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On the degree-chromatic polynomial of a tree

Diego Cifuentes'
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Abstract. The degree chromatic polynomial Py, (G, k) of a graph G counts the number of k-colorings in which no
vertex has m adjacent vertices of its same color. We prove Humpert and Martin’s conjecture on the leading terms of
the degree chromatic polynomial of a tree.

Résumé. Le polynome degré chromatique Py, (G, k) d’un graphe G compte le nombre de k-colorations dans lesquelles
aucun sommet n’a m sommets adjacents de sa méme couleur. On démontre la conjecture de Humpert et Martin sur
les coefficients principaux du polynome degré chromatique d’un arbre.
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George David Birkhoff defined the chromatic polynomial of a graph to attack the renowned four color
problem. The chromatic polynomial P(G, k) counts the k-colorings of a graph GG in which no two adjacent
vertices have the same color [Read(1968)].

Given a graph G, Humpert and Martin defined its m-chromatic polynomial P, (G, k) to be the number
of k-colorings of GG such that no vertex has m adjacent vertices of its same color. They proved this is
indeed a polynomial. When m = 1, we recover the usual chromatic polynomial of the graph.

The chromatic polynomial is of the form

P(G,k) = k™ —ek™ ' + o(k"1),

where n is the number of vertices and e the number of edges of G. For m > 1 the formula is no longer
true, but Humpert and Martin conjectured the following formula which we now prove:

Theorem 1 ([Humpert and Martin(2010), Humpert and Martin(2011)], Conjecture) Let T be a tree
with n vertices and let m be an integer with 1 < m < n, then the following equation holds.

Pu(TR) =K"= D (df:)>k”‘m + o(k"™)

veV(T)

Proof: For a given coloring of 7', say vertices v; and v are “friends” if they are adjacent and have the
same color. For each v, let A, be the set of colorings such that v has at least m friends. We want to find
the number of colorings which are not in any A,,, and we will use the inclusion-exclusion principle. As
the total number of k-colorings is k™, we have

Po(T k) = k" =D A+ Y Ay NAy,|—...
veV v1,v2€V
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We first show that |4, = (““))k"=™ + o(k"~™). Let AY be the set of k-colorings such that v has
exactly [ friends. In order to obtain a coloring in A,(J”, we may choose the [ friends in (d(l”)) ways, the
color of v and its friends in k ways, the color of the remaining adjacent vertices to v in (k — l)d(”)*l

and the color of the rest of the vertices in k"~ *~%") ways. Then

ways,

n—1 n—1
I=m

l=m

= (d(“)> k" ok,

m

To complete the proof, it is sufficient to see that for any set S of at least 2 vertices |(),cq Au| =
o(k™~™); clearly we may assume S = {vy, v3}. Consider the following cases:

Case 1 vy and v are not adjacent.

Split A, into equivalence classes with the equivalence relation

o1 ~ 03 & o1(w) = og(w) for all w # vs.

Note that each equivalence class C' consists of k colorings, which only differ in the color of v. In

addition, for each C' at most % of its colorings are in A,,, as if ¢ € A,, there must be m vertices

adjacent to vo with the color o (v3). Therefore

d(v2)  [Ay| d(v2)
A, NA, | = E Ay, | < E = L. .
[Au, 1 A, c cn | - m k m

[Auy NAy, |

It follows that = ]

goes to 0 as k goes to infinity, so |A,, N A,,| = o(k"™™).
Case 2 vy and vs are adjacent.
Let W be the set of adjacent vertices to vy other than v;. They are not adjacent to v; as T has no cycles.
Split A,, into equivalence classes with the equivalence relation
o1 ~ 09 < 01(w) = oz(w) forall w ¢ W.

Each equivalence class C'consists of k" Icolorings, which may only differ in the colors of the vertices
in W. If v1and vqare friends in the colorings of C, then a coloring in |C' N A,,|must contain at least
m — lvertices in W of the same color as v,. Therefore

Wi 144
|CNA,|= Z <Vl[/|)(k — DW=t < Z <|Vl[/|>kW|1 — olW[pIW[-1
l=m—1 =0

Notice that here we are using m > 2so that [ > 1. Otherwise, if v; and v are not friends in the
colorings of C, then
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W] W]

_ W W |~ W\ wi-1 _ oiw| w1
|CmAU2|_Z(l (k—1) <l§ L =2Wlg .

l=m

Therefore
Ay, N A, =Y [CNA,| <Y 2WIEWI=
c c
— |AU1| . 2|W\k\W|71 _ |A111| ) 2‘W|
kW1 k

and |A,, N A,,| = o(k™~™) follows as in the first case.

This completes the proof of the theorem. O
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