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Symmetries of the k-bounded partition lattice.
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Abstract. We generalize the symmetry on Young’s lattice, found by Suter, to a symmetry on the k-bounded partition
lattice of Lapointe, Lascoux and Morse.

Résumé. Nous généralisons la symmetrie sur le treillis de Young, découvert par Suter, à une symétrie sur le treillis
des partages bornés par k et étudié par Lapointe, Lascoux and Morse.

Keywords: core partitions, k-Schur functions, cyclic symmetry

1 Introduction
In [Su1], Suter found a dihedral symmetry which exists in Young’s lattice, by taking all partitions whose
bounding rectangle is contained within the staircase (k, k − 1, k − 2, . . . , 2, 1). He recognized that these
partitions would have the same symmetries as the affine Dynkin diagram of type Ak.

While studying k-Schur functions, we noticed that the rectangles which Suter uses are the same rect-
angles that appear in Morse and Lapointe’s paper [LM3]. The rectangles in this picture correspond to
special elements of the homology of the affine Grassmannian [L1, L2, L3]. For this reason, the lattice of
k-bounded partitions related to the algebra of k-Schur functions is a natural place to view a generalization
of the symmetry observed by Suter.

Recent results of Berg, Bergeron, Thomas and Zabrocki [BBTZ] developed some geometric properties
of the affine hyperplane arrangement. We use this geometric picture to generalize the symmetry that
Suter found to the k-bounded partition lattice of Lapointe, Lascoux and Morse [LLM]. We do this by
recognizing that the k-bounded partitions which are contained in a concatenation of m rectangles with a
k hook is isomorphic to an m-dilation in the geometric picture.

Recently, Nathan Williams [W] has identified an isomorphism between the geometric picture presented
here and the set of words of length k + 1 on {0, 1, 2, . . . ,m} which sum to 0 (mod m + 1) and a cyclic
group action on these words.
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1.1 From root systems in type Ak to the the affine Grassmannian
Let α1, . . . , αk denote the simple roots of type Ak, which form a basis for a vector space V . V has a
symmetric bilinear form given by:

〈αi, αj〉 =

 2 if i = j,
−1 if i = j ± 1,
0 else.

and we let {Λi}1≤i≤k denote the basis dual to {αi}1≤i≤k under this bilinear form. The Z span of the
{Λi}1≤i≤k will be called the weights.

For v ∈ V , we let Hv denote the hyperplane through the origin, perpendicular to v. We write Hi for
Hαi and Hv,p for the points x satisfying 〈v, x〉 = p.

Let si represent the reflection of a vector v through the hyperplane Hi so that the set of reflections
s1, . . . , sk corresponding to the roots α1, . . . , αk generate a reflection group W0 which is isomorphic to
the symmetric group Sk+1. The corresponding (finite) root system is Φ0 is the closure of the set of vectors
{αi}1≤i≤k under the action of W0. The element φ = α1 + · · · + αk is known as the highest root of the
the root system.

The affine arrangement is the collection of all hyperplanes Hα,p for α ∈ Φ0 and p ∈ Z.
The dominant chamber is the (closed) collection of points in V which are bounded by the hyperplanes

Hαi,0. We denote it by C. A weight is called dominant if it lies in the dominant chamber.
The fundamental alcove is bounded by the walls of the dominant chamber, together with the hyperplane

Hφ,1. We denote it by A∅.
The affine reflection group, W , has an additional generator s0, which acts as reflection in Hφ,1. The

generators s0, s1, . . . , sk satisfy the affine type A Coxeter relations:

s2
i = 1 for i ∈ {0, 1, . . . , k}

sisj = sjsi if i− j 6= ±1

sisi+1si = si+1sisi+1 for i ∈ {0, 1, . . . , k}

where i− j and i+ 1 are understood to be taken modulo k + 1.
There is an action of W on V defined by si reflecting across the hyperplane Hi for i ∈ {1, 2, . . . , k}

and s0 reflecting across the hyperplane Hφ,1.
We let Aw := w−1A∅. The collection of Aw are called the alcoves of the affine arrangement. The

hyperplanes Hαi,n will intersect with Aw either in the empty set, at a single weight, or in a facet of the
alcove (the convex hull of k of the vertices of Aw). An alcove Aw ⊂ C if and only if w is a minimal
length coset representative of W/W0. The set of minimal length coset representatives is denoted W 0. A
permutation w ∈W 0 is called an affine Grassmannian permutation.

