [X].

Finally we may state the conjecture of principal importance to the subject at hand, as stated by Haglund,
Morse and Zabrocki in [Haglund et al.(2011)].

Conjecture 3. For p a composition,

∇Cp1 =
∑

comp(PF )=p

tarea(PF )qdinv(PF )Qides(PF ). (9)

There is a natural way to divide the proof of Conjecture 3 into two parts, namely:

1. Proving the equality in (9) when p is a partition.

2. Reducing the compositional case of (9) to the partitional case. (i. e. showing that both sides of (9)
satisfy the same identities implied by successive applications of the commutativity relations, stated
in (8).)

In a manner we will make more precise in the following sections, the polynomial conjecture with which
we began, Conjecture 1, implies the latter of these two.

3 Our Polynomials and Parking Functions
If we use Fp for the family of parking functions with composition p, Conjecture 3, combined with the
commutativity property in (8) suggest a combinatorial bijection.

Conjecture 4. For a ≤ b− 1, there exists a bijection f

f : F(a,b) ∪ F(b−1,a+1) ↔ F(b,a) ∪ F(a+1,b−1)

with the following properties:

1. f increases the dinv by exactly one

2. f does not change the diagonal containing any car, just the relative order of cars within their
original diagonal.

3. f preserves the area and the ides

Note that the second property of f is not a direct consequence of Haglund, Morse and Zabrocki’s
conjecture; however, this additional conjecture has been tested experimentally for n < 15. It’s inclusion
in this conjecture is significant; a priori if our goal is to reduce the proof of Conjecture 3 to the partition
case, we should be considering a map on parking functions with compositions of any length. When we
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include this additional restriction on our map, however, we are able to restrict our attention to parking
functions with two parts, although we omit the details here for reasons of brevity.

One of the most significant breakthroughs that allows our reduction of Conjecture 4 to Conjecture 1
is that we showed that it is enough to find a map without checking property 3. (In particular, notice that
property 2 is stronger than the restriction that f leaves the area fixed.)

Imagine we partition {1, 2, . . . , n} into disjoint sets S0 t · · · tSt. Next, consider the family of parking
functions, call it F(S0, . . . , St) with the cars in Si in the ith diagonal. (This family has previously been
studied in [Haglund(2008)].) Since, as just mentioned, we need only consider parking functions with two
parts, in particular, assume S0 contains exactly two elements. This implies that in the corresponding two
line arrays there will be only two diagonal numbers equal to 0. Say for one of our parking functions PF
we have d0 = 0 and di = 0, the we will let top(PF ) = n+ 1− i give the number of cars weakly to the
right of car ci. This allows us to consider the following sum:

RS0,...,St
(x, q) =

∑
PF∈F(S0,...,St)

qdinv(PF )xtop(PF ).

Or main breakthrough in [Hicks()] is a proof that the following conjecture, (which has now been verified
for all n < 15) implies Conjecture 4.

Conjecture 5. If S0 t · · · t St = [n], |S0| = 2, and a ≤ b− 1 then

RS0,...,St(x, q)|xb+xa+1 = q
(
RS0,...,St(x, q)|xa+xb−1

)
Now that we have an idea of the polynomials we would like to study, we may explain their connection

to the polynomials that appeared in our introduction.

Theorem 1. Let S0 t · · · t St = [n] and |S0| = 2 be one of our disjoint unions, then there exists a
schedule W such that

RS0,...,St
(x, q) = QW (x, q). (10)

Moreover, the converse is also the case; that is, given a scheduleW there exists a (not necessarily unique)
disjoint union S0 t · · · t St = [n] with |S0| = 2 such that (10) holds.

Thus Conjecture 5 is equivalent to the following:

Conjecture 6. For every schedule W and a ≤ b− 1

QW (x, q)|xb+xa+1 = q QW (x, q)|xa+xb−1

Succinctly, our goal in the remainder of this paper is to study Conjecture 6 and some interesting prop-
erties of QW (x, q).

4 Polynomial Properties
We begin this section with another way of generating PW (Xn; q), in particular one which allows us to
directly find the coefficient of any given monomial in the xi’s.
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Theorem 2. Let W = (w1, . . . , wn) and S ⊂ [n] contain exactly one of 1 or 2. Let

mi =


0 if i = 1 and 2 ∈ S
1 if i = 1 and 1 ∈ S or i = 2

#(S ∩ {i− 1, i− 2, . . . , i− wi}) if i > 2

.