Example 1.1 Let k = 4. Then s4s1s0 = s1s4s0 is affine Grassmannian because all its reduced words
end in s0, but s0s1s0 = s1s0s1 is not.

A partition λ is called a (k + 1)-core if λ has no removable (k + 1)-rim hook. Define the size of a
(k+ 1)-core, |λ|, to be the number of cells (i, j) with hook smaller than k+ 1 where the hook of a cell is
λi + λ′j − i− j + 1. Let C(k+1) denote the set of all (k + 1)-cores.

Example 1.2 Let k = 3 and λ = (4, 2, 2). Then λ has no removable 4-rim hooks and the size of λ is 6.
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W has an action on C(k+1). Let the content of a cell (i, j) in the Young diagram of λ be the integer
j − i mod k + 1. If λ is a (k + 1)-core then siλ is λ union all addable cells of content i, if λ has such
an addable cell, siλ is λ minus all removable boxes of content i from λ if λ has such a removable box (a
(k+1)-core cannot have both a removable box and an addable position of the same content), and siλ = λ
otherwise.

Example 1.3 Let k = 3 and λ = (4, 2, 2) as above. Then s1λ = (4, 3, 2, 1) and s3λ = (3, 2, 1).

0 1 2 3

3 0

2 3

Proposition 1.4 [Lascoux] There is a bijection between affine Grassmannian permutations of length r
and the set of (k + 1)-cores of size r by sending w ∈W 0 to the (k + 1) core w∅ obtained by w acting on
the empty core.

2 Background: Suter symmetry
For a fixed positive integer k, letR1 = (1k), R2 = (2k−1), . . . , Rk = (k) denote the rectangular partitions
which have largest hook length equal to k. Let Y k denote the (finite) sublattice of Young’s lattice which
contains everything smaller than R1, R2, . . . , Rk, i.e. Y k = {λ : λ ⊂ Ri for some i}.

Suter [Su1] noticed that Y k had a dihedral symmetry, coming from the usual symmetry of partition
transposition, as well as a k-fold rotational symmetry, as pictured in Figure 1.

Suter defined a cyclic action on Y k of order k+1, described on a Young diagram of a partition. We will
not present this here; our generalization comes from a different description of this cyclic action which we
now introduce.

2.1 Suter symmetry on alcoves
Since every partition in Y k is a (k + 1)-core, we can associate each partition λ ∈ Y k with some affine
Grassmannian permutation, or equivalently, to an alcove Aw in the dominant chamber. It was noticed by
Suter in [Su2] that all partitions whose hook is smaller than or equal to k are in bijection with the alcoves
in the fundamental chamber bounded by Hφ,2. The elements of Y k, viewed as alcoves, now form a 2
fold dilation of the fundamental alcove. The fundamental alcove has a k+ 1 cyclic symmetry (cycling the
vertices of the dilated alcove) and so the elements of Y k also have this symmetry. We will generalize this
version of Suter symmetry in Section 4.

3 Combinatorics of k-bounded partitions
Lapointe and Morse [LM2] introduced a bijection between (k + 1)-cores and k-bounded partitions (a
partition is k-bounded if all of it’s parts are less than or equal to k). The bijection sends a (k + 1)-core µ
to the k-bounded partition λ whose ith part is equal to the number of cells (i, j) in µ with hook less than
k + 1. For a (k + 1)-core µ, we let p(µ) denote the corresponding k-bounded partition, and we will let c
denote the inverse map (so c(p(µ)) = µ).
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Fig. 1: Three examples of the k + 1 dihedral symmetry of Y k for k ∈ {2, 3, 4}.
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Fig. 2: A dilation of the fundamental alcove of Ã2 by multiplying the edge lengths by 2. The highlighted cells are
in bijection with the partitions {∅, (1), (2), (1, 1)}.

Lapointe, Lascoux and Morse [LLM] introduced a k-version of Young’s lattice. It is a sublattice of
Young’s lattice whose vertices are labeled by k-bounded partitions. It is the lattice generated by the
covering relation λl µ if |λ|+ 1 = |µ| and sic(λ) = c(µ) for some i = 0, 1, . . . , k.