Then the coefficient of
∏
i∈S xi in PW (Xn; q) is nonzero if and only if

• For all i in S\{2}, mi ≥ 1

• For all i not in S, wi −mi ≥ 1

In this case, the coefficient of
∏
i∈S xi in PW (Xn; q) is exactly

AS(q) =

(∏
i∈S

[mi]q

)(∏
i/∈S

qmi [wi −mi]q

)

Proof: By construction this is the case for W = (1, 2). Working by induction, let S ⊂ [n− 1]. We begin
by applyingBn,wn

to a monomialAS(q)
∏
i∈S xi. Assume thatmn = #(S∩{n−1, n−2, . . . , n−wn}).

Bn,wn

(
AS(q)

∏
i∈S

xi

)
=

1

1− q

(
(xn − qw)AS(q)

∏
i∈S

xi + (1− xn)qmnAS(q)
∏
i∈S

xi

)
(11)

=

(
xn

(
1− qmn

1− q

)
+

(
qmn − qwn

1− q

))
AS(q)

∏
i∈S

xi (12)

= (xn[mn]q + qmn [wn −mn]q)AS(q)
∏
i∈S

xi (13)

Assuming the statement holds for (w1, w2, . . . , wn−1), we may inductively replace AS(q).

Bn,wn

(
AS(q)

∏
i∈S

xi

)
= (xn[mn]q + qmn [wn −mn]q)

(∏
i∈S

[mi]q

)(∏
i/∈S

qmi [wi −mi]q

)∏
i∈S

xi

(14)

=

 ∏
i∈S∪{n}

[mi]q

 ∏
i/∈S∪{n}

qmi [wi −mi]q

 ∏
i∈S∪{n}

xi (15)

+

(∏
i∈S

[mi]q

)(∏
i/∈S

qmi [wi −mi]q

)∏
i∈S

xi (16)

and thus we have proved the required equality for S and S ∪ {n} and W = (w1, w2, . . . , wn).

Using the previous theorem, we can conclude the following about the relationship betweenAS(q) and
ASc(q):
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Theorem 3. Let W = (w1, . . . , wn) and S ⊂ [n] contain exactly one of 1 or 2. Then

ASc(1/q) = qn−(
∑
wi)AS(q).

Proof: Here, when we consider the set Sc, we use mc
i in place of mi for ease of notation. Notice that by

definition, mc
i = wi −mi. Furthermore, recall that

[n]q|q→1/q =
[n]q
qn−1

.

Then

ASc(1/q) =

[(∏
i∈Sc

[mc
i ]q

)(∏
i/∈Sc

qm
c
i [wi −mc

i ]q

)]
q→1/q

(17)

=

[(∏
i/∈S

[wi −mi]q

)(∏
i∈S

qwi−mi [mi]q

)]
q→1/q

(18)

=

(∏
i/∈S

qmi−wi+1[wi −mi]q

)(∏
i∈S

q1−wi [mi]q

)
(19)

= qn−(
∑
wi)

(∏
i/∈S

qmi [wi −mi]q

)(∏
i∈S

[mi]q

)
(20)

= qn−(
∑
wi)AS(q). (21)

Corollary 1. Let W = (w1, . . . , wn). Then

PW (Xn; q) = qn−(
∑

i wi)

(∏
i

xi

)
PW

(
1

x1
, . . . ,

1

xn
;
1

q

)
.

To simplify notation, say that

QW (x, q) =
∑
s

As(q)x
s.

Corollary 2. For all 1 ≤ s ≤ n/2,

As(q) +An−s−1(q) = q(As+1(q) +An−s(q)) (22)

if and only if Rs(q) = As+1(q) +An−s(q) is palindromic, with

Rs(q) = qn−(
∑
wi)−1Rs(1/q). (23)
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Before we begin the proof, we observe that (22) is equivalent to the equations in Conjecture 6 with a
suitable re-indexing, which will reappear again below.

Proof: By Corollary 1,
As(q) = qn−(

∑
wi)As(1/q).

Then
As(q) +An−s−1(q) = q(As+1(q) +An−s(q)) (24)

if and only if
qn−(

∑
wi)(As+1(1/q) +An−s(1/q)) = q(As+1(q) +An−s(q)), (25)

as required.

5 The Functional Equation
Thus far, we have explained our interest in the polynomials QW (x, q) and thus by extension PW (Xn; q),
but not our interest in the functional equation. In fact, schedules which satisfy the functional equation
satisfy Conjecture 6.