The rectanglesR1, . . . , Rk described above play an important role in the study of k-Schur functions. k-
Schur functions, first introduced by Lapointe, Lascoux and Morse [LLM], were motivated in the study of
Macdonald polynomials, but have since appeared in other contexts (see, in particular, [L2, L3, LS, LM3]).
Each k-Schur function s(k)

λ is indexed by a k-bounded partition λ (or equivalently a (k + 1)-core, or an
affine Grassmannian permutation).

An important open problem in the study of k-Schur functions is to understand their multiplication rule.
One special case is very explicitly understood, due to the following theorem of Lapointe and Morse. For
two partitions λ and µ, let λ ∪ µ denote the partition obtained by combining the parts of λ and µ and
placing them into non-increasing order.

Theorem 3.1 (Lapointe, Morse [LM3]) s(k)
λ s

(k)
R = s

(k)
λ∪R for a rectangle R = R1, . . . , Rk.

4 Generalized Suter symmetry
We now fix an integer m > 1. With Theorem 3.1 in mind, we will study all partitions contained in a
product ofm rectangles. Let Y km denote the subposet of the k-Young’s lattice which contains all partitions
contained in a stack of m − 1 of the k-rectangles (so λ ∈ Y km if λ ⊂ Ri1 ∪ Ri2 ∪ · · · ∪ Rim−1 for some
i1, . . . , im−1). By this definition, Y k2 = Y k from the beginning of Section 2. As exhibited in Figure 4,
the set Y km also has a k+ 1 cyclic symmetry. We will prove this by appealing to the geometric description
of Suter symmetry. The collection of alcoves in the dominant chamber which are bounded by the affine
hyperplane Hφ,m again inherits the cyclic k + 1 symmetry of the fundamental alcove, thus proving that
a cyclic k + 1 symmetry exists on the alcoves. It remains to be shown that the alcoves in the dominant
chamber bounded by the hyperplane Hφ,m correspond to the partitions which are contained in a product
of m− 1 rectangles. Once we have shown this, our main theorem, that Y km has a cyclic k + 1 action, will
follow.
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Fig. 3: The poset Y 2
4 labeled by cores which exhibits a dihedral 3-fold symmetry. A reflection in this symmetry is

realized through conjugation of the 3-cores. The red indicates the cells added to the core are content 0 (mod 3), blue
at the cells are content 1 (mod 3), green the cells are content 2 (mod 3)

5 The affine Nil-Coxeter algebra and rectangle k-Schur functions
The affine nilCoxeter algebra A is the algebra generated by ui for i ∈ {0, 1, . . . , k}, subject to the relations
(see for instance [L1]):

u2
i = 0 for i ∈ {0, 1, . . . , k}

uiuj = ujui if i− j 6= ±1

uiui+1ui = ui+1uiui+1 for i ∈ {0, 1, . . . , k}

where i− j and i+ 1 are understood to be taken modulo k + 1.
If si1 . . . sim is a reduced word for an element w ∈ W , we let u(w) = ui1 . . . uim , then U := {u(w) :

w ∈W} is a basis of A.
The affine nilCoxeter algebra has an action on the free abelian group with basis the (k + 1)-cores. Let

ν ∈ C(k+1) and then define uiν to be the (k + 1)-core formed by adding all addable boxes of content i if
ν has at least one such addable box, and uiν is 0 otherwise.

Within the affine nilCoxeter algebra, Lam [L1] found elements hi for 1 ≤ i ≤ k which generate
a subalgebra isomorphic to the subring of symmetric functions generated by the complete homogenous
symmetric functions h1, . . . , hk.

Definition 5.1 An element u = ui1ui2 · · ·uim ∈ U is said to be cyclically decreasing if each of i1, . . . , im
are distinct, and whenever j = is and j + 1 = it then t < s (here j + 1 is taken modulo k + 1). To a
strict subset D ⊂ {0, 1, . . . , k}, we let uD denote the unique element of U which is cyclically decreasing
and is a product of the generators um for m ∈ D.

Example 5.2 Let k = 7 and let D = {0, 1, 4, 7}. Then uD = u1u0u7u4.
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Fig. 4: The poset Y 3
3 exhibits a cyclic 4 symmetry. The vertices are labelled by 4-cores, and corresponding 3-bounded

partitions are obtained by deleting shaded boxes and left justifying the partition. The edge colors correspond to the
integer modulo 4 of the content of the cells being added; red is 0, blue is 1, yellow is 2 and green is 3.
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Lam then defines elements hi :=
∑
|D|=i uD ∈ A for i ∈ {0, 1, . . . , k}.

Theorem 5.3 (Lam [L1] Corollary 14) The hi for i ∈ {1, 2, . . . k} generate a subalgebra isomorphic
to the ring generated by the complete homogeneous symmetric functions hi for i ∈ {1, 2, . . . k}. The
isomorphism identifies hi and hi.

One can then define the k-Schur functions.

Definition 5.4 Let λ be a k-bounded partition. Then we define s(k)
λ to be the unique elements of the

subring generated by the hi which satisfy the following rule, known as the k-Pieri rule:

his
(k)
λ =

∑
µ

s(k)
µ ; s

(k)
∅ = 1.

where µ = u(y)λ and y is a cyclically decreasing element of length i.

Remark 5.5 In general, expanding s(k)
λ =

∑
w cwu(w) is an open problem, and has been shown to

be equivalent to understanding the structure coefficients of k-Schur functions (called the k-Littlewood
Richardson coefficients).

5.1 Expression of rectangle k-Schur functions as pseudo-translations
In [BBTZ], the authors introduced the notion of a pseudo-translation in order to describe the expansion
of k-Schur functions corresponding to R1, . . . , Rk in A. Pseudo-translations have since been realized by
Lam and Shimozono as being translations of the extended affine Weyl group (see [LS2]).

Definition 5.6 Let η be a weight. We say y ∈ W is a pseudo-translation of Aw in direction η if Ayw =
Aw + η.

For a weight γ we let zγ denote the pseudo-translation of the fundamental alcove A∅ in direction γ.

Theorem 5.7 (Berg, Bergeron, Thomas, Zabrocki [BBTZ]) Inside A,

s
(k)
Ri

=
∑

γ∈W0Λi

u(zγ).

5.2 Alcoves with a facet on the hyperplane Hφ,m

Let R be the k-bounded partition Ri1 ∪· · ·∪Rim−1
with ij ∈ {1, 2, . . . , k}. Then s(k)

R = s
(k)
Rim−1

· · · s(k)
Ri1

by Theorem 3.1. By Theorem 5.7, the k-bounded partition R corresponds to the alcove A∅+ (Λi1 + · · ·+
Λim−1

).

Lemma 5.8 There are
(
m−1+k−1

k−1

)
distinct k-bounded partitions of the form R = Ri1 ∪ · · · ∪Rim−1

.

Proof: The partition R will be the union some number (possibly 0) of each of the different rectangles
R1, R2, . . . , Rk. Hence the number of such rectangles is the number of ways to pick a set of m − 1
objects from a set of k elements with repetition. 2

Lemma 5.9 The alcove A corresponding to the k-bounded partition R = Ri1 ∪ · · · ∪ Rim−1
shares a

facet with the wall Hφ,m.
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Proof: The fundamental alcove A∅ shares a facet with the hyperplane Hφ,1. The fundamental weights Λi
all satisfy 〈Λi, φ〉 = 1 and are the coordinates of the vertices of this facet. Since A is a translate of the
fundamental alcove, A = A∅ + (Λi1 + · · · + Λim−1), the vertices of A which are not translates of the
origin will have weight vd = Λd + Λi1 + · · ·+ Λim−1 . They will satisfy

〈vd, φ〉 = 1 +

m−1∑
j=1

〈Λij , φ〉 = m,

and so will lie on the wall Hφ,m. 2

Lemma 5.10 The number of vertices on the hyperplane Hφ,m−1 which are in the fundamental chamber
is
(
m−1+k−1

k−1

)
. There is a bijection between the alcoves corresponding to products of rectangles and these

vertices; we identify an alcove with its unique vertex on Hφ,m−1.

Proof: Each vertex onHφ,m−1 has the form
∑
i aiΛi with ai all non-negative integers and

∑
i ai = m−1.