Theorem 4. If a schedule W satisfies the functional equation, then it follows that for all 1 ≤ s ≤ n/2,

As(q) +An−s−1(q) = q(As+1(q) +An−s(q)). (26)

Proof: Rewriting the left hand side of our functional equation,

(1− q/x)QW (x; q) + xn−1(1− qx)QW (1/x; q) (27)

=

n−1∑
s=1

As(q)x
s −

n−1∑
s=1

qAs(q)x
s−1 +

n−1∑
s=1

As(q)x
n−s−1 −

n−1∑
s=1

qAs(q)x
n−s (28)

(29)

If a schedule satisfies the functional equation, then in (27) xs must have vanishing coefficient when 1 ≤
s ≤ n− 2. This happens exactly when

As(q)− qAs+1(q) +An−s−1(q)− qAn−s(q) = 0 (30)

as required.

We end with a number of preliminary results about schedules which satisfy the functional equation.
Working by computer, Eugene Rodemich has shown that all schedules of length less than 15 satisfy the
functional equation ([Rodemich(2011)].) A crucial, if innocuous sounding statement is the following.

Theorem 5. Let W = (w1, . . . , wn) be a schedule with j > 1 such that wj = 1. Then if (w1, . . . , wj−1)
and (w1, . . . , wj−2) satisfy the functional equation, W satisfies the functional equation.
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The importance of this result is evident when we consider two schedules, W = (w1, . . . , wn) and
W = (w1, . . . , wn−1, 1). Once we conclude that the latter satisfies the functional equation, we may prove
that W does as well by showing that

0 =(1− q/x)(QW (x; q)− [wn]qQW (x; q)) + xn−1(1− qx)(QW (1/x; q)− [wn]qQW (1/x; q)), (31)

which in practice is a much easier task. Moreover, we have the following:

Theorem 6. Let W = (w1, . . . , wn), W = (w1, . . . , wn−1, 1), and

RW (x, q) = QW (x; q)− [wn]qQW (x; q).

Then we have the factorization

RW (x, q) = (1− x)(1− qx)SW (x; q).

Moreover, if W satisfies the functional equation, W satisfies the functional equation if and only if

SW (x; q) = xn−1SW (1/x; q).

Several of our remaining results consider both W and W .

Theorem 7. IfW = (1, 2, w3 . . . , wm, s, s+1, . . . , s+a−1) andW both satisfy the functional equation,
then

W = (1, 2, w3 . . . , wm, s, s+ 1, . . . , s+ a− 1, a)

also satisfies the functional equation.

Moreover, we have that

Theorem 8. LetW = (1, 2, w3 . . . , wn) andW satisfy the functional equation. Then (1, 2, v, w3, . . . , w4)
also satisfies the functional equation for v = 2, 2 and v = 2, 3.

This theorem gives us several infinite families that we may conclude satisfy the functional equation
explicitly, including two easily described families:

Corollary 3. Schedules of the form W = (1, 2, 2, 3, 2, 3, . . . , 2, 3) and W = (1, 2, 2, 2, . . . , 2) satisfy the
functional equation.

As in several of the above examples, it is often easier to conclude that a schedule satisfies the functional
equation if we first assume some smaller schedules satisfy the functional equation. We formalize this idea
by stating the following:

If a scheduleW = (w1, . . . , wn) can be shown to satisfy the functional equation under the assumpation
that schedules of length less than n satisfy the functional equation, say that the schedule inductively
satisfies the functional equation. Notice that showing all schedules inductively satisfy the functional
equation is enough to prove Conjecture 1. We then have the obvious corollary:

Corollary 4. Schedules containing multiples 1’s and schedules beginning with (1, 2, 2, 2, 2, w6, . . . , wn)
or (1, 2, 2, 3, 2, w6, . . . , wn) inductively satisfy the functional equation.

Additionally we have the following:
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Theorem 9. Schedules beginning with (1, 2, 2, 2, 3, 2, w7, . . . , wn), (1, 2, 2, 3, 3, 2, w7, . . . , wn),
(1, 2, 2, 3, 4, 2, w7, . . . , wn), (1, 2, 2, 2, 3, 3, 2, w8, . . . , wn), (1, 2, 2, 2, 3, 4, 2, w8, . . . , wn), and
(1, 2, 2, 3, 3, 3, 2, w8, . . . , wn) inductively satisfy the functional equation.

Note that when combined with the previous corollary, considering the slow growth restriction on our
schedules, this theorem substantially reduces the family of schedules not known to inductively satisfy the
functional equation.

Finally, several other infinite families have also been shown explicitly to satisfy the functional equation,
for example:

Theorem 10. (1, 2, 2, 3, 4, . . . , k) satisfies the functional equation for any value of k.

Proof: In fact,

Q(1,2,2,3,4,...,k)(x; q) =

k∑
m=1

(1 + q)qk−m[k − 1]q!x
m,

which can be explicitly shown to satisfy the required property.
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