We conclude then that the vertices are then in bijection with non-negative integer solutions (ai ≥ 0) to
the equation

∑k
i=1 ai = m− 1 and this is well known to be

(
m−1+k−1

k−1

)
.

For the last statement it is sufficient to remark that each alcove corresponding to partition R = Ri1 ∪
· · · ∪ Rim−1

contains the vertex Λi1 + · · · + Λim−1
which lies on Hφ,m−1 and by Lemma 5.8 these sets

have the same number of elements. 2

Lemma 5.11 Let R = Ri1 ∪ · · · ∪ Rim−1
and let R be the (k + 1)-core which corresponds to the k-

bounded partition R. Then R has only one addable residue, that is there exists a unique i for which
uiR 6= 0.

Proof: The only residue which is addable is i = i1 + · · · + im−1. The core R is obtained by appending
rectangles ordered by their widths in a skew fashion, stacking the rectangles so that adjacent rectangles
share neither row nor column. Cells which are on the opposite sides of a rectangle in the core will have
the same residue because they are separated by a hook of k therefore only one residue is addable. The
length of the first row ofR will be i = i1 + · · ·+ im−1 and so it is also the residue of the addable corner.
2

Corollary 5.12 Let λ be a k-bounded partition and suppose that λ corresponds to an alcove Aw in the
fundamental chamber which is bounded by Hφ,m. Then there exists an R = Ri1 ∪ · · · ∪Rim−1

such that
λ ⊂ R.

Proof: The proof is by induction on m. When m = 1 the statement is trivial; the only dominant al-
cove bounded by Hφ,1 is the fundamental alcove, which corresponds to the empty partition ∅, which is
contained in an empty product of rectangles.

Now we fix m. If Aw is bounded by Hφ,m−1 then the statement follows by induction; we know that
there is an R′ = Ri1 ∪ Ri2 ∪ · · · ∪ Rim−2

with λ ⊂ R′. Therefore λ ⊂ R′ ∪ Rim−1
for any other

im−1 ∈ {1, 2, . . . , k}.
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Now we may assume that Aw is between Hφ,m−1 and Hφ,m. Therefore Aw has at least one vertex on
Hφ,m−1. Let such a vertex be Λ =

∑m−1
j=1 Λij . Let R = Ri1 ∪ · · · ∪Rim−1

as in Lemma 5.10. We claim
that λ ⊂ R.

Let B denote the alcove corresponding to R. By Lemma 5.11, B has a unique addable residue, which
we shall denote r. This residue corresponds to crossing the hyperplane Hφ,m, since crossing the hyper-
plane will increase the length of the corresponding core and we know there is only one reflection which
will add box to R, by Lemma 5.11. Applications of all other generators si for i 6= r must therefore
decrease the size of the partition. Since B shares a vertex with Aw, there is an element sa1sa2 · · · sax
of Wr which takes Aw to B (i.e. Asa1sa2 ···saxw

= B for some aj 6= r). Therefore λ ⊂ R, since
λ = sax · · · sa1R. 2 As a consequence of Corollary 5.12 we have the following results.

Theorem 5.13 The set Y km has a cyclic k + 1 action.

Proof: By Corollary 5.12, Y km corresponds precisely with alcoves in the dominant chamber which are
bounded by Hφ,m. The region in the dominant chamber bounded by Hφ,m has the same shape as the
fundamental alcove; the lengths of the edges of the fundamental alcove have been multiplied by m in
Hφ,m. Since the fundamental alcove has a cyclic k + 1 action which is inherited from the affine Dynkin
diagram, the collection of alcoves in this region inherits the cyclic k + 1 action. 2

As a corollary we also have as a consequence an enumeration of the elements in Y km.

Proposition 5.14 The number of partitions in Y km is mk.

Proof: As noted in the previous result, Y km is in bijection with the alcoves which lie inside of anm-dilation
of the fundamental alcove. In a k dimensional space the volume of a region dilated by m on a side will be
mk times the original, hence there are mk alcoves within this region. 2 Others (e.g. Sommers [Som,

Theorem 5.7]) have considered this dilated alcove for reasons other than the connection with k-bounded
partitions and (k + 1)-cores and so this lattice may have unexpected algebraic applications.
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Fig. 5: Suter symmetry of type k = 4 and m = 3
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